
FreiPose: A Deep Learning Framework for

Precise Animal Motion Capture in 3D Spaces

Christian Zimmermann1,†, Artur Schneider2,†, Mansour Alyahyay2,
Thomas Brox1,3,5,‡ and Ilka Diester2,3,4,‡,*

1Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
2Optophysiology Lab, Institute of Biology III, Albert-Ludwigs-University, Freiburg, Germany

3BrainLinks-BrainTools, Albert-Ludwigs-University, Freiburg, Germany
4Bernstein Center Freiburg, Albert-Ludwigs-University, Freiburg, Germany

5CIBSS Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University,
Freiburg, Germany

†, ‡These authors contributed equally
* Corresponding author: Ilka Diester (ilka.diester@biologie.uni-freiburg.de)

February 27, 2020

Abstract

The increasing awareness of the impact of spontaneous movements on neuronal
activity has raised the need to track behavior. We present FreiPose, a versa-
tile learning-based framework to directly capture 3D motion of freely definable
points with high precision (median error < 3.5% body length, 41.9% improve-
ment compared to state-of-the-art) and high reliability (82.8% keypoints within
< 5% body length error boundary, 72.0% improvement). The versatility of
FreiPose is demonstrated in two experiments: (1) By tracking freely moving
rats with simultaneous electrophysiological recordings in motor cortex, we iden-
tified neuronal tuning to behavioral states and individual paw trajectories. (2)
We inferred time points of optogenetic stimulation in rat motor cortex from the
measured pose across individuals and attributed the stimulation effect auto-
matically to body parts. The versatility and accuracy of FreiPose open up new
possibilities for quantifying behavior of freely moving animals and may lead to
new ways of setting up experiments.

1 Introduction

Systems neuroscience strives to assign functions to neuronal circuits and their
activity. Often, these functions are defined by behavior in a task carefully de-
signed to cover specific aspects, e.g. rule learning, working memory or reaching
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to a defined target. However, neuronal activity can be dominated by unin-
structed movements not required for the task. Confusingly, some uninstructed
movements can be aligned to trial events while other movements might occur
idiosyncratically, accounting for trial-by-trial fluctuations that are often consid-
ered ‘noise’ [1]. This is even true for head-fixed animals [2, 3]. In order to address
this problem, detailed tracking of the animals’ movements including single body
parts and correlating them to neuronal activity is essential. Several new tools
are already available for interpreting video data. However, existing tools are
limited by one of several aspects: (1) Marker-based approaches [4] influence
natural movements, are restricted to applicable body sites and rely on the tol-
erance of the animal. (2) So far, marker-free analyses have only been applied in
2D, [5–7], thus preventing the true pose reconstruction of freely moving animals
covering all three dimensions of their movements. By using multiple cameras
for video recording, 2D outputs can be triangulated to yield 3D reconstructions
a posteriori [8, 9]. However, such post-processing suffers from the ambiguities
in the initial 2D analysis reducing accuracy and reliability. Indeed, exactly this
tracking accuracy is crucial to subdivide movements into well-defined trajecto-
ries and behavioral categories for isolated analysis.

Here, we introduce the new tracking tool FreiPose, which allows reconstruct-
ing detailed body poses and single body part movements directly in 3D. Based
on synchronized multi-view videos, FreiPose calculates a sparse reconstruction
of on-body keypoints. These keypoints are freely definable in terms of num-
ber, position, and semantic meaning (e.g. eye, paw etc.). FreiPose operates
in a tracking-by-detection fashion, in which each time step is processed inde-
pendently. We demonstrate that FreiPose is a versatile tool which is easily
adaptable to different applications, e.g. tracking of various organisms, full-body
tracking or detailed tracking of paws including individual digits. By combining
this tool with extracellular laminar recordings in the rat motor cortex, we re-
capitulated that a large fraction of neurons (42.5%) was tuned to body poses,
as has previously been shown with a marker-based approach [4]. Our detailed
tracking enabled automatic clustering of movements into intuitively meaningful
behavioral categories. Applying this behavioral categorization in freely moving
rats, we found clear neuronal tuning to single paw trajectories similar to what
has been described previously in head fixed animals involved in constrained
tasks [10, 11]. Moreover, we used FreiPose to quantify the effect of optogenetic
stimulation of the motor cortex based on the rats’ movements. Importantly,
FreiPose allowed attributing the stimulation effect to individual body parts as
well as a temporal analysis of the stimulation effect. In summary, FreiPose
is particularly suited for studies conducting physiological recordings in freely
moving animals. It allows conclusions about the behavioral state in trained
as well as in spontaneously behaving animals including detailed information of
individual body parts.
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Figure 1: Overview over the proposed motion capture framework and its
evaluation. a Motion capture setup with required hardware elements. Orange line
- connection for electrophysiology, blue line - fiber optics for optogenetic stimulation.
b State-of-the-art motion capture methods reconstruct independent 2D poses for each
view independently and subsequently calculate a 3D pose, which requires resolving
ambiguities in each view separately. c FreiPose accumulates evidence from all views
leading to a holistic 3D pose reconstruction. Ambiguities are resolved after information
from all views is available. d, e Median of the Joint Position Error in cm for different
number of cameras and number of samples compared to the DeepLabCut (DLC) [6]
based single view network. Results are based on 3 training trials on an evaluation set
with 614 samples. Shaded areas refer to the 30% and 70% percentiles. FreiPose is
more data efficient and performs better regardless of the number of cameras. Largest
differences can be observed for highly articulated keypoints, e. g. the front paws (see
Fig. Sup. 4). f, g FreiPose can be easily adapted towards other tasks, e. g. pose
reconstruction of mice or paw reconstruction including individual digits during a pellet
reaching task (see Fig. Sup. 5 and supplemental videos 1-3).
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2 Results

Given an experimental setup with multiple cameras (Fig. 1a), FreiPose lever-
ages a novel 3D convolutional network architecture to reconstruct 3D poses by
integrating information across all available views (Fig. 1b) instead of treating
cameras separately (Fig. 1c). It calculates the 3D positions of predefined key-
points on the animal’s body. FreiPose is easily adaptable to other relevant appli-
cations, e. g. pose reconstruction of mice (Fig. 1f) or pellet reaching (Fig. 1g).
The system can be tailored to an arbitrary type of animal or different set of 3D
keypoints, by following an iterative three-step reconstruct-inspect-refine scheme
(Fig. Sup. 1 for workflow overview). Using a synchronized and calibrated video
sequence, the pre-trained network model yields pose reconstructions. Guided by
reconstruction confidence, potentially erroneous frames can be identified quickly
and are selected for manual correction in a human-in-the-loop approach (see
Fig. Sup. 3a). For a completely new experimental setup or set of keypoints, the
guidance by reconstruction confidence is initially omitted and for bootstrap-
ping a small number of frames is sampled uniformly from the videos instead.
Multiple persons can annotate videos in parallel using a stand-alone, intuitive
drag-and-drop GUI that leverages multi-view constraints during annotation (see
Fig. Sup. 3b). The method is retrained with the additional annotation, leading
to pose reconstructions with fewer and smaller errors. FreiPose comes with a
Docker installation package, which simplifies the software installation, and tu-
torials with exemplary data and step-by-step videos. All necessary information
for applying FreiPose can be found in the released Github repositories.

