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Abstract 52 

Background 53 

Hypersensitivity reactions to drugs are often unpredictable and can be life-54 

threatening, underscoring a need for understanding their underlying mechanisms 55 

and risk factors. The extent to which germline genetic variation influences the risk of 56 

commonly reported drug allergies such as penicillin allergy remains largely unknown. 57 

Methods 58 

We extracted data from the electronic health records of 52,000 Estonian and 59 

500,000 UK biobank participants to study the role of genetic variation in the 60 

occurrence of penicillin hypersensitivity reactions. We used imputed SNP to HLA 61 

typing data from up to 22,554 and 488,377 individuals from the Estonian and UK 62 

cohorts, respectively, to further fine-map the human leukocyte antigen (HLA) 63 

association and replicated our results in two additional cohorts involving a total of 64 

1.14 million individuals. 65 

Results 66 

Genome-wide meta-analysis of penicillin allergy revealed a significant association 67 

located in the HLA region on chromosome 6. The signal was further fine-mapped to 68 

the HLA-B*55:01 allele (OR 1.47 95% CI 1.37-1.58, P-value 4.63×10-26) and 69 

confirmed by independent replication in two cohorts. The meta-analysis of all four 70 

cohorts in the study revealed a strong association of HLA-B*55:01 allele with 71 

penicillin allergy (OR 1.33 95% CI 1.29-1.37, P-value 2.23×10-72). In silico follow-up 72 

suggests a potential effect on T lymphocytes at HLA-B*55:01. 73 

Conclusion 74 
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We present the first robust evidence for the role of an allele of the major 75 

histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin 76 

allergy. 77 

 78 

MAIN 79 

 80 

Adverse drug reactions (ADRs) are common in clinical practice and are associated 81 

with high morbidity and mortality. A meta-analysis of prospective studies in the US 82 

revealed the incidence of serious ADRs to be 6.7% among hospitalized patients, and 83 

the cause of more than 100,000 deaths annually 1. In Europe, ADRs are responsible 84 

for 3.5% of all hospital admissions, with 10.1% of patients experiencing ADRs during 85 

hospitalization and 197,000 fatal cases per year 2,3. In the US, the cost of a single 86 

ADR event falls between 1,439 to 13,462 USD 4. 87 

  88 

ADRs are typically divided into two types of reactions. Type A reactions are more 89 

predictable and related to the pharmacological action of a drug, whereas type B 90 

reactions are idiosyncratic, less predictable, largely dose-independent, and typically 91 

driven by hypersensitivity reactions involving the immune system 5. Although type B 92 

reactions are less frequent (<20%) than type A reactions, they tend to be more 93 

severe and more often lead to the withdrawal of a drug from the market 6. One of the 94 

most common causes of type B reactions are antibiotics 5, typically from the beta-95 

lactam class, with the prevalence of penicillin allergy estimated to be as high as 25% 96 

in some settings 7,8. Despite the relative frequency of such reactions, there are very 97 

few studies of the genetic determinants of penicillin allergy 9,10. This underscores the 98 
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need for a better understanding of the mechanisms and risk factors, including the 99 

role of genetic variation, that contribute to these reactions. 100 

 101 

The increasing availability of genetic and phenotypic data in large biobanks provides 102 

an opportune means for investigating the role of genetic variation in drug-induced 103 

hypersensitivity reactions. In the present study, we sought to identify genetic risk 104 

factors underlying penicillin-induced hypersensitivity reactions by harnessing data 105 

from the Estonian (EstBB) and UK Biobanks (UKBB), with further replication in two 106 

large cohorts. 107 

 108 

METHODS 109 

 110 

Study subjects 111 

We studied individual-level genotypic and phenotypic data of 52,000 participants 112 

from the Estonian Biobank (EstBB) and 500,000 participants from UK Biobank 113 

(UKBB). Both are population-based cohorts, providing a rich variety of phenotypic 114 

and health-related information collected for each participant. We extracted 115 

information on penicillin allergy by searching the records of the participants for Z88.0 116 