High motion capture accuracy and reliability. We measured the accu-
racy (in terms of median 3D error) and reliability (in terms of percentage of
samples below a maximum error bound) of FreiPose on video recordings of
freely moving rats consisting of 1813 manually labeled samples with 12 distinct
body keypoints. The frames are sampled from 12 recording sessions featuring
5 different individuals (3 Long-Evans (hooded) and 2 Sprague Dawley (albino)
rats). Some animals were recorded once, others on several days. We split the
recordings into training and evaluation set, resulting in 1199 training samples
and 614 evaluation samples. Each sample contains 7 images recorded simulta-
neously from different cameras simultaneously and a single manually annotated
3D pose consisting of a 3D location for each keypoint which is obtained from
manual 2D annotation in at least two camera views.

For comparison, we trained DeepLabCut (DLC) [6], a popular tool for 2D
keypoint tracking, on the same dataset of images and applied standard trian-
gulation methods to yield 3D poses [9]. FreiPose compares favorably in terms
of the number of camera views required to reach a certain accuracy (Fig. 1d),
data efficiency (lower median error with the same number of labeled samples,
Fig. 1e), accuracy (median error of 4.54 mm vs. 7.81 mm for the full sample
setting, Fig. 1e), and reliability (percentage of keypoints with an error smaller
than 7.5 mm is 82.8% vs. 48.1%, Fig. Sup. 4b).
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Figure 2: FreiPose recapitulates known neuronal pose representations in
rat motor cortex. a Circular plots of movement distributions over directions for
each paw and the head. b 1D tuning curves of representative neurons for body pose
variables (e.g. body and head pitch as well as head azimuth) contrasted by randomly
time-shifted data. Gray shading indicates standard deviation of shuffled distributions.
Rat pictographs refer to the preferred pose of the respective neuron.

Body pose reconstruction recapitulates neuronal tuning. To evaluate
the applicability of FreiPose for experimental measurements, we extracted sin-
gle paw movements as well as body and head pitches (Fig. 2a) from FreiPoses’
3D reconstructions and combined them with extracellular recordings in the rat
motor cortex. Previous work on the neuronal representation of body poses
in rodents relied on marker-based systems [4, 12]. Applying FreiPose to one
recording session of a freely exploring rat combined with simultaneous neural
recordings revealed that almost half of the recorded neurons in motor cortex was
tuned to postural features (42.4%, 28/66 cells, Fig. 2b). The neuronal pose rep-
resentation was confirmed in 2 additional rats. Neurons were considered tuned,
if the z-score exceeded a critical value (corresponding to a Bonferroni corrected
p-value < 0.05) relative to the shuffled distribution for at least 3 consecutive
postural bins. This fraction of tuned neurons is in accordance with the previ-
ously reported percent of cells in motor cortex based on the use of reflective
markers [4]. This demonstrates that FreiPose is able to effectively capture the
poses with a precision which allows claims about neuronal correlations.

Body poses reveal behavioral categories. The output of FreiPose is used to
split the videos into segments according to behavioral categories. To this end, we
modify an unsupervised behavioral clustering algorithm [13] to seamlessly work
with pose reconstructions results from FreiPose. Based on the reconstruction
results, distances of all keypoints relative to each other are calculated as well as
to the floor. From these distances, main components via PCA are extracted on
which wavelet based spectrograms representing postural changes are computed.
We combined the information about the current pose (body-centered keypoint
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locations) with the postural changes (PCA based spectrograms) into one matrix
and embedded both sets of features non-linearly into 2D space using t-SNE
[14]. This embedding preserves local relationships. Thus, neighboring points
in the embedding relate to similar postural components, putatively referring
to congruent behaviors. Individual high density clusters are separated by a
watershed algorithm. Afterwards, video segments based on the clustering are
used to manually assign a behavioral category to each cluster (Fig. Sup. 6,
Supp Video 4 BehaviorClusters.avi).

We obtained a density map of behavior (Fig. 3a) and identified 4 clearly dis-
tinguishable behavioral clusters: locomotion, cleaning, rearing, and inspection
of nearby environment, i.e. small sideway movements. By defining intuitively
meaningful variables (i.e. body pitch, average paw speed, paw distance to nose
and horizontal body speed) we are able to confirm these behavioral categories
(Fig. 3c); e.g., during cleaning, the distance between paws and nose was lowest.
This method can identify the behavioral state of an animal either during spon-
taneous movements or during instructed tasks [1].
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Figure 3: Unsupervised clustering of behavior. a Density estimate of the
non-linear embedding and watershed clustering. b Cluster identities based on visual
inspection of the behavior. c Quantitative analysis of behavior in each cluster. For
each of the combined clusters, a variable is identified which intuitively describes the
cluster (gray dashed rectangle). All distributions are significantly different (two sample
Kolmogorov–Smirnov test, Bonferroni adjusted p < 7e− 13).

Neuronal representations of behavioral states and paw trajectories.
To test whether we can identify a systematic neuronal representation of spon-
taneous movements outside of the classical instructed tasks, we extracted single
paw trajectories. To this end, we divided continuous paw movements during ex-
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ploratory behavior into artificial trials by setting a threshold of the paw speed
(for details see methods 6.3.4). In line with previous work based on instructed
tasks [15], neurons in motor cortex were modulated by the movements of the
contralateral but not the ipsilateral paw in a± 333 ms window around movement
onset (Fig. 4a,b, two-sided t-test on mean normalized firing rate across popula-
tion, p< 0.05). At the individual neuron level, 12% (8/66 neurons) showed a sig-
nificant difference (one-way ANOVA per neuron Bonferroni adjusted p< 0.05).
In contrast, the reconstructions via DLC did not allow the detection of a sig-
nificant neuronal bias towards one paw (Fig. 4b) underlining the importance of
holistic 3D pose reconstruction.

To test whether different behavioral categories had an influence on neu-
ronal representations of paw movements [16], we isolated behavioral categories
and reanalyzed the neuronal responses. Indeed, neurons responded significantly
different between the behavioral categories (except between locomotion and ex-
ploration) to the movements of the contralateral paw. However, the velocity of
the paw movements differed only significantly during cleaning (one-way ANOVA
p< 0.05, post-hoc Bonferroni adjusted two-sided t-test, Fig. 4d,e,f), thus ruling
out a simple velocity tuning of the neurons.

Using the precise 3D tracking of FreiPose we analyzed individual paw trajec-
tories of the two behavioral categories ”locomotion” and ”inspection of nearby
environment” as these two categories contained step-like movements. We asked
whether neurons responded differently to similar movement trajectories if those
occurred in a different behavioral context. Indeed, when we compared the re-
sponse of individual neurons to paw movements during those behavioral cat-
egories, we found neurons with significantly different responses (10.6%, 7/66,
one-way ANOVA per neuron Bonferroni adjusted p< 0.05, Fig. 5 a,b). To in-
vestigate whether the neuronal differences relied on the exact paw trajectories
or on the behavioral state, we clustered paw trajectories by k-means. When
adjusting for the occurred trajectories during both behaviors (i.e. taking only
similar trajectories into account), no significant difference was observed (Fig. 5
c,d). Additionally, we found individual neurons with significant modulation of
their response relative to the trajectory class (16.7%, 11/66, one-way ANOVA,
Bonferroni adjusted p< 0.05, Fig. 5 e,f). This suggest that neurons in motor
cortex code for the movement trajectory of the paw, independent of the here
investigated behavioral contexts in which those movements occurred. Applying
the pose reconstructions of DLC impaired the detection of neuronal response
differences (Fig. Sup. 7).
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Figure 4: Behavioral clustering reveals differential neuronal tuning to con-
tralateral paw movements. a Motor cortex neurons responded to the movements
of the right paw (contralateral to the electrode implantation) differently than to the
left paw. b DLC was not able to recapitulate the significantly different tuning to left
and right paw movements. c FreiPose was able to identify side specific tuning on a
single neuron level. The example neuron was significantly tuned to movements of the
right paw. d Population responses (gray) to the movement of the right paw during
different behaviors with corresponding paw velocities (red). e Summary of the popula-
tion responses to the movement of the right paw during different behavioral categories.
f Summary of the velocities of the right paw during different behavioral categories.
The notch represents the 95% confidence interval around the median, whiskers refer to
1.5 times of the interquartile range. Outliers were omitted for visualization purposes.
Solid lines - mean, shaded areas - standard error. ** indicates p< 0.01, *** p< 0.001
two-sided t-test, Bonferroni adjusted.
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Figure 5: Direction selective neuronal representation of paw trajectories
is independent of behavioral context. a Two example neurons with a significant
response to movements of the right paw. Neuron 43 (left panel) discriminated sig-
nificantly between behavioral states (blue - locomotion, green - inspection of nearby
environment) while neuron 32 (right panel) did not discriminate. For visualization
purposes, the raster plots contain a random subset of trials. b Trajectories of the
right (contralateral) paw during locomotion and inspection of nearby environment. A
subset of trajectories is shown for visualization purposes. c The comparison of neu-
ronal responses to subsets of directional similar trajectories during different behavioral
clusters reveals no significant differences. d Directionally similar trajectories of the
right paw classified according to behavioral state (subset from panel b, corresponding
to the combination of gray and green trajectories in panel f). e Example neurons with
significant modulation and tuning preferences for subsets of trajectories. f Paw trajec-
tories during step-like paw movements (based on the behavioral clusters ”locomotion”
and ”inspection of nearby environment”). We focused on anterior movements (four
clusters of trajectories corresponding to the 9 to 3 o’clock directions). Color represent
the investigated four paw directions in the rats’ body reference frame. Inserts represent
the distributions of the horizontal projections of movement directions. *** indicates
p < 0.001, one-way ANOVA, Bonferroni adjusted (see Fig. Sup. 7 for a comparison to
DLC).
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Quantifying the effect of optogenetic stimulation. Manipulations in
motor cortex are likely to impact movements. This effect can be quantified
via coarse measurements, e.g. rotational behavior, speed, mobile time, mobile
episodes, and distance traveled [17, 18]. Recently, effects on single body parts
have also been started to be investigated via video analysis [19]. To system-
atically investigate the effect of optogenetic stimulation in freely moving rats,
we recorded the movements of three animals in four sessions, two sessions with
30 Hz laser burst frequency and two sessions with 10 Hz with a stimulation
duration of 5 sec, 10% duty cycle. During each recording session we stimu-
lated each animal 5 to 7 times, with a minimum inter-stimulus time interval
of 45 sec. We retrained FreiPose based on 136 samples from these recordings
and systematically defined 908 behavioral variables for every time step from the
reconstructed poses. Behavioral variables included transformation of the pose
into a rat-aligned Cartesian coordinate frame, the distance of keypoints with
respect to the ground floor as well as their velocities and Fourier transforms.
Additionally, we calculated angles between body limbs with respect to each
other and the direction of gravity (e. g. , angle between head and body axis, see
Table Sup. 2 for the full list of variables).

To reveal changes in behavior, we followed an attribution-by-classification
paradigm: given the behavioral variables at a time step t we trained a linear
SVM model (C = 0.0025) to classify every time step into stimulated (i. e. ,
positive) or not stimulated (i. e. , negative). We trained separate classifiers for
each animal, used one recording for training and left one for evaluation. The
resulting classifiers achieved a balanced average accuracy of 59.1% to 73.1%
on their evaluation sets. The average classifier response was able to follow the
temporal dynamics of the stimulation effect and revealed an increasing effect
over the course of stimulation (Fig. 6a).