ICD10 code indicating patient-reported allergy status due to penicillin. Information on 117 

phenotypic features like age and gender were obtained from the biobank recruitment 118 

records. We also extracted likely penicillin allergies in the EstBB from the recruitment 119 

questionnaires and free text fields of the electronic health records (EHRs) using a 120 

rule-based approach (see Supplementary methods for further details). 121 

 122 

 123 
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Genome-wide study and meta-analysis 124 

The details on genotyping, quality control and imputation are fully described 125 

elsewhere for both EstBB 11,12 and UKBB 13 . In the Estonian biobank, we conducted 126 

the penicillin GWAS among 31,760 unrelated individuals of whom 961 were cases 127 

with self-reported allergy to J01C beta-lactam drugs and 30,799 undiagnosed 128 

controls. In the UKBB, GWAS on penicillin allergy (Z88.0) was performed among 129 

15,690 cases and 342,116 controls. The analyses were adjusted for the first ten PCs 130 

of the genotype matrix, as well as for age, sex and array (see Supplementary 131 

methods). We performed meta-analysis of 19,051,157 markers (MAF>0.1%) based 132 

on effect sizes and their standard errors using METAL 14. Results were visualized 133 

with R software (3.3.2) 15. 134 

  135 

HLA-typing  136 

HLA-typing of the EstBB genotype data was performed at the Broad Institute using 137 

the SNP2HLA tool 16. The imputation was done for genotype data generated on the 138 

GSA, and after quality control the four-digit HLA alleles of 22,554 individuals were 139 

used for analysis. In UKBB we used four-digit imputed HLA data released by UKBB 140 

13,17. The imputation process, performed using HLA*IMP:02 18, is described more 141 

fully elsewhere 13 and in the Supplementary methods. 142 

 143 

We performed separate additive logistic regression analysis with the called HLA 144 

alleles using R glm function in EstBB and UKBB including age, sex and 10 PCs as 145 

covariates. Meta-analysis of 162 HLA alleles was performed with the GWAMA 146 

software tool 19. A Bonferroni-corrected P-value threshold of 3.09×10-4 was applied 147 

based on the number of tested alleles: 0.05/162.  148 
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 149 

For detection of the strongest tagging SNP for the HLA-B*55:01 allele we calculated 150 

Pearson correlation coefficients between the HLA-B*55:01 allele and all the SNPs 151 

within +/- 50kb of the HLA-B gene region using R (3.3.2)  15 cor function. 152 

 153 

HLA-B*55:01 replication 154 

Replication analysis of the HLA-B*55:01 allele was tested on 87,996 cases and 155 

1,031,087 controls of European ancestry (close relatives removed) from the 156 

23andMe research cohort using a logistic regression assuming an additive model 157 

(see details in the Supplementary methods). The self-reported phenotype of 158 

penicillin allergy was defined as an allergy test or allergic symptoms required for 159 

cases, with controls having no allergy. Estimates from BioVu were extracted from the 160 

BioVu publicly available data resource (https://phewascatalog.org/hla). 161 

Meta-analysis of the HLA-B*55:01 association in four cohorts was performed with the 162 

GWAMA software tool 19 and results were visualized with R software (3.3.2) 15. 163 

 164 

RESULTS 165 

 166 

GENOME-WIDE ASSOCIATION ANALYSIS OF PENICILLIN ALLERGY  167 

To discover genetic factors that may predispose to penicillin allergy, we conducted a 168 

genome-wide association study (GWAS) of 19.1 million single-nucleotide 169 

polymorphisms (SNPs) and insertions/deletions in UKBB and EstBB (minor allele 170 

frequency filter in both cohorts MAF > 0.1%). Cases were defined as participants 171 

with a Z88.0 ICD10 code (“Allergy status to penicillin”) for a reported history of 172 

penicillin allergy. In total, we identified 15,690 unrelated individuals (4.2% of the total 173 
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cohort size of 377,545) in UKBB with this diagnostic code. However, the 174 

corresponding number of cases in EstBB was only 7 (0.02% of the total cohort size 175 

of 32,608) suggesting heterogeneity in the use of the Z88.0 ICD10 code in different 176 

countries. We therefore also identified participants that had self-reported drug allergy 177 

at recruitment in EstBB and categorized the EstBB self-reported reactions by drug 178 

class, using the Anatomical Therapeutic Chemical (ATC) Classification System code 179 