To attribute the effect of stimulation to individual body parts, we trained
classifiers on a single variable level. A separate classifier was trained for each
animal, burst frequency, and behavioral variable (Fig. 6b and Fig. Sup. 8). The
rhythmic 10 Hz movements of the Right Front Paw is a strong indicator for
the 10 Hz stimulation. The height of this paw in the rats’ body reference frame
was a highly correlated behavioral variable for the application of the 30 Hz laser
stimulation. The pronounced effect on the Right Front Paw was in line with
the expected outcome for the stimulation of the left motor cortex [20]. More
importantly, the classifier exclusively trained on a single sequence of Animal3
was able to generalize to another sequence of the same animal as well as to
recordings of Animal1 and Animal2 indicating that FreiPose performs robustly
across sessions and animals. Thus, FreiPose allows a detailed comparisons of
stimulation effects across animals without the need to retrain for individual
cases (Fig. Sup. 8).
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Figure 6: Automatic evaluation of the optogenetic stimulation effect via
FreiPose. a Automatic detection of the behavioral effect during optogenetic stim-
ulation with temporal resolution. The classifier predicted whether a time step was
stimulated ’1’ or not ’0’ based on the calculated behavioral variables. We averaged the
predicted stimulus of the classifier model within temporally aligned windows across
stimulation trials on recordings which were withheld for evaluation (18 and 19 trials
for the 10 Hz and 30 Hz, respectively). The stimulation spans from 0 sec to 5 sec and
the prediction scores trend indicates an increasingly visible effect over time. Curves
are temporal smoothed averaging over a window length of 23 ms. Shaded areas in-
dicate the Standard Error of the Mean. b Attribution of the stimulation effect to
individual body parts. We trained an ensemble of classifiers to distinguish stimulated
from non stimulated frames given only a single behavior variable as input to each clas-
sifier. Analyzing the resulting classifiers allowed to distinguish important factors from
less important ones. The color scale refers to the F-score of the respective classifier
and white dots indicate significance below a p-value of 0.001 (Bonferroni adjusted)
supported by a chi2 test between predicted and actual classes. The results refer to
classifiers which were exclusively trained on Animal3, but generalized across animals.
Other configurations are shown in the supplemental material (Fig. Sup. 8).

3 Discussion

We present the marker-free, deep learning based motion capture tool FreiPose
for holistic 3D tracking of individual body parts and pose reconstruction of
freely moving animals. Instead of triangulating 2D pose reconstructions [8, 9],
FreiPose directly reconstructs body poses and movement trajectories in 3D re-
sulting in unprecedented precision. Analyzing the problem holistically by fusing
information from all views into a joint 3D reconstruction allows us to surpass
the state-of-the-art by 49.4% regarding median error in freely moving rats. We
show that FreiPose not only recapitulates previous findings of neuronal corre-
lates of body poses [4], but also allows for automatic clustering of behavior
[7] where intuitively meaningful clusters and corresponding variables naturally
arise from. As FreiPose has no prior for behavior, no predefinition of behavioral
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states is needed. This is an advantage over commercial tracking systems which
come with a fixed set of detectable behaviors and fail for behaviors outside this
scope. Further, we were able to extract single paw trajectories and found aston-
ishingly clear neuronal correlates similar to the ones typically observed in head
fixed stereotyped behavioral tasks, e.g. center-out reaching tasks in non-human
primates [10, 11]. Importantly, the behavioral clustering and paw trajectories
as well as their neuronal correlates can already be extracted from an individual
session as short as 30 min. Together, FreiPose directly speaks to the request
that behavioral states and uninstructed movements should be taken into account
during basically all electrophysiological studies in awake behaving animals [1].
Additionally, analysis of movements can be used as a proxy for monitoring dis-
ease state or recovery; e. g. paw trajectories extracted during reaching were used
for quantifying stroke recovery [21]. We further demonstrate that optogenetic
stimulation effects can be reliably and precisely captured, even reconstructing
the temporal dynamics and generalizing across animals and sessions. Given that
multiple brain areas have direct projections to spinal cord [22], FreiPose should
become a standard tool to objectively quantify or to rule out that optogenetic
applications directly evoke an overt motor output or change the frequencies of
behavioral categories.
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6 Online methods

6.1 Animals

All animal procedures were approved by the Regierungspräsidium Freiburg, Ger-
many. The animals were housed at a 12 h light dark cycle (light off from 8 a.m.
to 8 p.m.) with free access to food (standard lab chow) and water. Three to
four animals were pair-housed in type 4 cages (1500U, IVC type 4, Tecniplast,
Hohenpeißenberg, Germany) before implantation and single-housed after the
implantation in type 3 cages (1291H, IVC type 3, Tecniplast, Hohenpeißenberg,
Germany).

6.1.1 Animal surgery

Animals were anesthetized with isoflurane (CP-Pharma, Burgdorf, Germany)
inhalation. Subsequently, they were positioned in a stereotactic frame (World
Precision Instruments, Sarasota, FL, USA) and their body temperature was kept
at 37 °C using a rectal thermometer and a heated pad (FHC, Bowdoin, USA).
Anesthesia was maintained with approximately 2 % isoflurane and 1 l/min O2.
For pre-surgery analgesia, we subcutaneously (s.c.) administered 0.05 mg/kg
Buprenorphine (Selectavet Dr. Otto Fischer GmbH, Weyarn/Holzolling, Ger-
many) and Carprofene (Rimadyl, Zoetis, Berlin, Germany). Every other hour,
the animals received s.c. injections of 2 ml isotonic saline. Moisturizing oint-
ment was applied to the eyes to prevent them from drying out (Bepanthen, Bayer
HealthCare, Leverkusen, Germany). The skin was disinfected with Braunol (B.
Braun Melsungen AG, Melsungen, Germany) and Kodan (Schülke, Norderstedt,
Germany). To perform the craniotomy, the skin on the head was opened along
a 3 cm long incision using a scalpel. The exposed bone was cleaned using a 3 %
peroxide solution. Self-tapping skull screws (J.I. Morris Company, Southbridge,
MA, USA) for implant stability and for extracellular referencing were placed
on the skull. Craniotomies (1x1 mm) were drilled over the prospective implan-
tation sites. For electrophysiological recordings, 3 animals (25-36 weeks) were
implanted with 32 channel laminar probes. Those animals were also involved in
a different study. In the animal from which the here reported data originated
from, we implanted 2 2-shaft silicone probes (E32+R-150-S2-L6-200 NT, Atlas
Neuroengineering, Leuven, Belgium) unilaterally in motor cortex (AP: 3.5, ML:
2.5, DV: 2.3 // AP: 0.87, ML: 2.5, DV: 2.26) and connected the probes via
a custom interface board to allow the electrophysiological recordings via ZD32
digital headstages (Tucker-Davis-Technologies, Alachua, FL, USA). The cran-
iotomy was sealed with Kwik-Cast (World Precision Instruments, Sarasota, FL,
USA) and the implant was fixed using dental cement (Paladur, Kulzer GmbH,
Hanau, Germany). The animals were allowed to recover for at least a week.