J01C* (beta-lactam antibacterials, penicillins) to match this to the respective Z88.0 180 

ICD10 code. This resulted in 961 (2.9%) unrelated cases with penicillin allergy in 181 

EstBB. We validated the approach in EstBB by evaluating the association between 182 

the number of filled (i.e. prescribed and purchased) penicillin (using the ATC code 183 

J01C*) prescriptions per person and self-reported penicillin allergy. Using Poisson 184 

regression analysis, we identified a negative effect on the number of filled penicillin 185 

prescriptions among individuals with self-reported allergy in EstBB (P-value 2.41×10-186 

15, Estimate -0.18 i.e. prescription count is 16% lower for individuals with penicillin 187 

allergy). 188 

We then meta-analyzed the results of the GWASes in these two cohorts, weighing 189 

effect size estimates using the inverse of the corresponding standard errors. We 190 

identified a strong genome-wide significant (p < 5×10-8) signal for penicillin induced 191 

allergy (defined as ICD10 code Z88.0 or reported allergy to drugs in ATC J01C* 192 

class) on chromosome 6 in the major histocompatibility complex (MHC) region (lead 193 

variant rs114892859, MAF(EstBB) = 0.7%, MAF(UKBB) = 2%, P = 4.59×10-29, OR 194 

1.59 95% CI 1.47-1.73) (Figure 1; Table S1). 195 

 196 

 197 

 198 
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FINE-MAPPING THE PENICILLIN ALLERGY-ASSOCIATED HLA LOCUS 199 

To further fine-map the causal variant of the identified association with penicillin 200 

allergy, we performed a functional annotation analysis with FUMA (Functional 201 

Mapping and Annotation of Genome-Wide Association Studies) 20. We detected an 202 

independent intronic lead SNP for the penicillin allergy meta-analysis (GWAS lead 203 

variant rs114892859, P-value 2.21×10-28) in the MICA gene (Figure 1, B). When 204 

testing the SNP for expression quantitative trait locus (eQTL) associations in blood 205 

based on data from the eQTLGen Consortium 21, the variant appeared to be 206 

associated with the expression levels of several nearby genes, with the most 207 

significant being PSORS1C3 (P-value 8.10×10-62) and MICA (P-value 1.21×10-52) 208 

(Table S2). We further performed an in silico investigation of the lead SNP 209 

rs114892859 and its best proxy (rs144626001, the only proxy with r2>0.9 in UKBB 210 

and EstBB) in HaploReg v4 to explore annotations and impact of the non-coding 211 

variant 22. In particular rs114892859 had several annotations indicative of a 212 

regulatory function, including its location in both promoter and enhancer marks in T-213 

cells and evidence of RNA polymerase II binding 23,24. Interestingly, its proxy is more 214 

likely to be deleterious based on the scaled Combined Annotation Dependent 215 

Depletion (CADD) score (scaled score of 15.78 for rs144626001 (C/T) and 4.472 for 216 

rs114892859 (G/T)) 25,26. 217 

 218 

Due to the high LD in the MHC region, we used imputed SNP to HLA typing data 219 

available at four-digit resolution 27 for up to 22,554 and 488,377 individuals from the 220 

Estonian and UK cohorts, respectively, to further fine-map the identified HLA 221 

association with penicillin allergy. In both cohorts a shared total of 103 alleles at four-222 

digit level were present for all of the MHC class I genes (HLA-A, HLA-B, HLA-C) and 223 
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59 alleles for three of the classical MHC class II genes (HLA-DRB1, HLA-DQA1, 224 