For the optogenetic perturbation experiments, 3 female Sprague Dawley rats
(14 weeks, Charles River, Germany) were unilaterally injected with a ChR2-
carrying viral vector (rAAV5/ hSyn-hChR2(H134R)-eYFP-WPREpA, 2.9 ×
1012 vg/ml, UNC vector core, Chapel Hill, NC, USA) in 2 AP sites with 500
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µl each using a 10µL gas-tight Hamilton syringe (World Precision Instruments,
Sarasota, FL, USA). Coordinates corresponded to the caudal forelimb area [23]
(Animal 1 - 0.2/0.45 AP, 1.9/2.1 ML, 1.5 DV, Animal 2 - 0.2/0.65 AP, 2/2.1
ML, 1.5 DV, Animal 3 0.3/0.5 AP, 1.85/2.1 ML, 1.5 DV, in mm). Injections
were performed at a speed of 100 nl/min, with a 10 min waiting period after
each injection. We implanted 200µm-core fibers (NA 0.39) with metal ferrules
(230µm bore size, both from Thorlabs, Newton, NJ, USA) at a depth of 1.4
mm while avoiding blood vessels. The craniotomies were covered with Kwik-
Cast silicone and ferrules secured with super bond (Sun Medical Co., Moriyama
City, Japan) and Paladur dental cement. Animals were allowed to recover and
express ChR2 for 4 weeks before starting the stimulation.

6.1.2 Optogenetic perturbations

For the connection to the light source (Luxx 473 nm laser, Omicron Laserage,
Rodgau, Germany) we employed ceramic sleeves (ADAF1, Thorlabs, Newton,
NJ, USA) attached to an elastic spring-suspended custom made patch cord
with rotatory joint (Doric Lenses Inc., Quebec, QC, Canada) to allow the rats
to freely roam. Rats were stimulated for 5 sec with 30 or 10 Hz square pulses
with 10 % duty cycle and 7 mW at the fiber tip with at least 45 sec between
stimulation sequences.

6.1.3 Neural recordings

Broadband signals were simultaneously recorded via 2 ZD32 digital head stages
connected via a flex-style dual head stage adapter (Intan Technologies LLC, Los
Angeles, CA, USA) and electrical commutator (ACO64, Tucker Davis Technolo-
gies, USA) to the recording controller (Intan Technologies LLC, Los Angeles,
CA, USA). Spike sorting was performed using Mountainsort [24]. Spikes were
synchronized to the videos via the camera frame trigger signals. All neuronal
data presented in the manuscript originated from one single session of one rat.

6.2 Video recordings

The behavioral box for freely moving exploratory behavior was made from 8 mm
thick acrylic glass and with a size of 45x36x55 cm. We used either transparent
acryl or a metal mesh with 0.7 cm spacing as floor of the box, to also be able
to record videos from below.

We used 7 color cameras (6 x acA1300-200uc and 1 x acA800-510uc, Basler
AG, Ahrensburg, Germany) placed around the behavioral box to ensure visibil-
ity of the rats’ body parts from almost all angles. Ideally, at any time point,
the keypoints of interest should be visible from multiple cameras, to ensure ac-
curacy (for more details see Github tutorial). We employed objectives with a
focal length 6-8 mm (Kowa, Nagoya, Japan). For calibration of the cameras we
employed calibration pattern (described in Sup. 1.2). To ensure planar surface
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and exact marker size the pattern was manufactured by Schmidt Digitaldruck
GmbH, Wörth, Germany.

The cameras recorded with 30 fps using custom python software (see Sup. 1.2).
The software is able to set exposure time, gain, frame rate and can adjust the
white balance. It allows for individual camera control and recording of calibra-
tion sequences. However, FreiPose would work with videos recorded with any
other recording systems as long as synchronous frame acquisition is ensured.
We used a low cost Arduino based hardware trigger (details and Arduino code
available on github) for frame synchronization. The frame trigger signals were
also recorded with the Intan recording system to allow for synchronization of
the video with neural signals.

• Tracking of paw during reaching. We trained a rat in a reaching
task. The animal was food-deprived (limited to 3 standard pellets) prior
to reaching training. The rat was placed in a transparent box (27x36x29
cm) with an opening (1x6 cm). Sugar pellets were placed in front of the
opening. For the reaching task, we used a lens system with larger focal
length (12-16 mm, Computar,Cary, NC, USA /Cosmicar, Tokio, Japan)
to focus the camera’s image resolution on the reaching movement.

• Tracking of mice. We trained FreiPose to predict keypoints on mice.
Two C57BL/6 mice from concurrent experiments in our lab were placed in
a transparent box (25x35x25 cm), which they explored. The same cameras
and objectives were used as in the rat behavioral setup.

6.3 Data analysis

6.3.1 1D tuning curves and postural variables

Tuning curves were based on free exploration behavior. In lack of a clearly
defined point on the rat’s fur corresponding to its skeletal neck, we used the
midpoint between ears as surrogate neck. We defined the body axis of the rat
as the vector from the tail root to the midpoint between the ears, and head
axis as the vector from the midpoint between ears to the nose. Body and
head pitch were calculated as angle between the horizontal and the body or
head axis, respectively. Angles between resulting vectors were calculated using
trigonometric functions.

To calculate the tuning curves, the head pitch and azimuth were binned in
4 degree steps, body pitch in 2 degree steps. Neural firing rates were binned
according to the bin edges (in time) of the body pose variables. By shifting
the neural data relative to behavior by ±[5 : 60] s 1000 times, we obtained
a shuffled population. Neurons were considered significantly tuned when their
extrema exceeded a z-Score corresponding to a Bonferroni adjusted p-value of
0.05 (quantile function of normal distribution at (1 − 0.05)/N) of the shuffled
population for at least 3 consecutive postural bins.

For some postural variables (e.g. paw movements) it was required to trans-
form the location of the keypoints to the rat’s local reference frame (such that
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the rat’s body axis was oriented along the calculated x axis). This distinguishes
movements of the paw relative to the body from absolute movements of the
paws while the whole body is moving (e.g. during rearing). A rotation matrix
was created based on the body axis and the vertical axis (pointing up). Subse-
quently, keypoints were multiplied with the rotation matrix to obtain keypoints
in the new reference frame.

To express movements or postural directions, the direction vector is pro-
jected onto a plane (e. g. for the xy-direction of a paw movement, via removing
the z-component for the horizontal plane projection). The angle to the ordinate
was calculated via basic trigonometry, the histogram of the resulting angles was
smoothed with a Gaussian filter for representation purposes and plotted onto a
polar projection.

6.3.2 Unsupervised behavioral embedding

We modified an algorithm for behavioral mapping of freely moving fruit flies
[13] to cluster the pose reconstruction time-series into behavioral clusters in
an unsupervised manner. While the original algorithm relied on postural de-
composition via principal component extraction from videos, we employed the
FreiPose predicted body keypoints as postural information. Predicted poses
were smoothed with a Gaussian (std of 33 ms, 1 time bin) and transformed
into the rat body-centric reference frame. Pairwise distances of all keypoints,
as well as the distance of each keypoint to the floor plane were combined and
the top 20 principal components (explaining 95 % of variance) were extracted.
Time courses of the components were Morlet-wavelet transformed with the Py-
Wavelets library[25] at the following frequencies: 0.5 and 1-15 Hz in 1 Hz steps.
We recombined the temporal features (results of the wavelet transform for all
frequencies and components) with the spatial features (keypoint location in the
rat’s local reference frame). Combined features were z-Scored and embedded
into 2 dimensions via the tSNE approach [26]. We employed the openTSNE
python library [27] with cosine distances and PCA initialization, perplexity
100, and exaggeration 12 as parameters. Subsequently, the tSNE embedding
was smoothed with a kernel density estimation[28] with a 501x501 dots canvas
size and a bandwidth of 0.08. Areas around peak densities were separated via
the watershed (scikit-image library) algorithm [29].

For evaluating whether the behavioral clustering resulted in meaningful sep-
arations of behavior, time points dwelling in a single cluster for longer than 0.1
s were extracted from the corresponding video and concatenated into a single
video file for evaluation by a human observer using ffmpeg (2.8.15) libraries. As
t-SNE is a non-parametric approach, the results between run might vary.

Locomotion clusters were typically adjacent in the embedded space between
runs, formed a circle or hose-like shape, and were easily identifiable in the videos.
Rearing clusters (typically divided into start rearing/ rearing/ stop rearing clus-
ters) were well separated in the embedded space. Cleaning clusters were char-
acterized by a typical sequence of paw-licking, nose and ears cleaning, and fur
cleaning. Further clusters predominately contained periods of movement qui-
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escence with occasional individual steps. Typically this was accompanied with
sniffing and whisking and was thus termed ’exploration of nearby environment’.
A more detailed separation of behaviors is possible but is out of scope of this
work.

To quantitatively confirm the clustering, we defined intuitive variables, which
were expected to discriminate individual clusters. We calculated the paw dis-
tance to the nose (expected to be smallest during cleaning), average body pitch
(expected to be highest during rearing), horizontal speed of the rat’s center of
mass (expected to be highest during locomotion), and the average paw speed
(expected to be low during the inspection of nearby environment due to sel-
dom steps, and overall movement quiescence). The difference in the resulting
distributions was assessed with the two-sample Kolmogorov–Smirnov test.

6.3.3 Population analysis

Paw velocity in the rat’s local reference frame was thresholded at 0.012 m/frame.
This threshold was chosen based on a visual evaluation of speed traces combined
with video analysis. The resulted threshold crossings were used for peri-stimulus
analysis of the population activity. Neuronal firing rates of each neuron were
normalized to have a mean of 0 and a standard deviation of 1. A time win-
dow of ±0.5 s around each paw movement onset was extracted from the neural
responses as well as from the paw velocity vector. The resulting matrix (neu-
rons × trials × time) was averaged over neurons and trials. Paw velocities
were averaged across trials. For comparison with DLC, paw velocity calculated
from DLC pose reconstruction was used. For behavioral stratification, neural
responses and corresponding paw velocity profiles were indexed according to
the corresponding behavioral category during the movement onset. For signifi-
cance testing, we calculated the mean of the firing rates in a window ±333 ms
around the movement onset and compared them across conditions. For the left
versus right paw comparison of the neuronal population response we applied
a t-test, for individual neurons we used a Bonferroni corrected t-test. For the
behavioral stratification of the neuronal population responses, we computed a
one-way ANOVA with a post-hoc Bonferroni corrected t-test.

6.3.4 Trajectory stratification

To stratify the front paw movements during freely moving behavior, we ex-
tracted periods of high velocity in relation to the body, preceded by periods of
lower velocity of the paw defined by a velocity threshold. The threshold (0.012
m/frame) was chosen manually using co-inspection of the velocity trace and the
animal behavior. By transferring paw positions into a rat-body-centered refer-
ence frame, we extracted paw movements relative to the body. 3D trajectories
of the paws were smoothed with a Gaussian (std of 100 ms) and a window rang-
ing from −66 to +500 ms around the timepoint of the threshold crossing was
extracted. Trajectories were aligned to start at the origin (0,0,0) of the reference
frame. We subdivided the directions of the paw trajectories via k-means clus-
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tering (k = 10, using elbow approximation). We stratified the neural responses
according to the calculated cluster-labels from the corresponding trajectory. For
the raster plots the neuronal spike times were aligned to the frame triggers (and
thus the behavior) and segmented into 1.1 ms bins. To obtain continuous fir-
ing rates, the spike trains were smoothed with a Gaussian (std of 33 ms). To
find neurons which were significantly modulated to different trajectories, we cal-
culated a one-way ANOVA per neuron (dependent variable - sum of spikes in
± [333 ms] window around movement onset, independent variables- trajectory
cluster labels) and Bonferroni adjusted the resulting p-values to account for the
number of tested neurons. Neurons were considered significantly modulated if
the adjusted p-value for the main effect was < 0.05. To define neurons which
were significantly modulated by different behavioral states during the execution
of similar paw trajectories, we analyzed trajectories corresponding to two similar
trajectory clusters (neighboring clusters representing anterior paw movements)
to obtain a sufficient number of trajectories. These were stratified depending
on the behavioral state during the start of motion. We calculated a one-way
ANOVA per neuron on the sum of the spikes in a ± [333 ms] window around
movement onset for behavioral categories. p-values were Bonferroni adjusted to
account for the number of tested neurons. Neurons were considered significantly
modulated if the adjusted p-value was < 0.05.