HLA-DQB1). To assess the variation in the frequencies of the HLA alleles in different 225 

populations, we compared the obtained allele frequencies in both cohorts (Table S3) 226 

with the frequencies of HLA alleles in different European, Asian and African 227 

populations reported in the HLA frequency database (Figure S2 and S3, Table S4). 228 

 229 

We then used an additive logistic regression model to test for associations between 230 

different four-digit HLA alleles and penicillin allergy in UKBB and EstBB. The results 231 

of both cohorts were meta-analyzed and P-values passing a Bonferroni correction 232 

(0.05/162 = 3.09×10-4, where 162 is the number of meta-analyzed HLA alleles) were 233 

considered significant (Table S5). One of the three results that surpassed the 234 

significance threshold had discordant effects in the two cohorts and one had a 235 

marginally significant association (P-value 2.81×10-4, Table S5). The strongest 236 

association we detected for penicillin allergy was the HLA-B*55:01 allele (P-value 237 

4.63×10-26; OR 1.47 95% CI 1.37-1.58), which is tagged (r2>0.95) by the GWAS lead 238 

variant rs114892859 (Table S6). 239 

 240 

REPLICATION OF HLA-B*55:01 ASSOCIATION WITH PENICILLIN ALLERGY 241 

To further confirm association with penicillin allergy we analyzed the association of 242 

the HLA-B*55:01 allele with self-reported penicillin allergy among 87,996 cases and 243 

1,031,087 controls from the 23andMe research cohort. We observed a strong 244 

association (P-value 1.00x10-47; OR 1.30 95% CI 1.25-1.34; Figure 2) with a similar 245 

effect size as seen for the HLA-B*55:01 allele in the meta-analysis of the EstBB and 246 

UKBB. We obtained further confirmation for this association from the published 247 

dataset of Vanderbilt University’s biobank BioVU, where the HLA-B*55:01 allele was 248 
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associated with allergy/adverse effect due to penicillin among 58 cases and 23,598 249 

controls (P-value 1.79×10-2; OR 2.15 95% CI 1.19-6.5; Figure 2) 28. Meta-analysis of 250 

results from discovery and replication cohorts demonstrated a strong association of 251 

the HLA-B*55:01 allele with penicillin allergy (P-value 2.23×10-72; OR 1.33 95% CI 252 

1.29-1.37; Figure 2). 253 

 254 

FURTHER ASSOCIATIONS AT HLA-B*55:01 255 

Finally, we used the Open Targets Genetics platform’s UKBB PheWAS data 29 to 256 

further characterize the association of the GWAS lead variant (and HLA-B*55:01 257 

allele tag-SNP) rs114892859 (Table S6) with other traits. We found strong 258 

associations with lower lymphocyte counts (P-value 9.21×10-14, -0.098 cells per 259 

nanoliter, per allergy-increasing T allele) and lower white blood cell counts (P-value 260 

3.17×10-9, -0.078 cells per nanoliter, per allergy-increasing T allele). To confirm this 261 

association, we extracted data on lymphocyte counts from the EHRs data of 4,567 262 

EstBB participants (see Supplementary methods), and observed the same inverse 263 

association of the HLA-B*55:01 allele with lymphocyte counts (-0.148 cells per 264 

nanoliter, per T allele; P-value=0.047). 265 

 266 

DISCUSSION 267 

 268 

In the present study, we identify a strong genome-wide significant association of the 269 

HLA-B*55:01 allele with penicillin allergy using data from four large cohorts: UKBB, 270 