6.4 Motion capture

For motion capture, we combine a bounding box detection network, to extract
the region of interest from the full scale images Ii ∈ RH1×W1×3, with a novel
pose reconstruction architecture (Fig. 7). The approach resolves ambiguities
after integration of information from all views. Due to occlusion, it is typi-
cally impossible from a single view to measure the exact location of all body
keypoints in that view, yet existing methods attempt to reconstruct the key-
point locations in the images, regardless of their visibility. This favors learning
priors, to hallucinate the invisible keypoints, over measuring their location di-
minishing performance in the subsequent 3D lifting step. To circumvent the
problem, FreiPose extracts features fi ∈ RH3×W3×C rather than keypoints from
the cropped images Ic,i ∈ RH2×W2×3 and deploys a differentiable inverse pro-
jection operation Π−1 [30], which maps features into a 3D representation

Fi = Π−1(fi) ∈ RX×Y×Z×C (1)

based on the features fi of camera view i. In this notation H and W represent
spatial dimensions and C the number of channels for feature representation,
which throughout this work are chosen as: H2 = W2 = 224, H3 = W3 =
28 and C = 128. N denotes the number of keypoints, which is 12 for freely
roaming rodents and 14 in the reaching experiment. Input image resolution
H1 and W1 lies between 600 and 1280 pixels due to varying image resolutions
captured by the cameras deployed. The representations across views are merged
by averaging across views F = 1/N

∑
i(Fi) and deploy a U-Net-like encoder-

decoder architecture 3D CNN [31] on the voxelized representation. The 3D

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.27.967620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.967620
http://creativecommons.org/licenses/by-nc-nd/4.0/


network learns to reason on the joint representation and reconstruct an initial 3D
pose P 0 incorporating information from all views. Similarly, to the commonly
used map representation for 2D keypoints [32], we use a voxelized representation
for localization of each keypoint in 3D. To obtain a point estimate, the location
of the voxel with the highest score is retrieved and we call the maximal score
the predictions’ confidence ci.

The pose P 0 ∈ RN×3 is a matrix representing the location of the N prede-
fined body keypoints at a given time in world coordinates. Subsequently, we use
~P 0 ∈ R3 as being a single keypoint sliced from P 0, or R4 in its homogeneous
coordinate form if needed. Similarly, ~pi denotes a single 2D keypoint in R2

taken from pi ∈ RN×2 of camera view i.
For refinement, the initial 3D pose ~P 0 is projected into the camera views

~pi = Ki ·Mi · ~P 0︸ ︷︷ ︸
=:~P 0

i

(2)

using the cameras’ intrinsic Ki ∈ R3×3 and extrinsic matrices Mi ∈ R3×4,
which are obtained via the camera calibration procedure described in Sup. 1.2.

Given the initial 2D pose ~pi and image features fi from view i, subsequent
convolutional layers estimate refined 2D coordinates ~̃pi. To obtain the final 3D
reconstruction ~P 1 the refined 2D keypoints are unprojected into the world using:

~P 1
i = ~P 1

i (z) ·K−1
i · ~̃pi . (3)

~P 1
i (z) retrieves the third component from the pose in camera coordinates ~P 1

i ,
which corresponds to the respective keypoints’ depth in this cameras coordinate
frame. Secondly, the scalar reconstruction confidence ci is used to calculate the
final estimate as a confidence weighted average:

~P 1 =

∑
i(
~P 0
i · ci)∑
i ci

. (4)

Extensive details on architectural choices and algorithmic hyperparameters are
located in the supplemental material or can simply be taken from the released
code.

6.5 Details of the Motion Capture Experiment

The experimental motion capture results of 2 were obtained by splitting the
base dataset of 1199 training and 614 evaluation frames providing 7 cameras
into different subsets. For a given number of cameras the experiment (Fig. 1d)
is repeated in 3 trials choosing different sets of cameras as listed in Table 1.
For example, if only 2 cameras are used we pick the following camera pairs:
{{1, 5}, {1, 7}, {1, 3}}. Each number uniquely identifies a camera (Fig. 1a) and
the pairs chosen correspond to the cases ’long side + short side’, ’long side +
bottom’ and ’long side + long side’. Each of the resulting datasets still covers
1199 time instances, but only 1199 · 2 = 2398 individual frames compared to
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Ii ∈ RH1×W1×3 ...

Rat Detection CNN

Ic,i ∈ RH2×W2×3 ...

2D Feature CNN

Unproject Π−1

& Sum
3D Keypoint CNN

F ∈ RX×Y×Z×C

Project Π &
Heatmaps

P 0 ∈ RN×3

Refinement CNN

S0
i ∈ RH3×W3×N

fi ∈ RH3×W3×C
Argmax &

Unproject Π−1

S1
i ∈ RH2×W2×N

P 1 ∈ RN×3

Figure 7: Detailed architecture of the motion capture approach. Given the
camera images first a bounding box detection network is applied, then image features
are extracted from the cropped images and unprojected into a common 3D repre-
sentation. The 3D representation is used to reconstruct the initial pose P 0, which is
projected into the views for further refinement. Finally, the refined 2D reconstructions
p̃i are used to calculate the final 3D pose P 1. S is a scoremap representation for a 2D
keypoint, which is linked to its point representation through ~pi = arg maxh,w S(h,w, i)
and vice versa through creation of Gaussian target maps [32].

Number of cameras 1 2 3 4 5 6

Camera sets
{1} {1, 5} {1, 5, 7} {1, 3, 4, 5} {1, 3, 4, 5, 7} {1, 2, 3, 4, 5, 7}
{5} {1, 7} {1, 3, 5} {1, 3, 4, 7} {2, 6, 4, 5, 7} {1, 2, 3, 4, 5, 6}
{7} {1, 3} {4, 5, 7} {1, 4, 5, 7} {1, 3, 4, 5, 6} {1, 2, 4, 5, 6, 7}

Table 1: Camera subsets for reduced number of views experiment. Given
a number of cameras three different subsets of cameras are selected. Reducing the
amount of cameras both leaves less frames for training and increases the difficulty
to precisely localize keypoints (Fig. 1d). Please note that extensive evaluation of
all possible configurations is computationally very expensive, so we resort to using
manually selected subsets that reflect reasonable camera placements.