EstBB, 23andMe and BioVu. 271 

 272 
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Hypersensitivity or allergic reactions to medications are type B adverse drug 273 

reactions that are known to be mediated by the immune system. One major driver of 274 

hypersensitivity reactions is thought to be the HLA system, which plays a role in 275 

inducing the immune response through T cell stimulation, and is encoded by the 276 

most polymorphic region in the human genome 30. Genetic variation in the HLA 277 

region alters the shape of the peptide-binding pocket in HLA molecules, and enables 278 

their binding to a vast number of different peptides – a crucial step in the adaptive 279 

immune response 31. However, this ability of HLA molecules to bind a wide variety of 280 

peptides may also facilitate binding of exogenous molecules such as drugs, 281 

potentially leading to off-target drug effects and immune-mediated ADRs 32. The 282 

precise mechanism of most HLA-drug interactions remains unknown, but it seems 283 

that T cell activation is necessary for the majority of HLA-mediated ADRs32–34. 284 

Despite the increasing evidence for a role of the HLA system in drug-induced 285 

hypersensitivity, much is still unclear, including how genetic variation in the HLA 286 

region predisposes to specific drug reactions. 287 

 288 

Penicillin is the most common cause of drug allergy, with clinical manifestations 289 

ranging from relatively benign cutaneous reactions to life-threatening systemic 290 

syndromes 7,8. There is a previous GWAS on the immediate type of penicillin allergy, 291 

where a borderline genome-wide significant protective association of an allele of the 292 

MHC class II gene HLA-DRA was detected and further replicated in a different cohort 293 

35. Here we detect a robust association between penicillin allergy and an allele of the 294 

MHC class I gene HLA-B. The allele and its tag-SNP were also associated with 295 

lower lymphocyte levels and overlapped with T cell regulatory annotations, which 296 

suggests that the variant may predispose to a T-cell-mediated, delayed type of 297 
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penicillin allergy. MHC I molecules are expressed by almost all cells and present 298 

peptides to cytotoxic CD8+ T cells, whereas MHC II molecules are expressed by 299 

antigen-presenting cells to present peptides to CD4+ T helper lymphocytes 31,34. 300 

There are several examples of MHC I alleles associated with drug-induced 301 

hypersensitivity mediated by CD8+ T cells 34,36,37. The involvement of T cells in 302 

delayed hypersensitivity reactions has been shown by isolating drug reactive T cell 303 

clones 38, and cytotoxic CD8+ T cells have been shown to be relevant especially in 304 

allergic skin reactions 39–41. More than twenty years ago, CD8+ T cells reactive to 305 

penicillin were isolated from patients with delayed type of hypersensitivity to penicillin 306 

42. The association with the HLA-B*55:01 allele detected in our study might be a 307 

relevant factor in this previously established connection with CD8+ T cells. The HLA-308 

B*55:01 allele, together with other HLA-B alleles that share a common "E pocket 309 

sequence", has previously been associated with increased risk for eosinophilia and 310 

systemic symptoms, Stevens-Johnson Syndrome and toxic epidermal necrolysis 311 

(SJS/TEN) among patients treated with nevirapine 43. The underlying mechanism in 312 

penicillin allergy remains a question and various models have been proposed for T-313 

cell-mediated hypersensitivity 36,41. For example, the hapten model suggests that 314 

drugs may alter proteins and thereby induce an immune response 36,44 – penicillins 315 

have been shown to bind proteins 44,45 to form hapten–carrier complexes, which may 316 

in turn elicit a T cell response 46. Drugs may also bind with MHC molecules directly. 317 

For example, abacavir has been shown to bind non-covalently to the peptide-binding 318 

groove of HLA-B*57:01, leading to a CD8+ T cell-mediated hypersensitivity response 319 

47. 320 

 321 
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It is being increasingly recognized that the involvement of HLA variation in 322 

hypersensitivity reactions goes beyond peptide specificity. Other factors, such as 323 

effects on HLA expression that influence the strength of the immune response have 324 

also been described 48. The analysis of eQTLs based on the data of the eQTLGen 325 

Consortium 21 revealed that the T allele of the lead SNP rs114892859 identified in 326 

our GWAS of penicillin allergy appears to be associated with the expression of 327 

several nearby genes, including lower expression of both HLA-B and HLA-C, and an 328 

even stronger effect on RNA levels of PSORS1C3 and MICA (Table S2). 329 

Interestingly, variants in the PSORS1C3 gene have been associated with the risk of 330 

allopurinol, carbamazepine and phenytoin induced SJS/TEN hypersensitivity 331 

reactions 49. MICA encodes the protein MHC class I polypeptide-related sequence A 332 

50 which has been implicated in immune surveillance 51,52. Our findings therefore 333 

support the observation that variants associated with expression of HLA genes may 334 

contribute to the development of hypersensitivity reactions. We detect strong 335 

evidence for the involvement of HLA-B*55:01 in penicillin allergy, and a marginally 336 

significant association in the MHC II gene DRB1, although both need further 337 

functional investigation to explore their exact roles and mechanisms in the induced 338 

response. 339 

 340 

The main limitation of this study is the unverified nature of the phenotypes extracted 341 

from EHRs and self-reported data in the biobanks. Previous work has found that 342 

most individuals labeled as having beta-lactam hypersensitivity may not actually 343 

have true hypersensitivity 7,8,53. Nevertheless, despite the possibility that some cases 344 

in our study may be misclassified, we detect a robust HLA association that was 345 

replicated in several independent cohorts against related phenotypes. The increased 346 
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power arising from biobank-scale sample sizes therefore mitigates some of the 347 

challenges associated with EHR data. The robustness of the genetic signal across 348 

cohorts with orthogonal phenotyping methods, ranging from EHR-sourced in UKBB 349 

to various forms of self-reported data in EstBB and 23andMe, also supports a true 350 

association. Finally, the modest effect size of the HLA-B*55:01 allele (OR 1.33), 351 

particularly when compared to effect sizes of HLA alleles with established 352 

pharmacogenetic relevance 54–56, suggests that this variant in isolation is unlikely to 353 

have clinically meaningful predictive value. However, further phenotypic refinement, 354 

including investigation of specific penicillin-based medicines and specific types of 355 

drug reactions, may yield more clinically actionable insight. Our work also provides 356 

the foundation for further studies to investigate the application of a polygenic risk 357 

score 57 (which combines the effects of many thousands of trait-associated variants 358 

into a single score), possibly in combination with phenotypic risk factors, in 359 

identifying individuals at elevated risk of penicillin allergy.  360 

 361 

In summary, our results provide novel evidence of a robust genome-wide significant 362 

association of HLA and the HLA-B*55:01 allele with penicillin allergy. Further 363 

phenotypic refinement, including investigation of specific penicillin-based medicines 364 

and specific types of drug reactions, may also yield more clinically actionable insight. 365 
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Figure Legends 569 

 570 

Figure 1. Manhattan plot (A) and HLA locus (B) of the genome-wide association study 571 

of allergy status to penicillin. 572 

The X-axes indicate chromosomal positions and Y-axes -log10 of the P-values (A) Each dot 573 

represents a single nucleotide polymorphism (SNP). The dotted line indicates the genome-574 

wide significance (P-value<5.0×10-8) P-value threshold. (B) SNPs are colored according to 575 

their linkage disequilibrium (LD; based on the 1000 Genome phase3 EUR reference panel) 576 

with the lead SNP. The SNP marked with a purple diamond is the top lead SNP 577 

rs114892859 identified depending on LD structure. 578 

 579 

Figure 2. HLA-B*55:01 allele association with penicillin allergy- The odds ratios (dots) 580 

and 95% confidence intervals (CI, horizontal lines) for HLA allele associated with penicillin 581 

allergy. The plot is annotated with P-values and case-control numbers. Color coding blue 582 

and black indicates the results for discovery cohorts Estonian UK biobank and replication 583 

results of the HLA*B-55:01 allele in 23andMe research cohort (green) and Vanderbilt 584 

University’s biobank BioVU (purple). Results of the meta-analysis of all four cohorts is 585 

indicated with a diamond (red). 586 
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Figure 1.  588 
 589 

 590 
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Figure 2. 592 
 593 
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