1199 · 7 = 8393 in the all camera setting. The same procedure is applied to the
evaluation set. Table 1 lists the selected subsets of cameras used for experiments
in Fig. 1d. Please note, that testing all possible permutations is computationally
very expensive, why we resort to testing manually chosen subsets representing
meaningful cases, i. e. chose cameras how one would if only a limited number
of cameras is available.

To simulate sparsity of labeled samples (Fig. 1e) we use all cameras, but
randomly select a subset of 10%, 20%, 30%, 60%, 80% or all time instances. For
example, in the 20% case there are 1199 · 0.2 = 239 time instances of 7 cameras
in the training set, which results in an effective number of 239 ·7 = 1673 camera
frames used. This dataset is used for training both methods, FreiPose and DLC,
and evaluation is performed with respect to the complete evaluation set. Each
level of sparsity is sampled 3 times for a more robust reconstruction.

Building on the notation introduced in 6.4 the median error is calculated as

follows: Let
~̂
P ∈ R3 denote the predicted keypoint coordinate of one keypoint
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a b
# Name
0 Ear Right
1 Eye Right
2 Paw Front Right
3 Paw Back Right Ankle
4 Paw Back Right Tip
5 Ear Left
6 Eye Left
7 Paw Front Left
8 Paw Back Left Ankle
9 Paw Back Left Tip
10 Nose
11 Tail

0
1

3
42

6
5

8

7

11

9

10

Figure 8: Keypoints defined on the rat body. a Names and indices of keypoints.
b Keypoint locations on the rat body.

and ~P ∈ R3 represent the label then the reported metric is defined as

JPE =
∥∥∥~P − ~̂

P
∥∥∥
2

(5)

and represents the Joint Position Error (JPE). For Fig. 1d, e the median, 30%
and 70% percentiles of the JPE are calculated over all trials, evaluation frames
and keypoints.

6.6 Skeletal models

During the freely moving rat experiment we use a 12 keypoint model (Fig. 8a),
which includes keypoints along the body axes, faces and paws (Fig. 8b).

For the reaching experiment we defined a 14 keypoint model using a point
at the wrist, one for the thumb and three for all the remaining fingers (at
metacarpophalangeal, proximal interphalangeal joints and finger tip).

7 Data Availability

The raw video data of this study is available from the corresponding author upon
reasonable request. Example data sets for FreiCalib and FreiPose are available
via our GIN repository: https://gin.g-node.org/optophysiology/FreiPose.

7.1 Source data

Source data for reproducing figures of the article will be made available via our
GIN repository: https://gin.g-node.org/optophysiology/FreiPose
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7.2 Code Availability

• Docker runtimes and source code for FreiPose will be made publicly avail-
able on Github: https://github.com/lmb-freiburg/FreiPose-docker.

• Docker runtime and source code for FreiCalib is publicly available on
Github: https://github.com/lmb-freiburg/FreiCalib.

• Source code for RecordTool will is publicly available on Github:
https://github.com/lmb-freiburg/RecordTool.

• During the review process, the code of FreiPose is not yet publicly re-
leased. Instead, the complete code is located in the Supplemental material
as FreiPose-master.zip and FreiPose-docker-master.zip.
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Sup. 1 Supplemental material

Sup. 1.1 Experimental setup

The following hardware was used for the experiments presented:

• Cameras: 6 x acA1300-200uc and 1 x acA800-510uc, Basler AG, Ahrens-
burg, Germany

• Calibration object: Planar aluminium dibond, double sided Apriltag board
using 36h11b2 patterns in a 4× 10 grid, created by FreiCalib and manu-
factured by Schmidt Digitaldruck GmbH, Wörth, Germany

• Lenses for freely roaming rodents: fixed focal length 6-8 mm, Kowa,
Nagoya, Japan

• Lenses for paw reaching: fixed focal lengths of 12-16 mm, by Computar,
Cary, NC, USA and Cosmicar, Tokio, Japan

• Camera hardware was mounted to aluminium profiles (ITEM, Solingen,
Germany) using custom 3D printed mounts. STL files are available upon
request

• Camera mounts: Walimex FT-002H tripod heads

• 2 x Led video lights (Zetci ZT-017, 15 W)

• Experimentation box for freely roaming rats: 45x36x55 cm using 8 mm
thick acrylic glass and metal mesh with 0.7 cm spacing

• Experimentation box for freely roaming mice: 25x35x25 cm using 8 mm
thick acrylic glass

• Experimentation box for paw reaching: 27x36x29 cm using 8 mm thick
acrylic glass and an 1x6 cm opening

• Experimentation boxes were build at the University Freiburg workshop

• Computer specifications: Intel Core i7-6800K, 64 Gb RAM, Geforce GTX
1080, Intel C610/X99 chipset USB controller + Renesas uPD720202 USB3.0
card, Ubuntu 16.04, Python 3.5, Pylon 5.1.0, USB3 kernel Driver xhci hcd

• Electrophysiology: D32 digital headstages (Tucker-Davis-Technologies, Alachua,
FL, USA), electrical commutator (ACO64, Tucker Davis Technologies,
USA), RHD2000 Evaluation Board 1.0 (Intan technologies, Los Angeles,
CA, USA)

• Laser source: Luxx 473 nm laser (Omicron Laserage, Rodgau, Germany)
was controlled via QPIDe control board (Quansar,Markham, ON, Canada)
from MATLAB R2014 (MathWorks, Natick, MA, USA)
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Sup. 1.2 Framework

We introduce a ready-to-use framework for general purpose 3D keypoint estima-
tion from multiple views, which is outlined in Fig. Sup. 1. It is versatile in terms
of the number of cameras and their relative positioning as well as the number
and semantic meaning of keypoints, which allows application to a broad range
of experimental setups.

The framework is easy to install because a Docker container is provided
in our Github repository https://github.com/zimmerm/FreiPose-docker along
with video tutorials that provide a beginner-level introduction about how to
use FreiPose for experimentation. We strongly recommend making use of the
video tutorials.

Build experimental setup
with synchronized cameras Calibration Procedure

Calibration
video sequence

Calculate calibration

Calibration file

Conduct Experiment

Experiment
video sequence

Estimate Pose

Pose file

Finetune model on
labeled frames

Inspect predictions &
Refine labels

RecordTool FreiCalib FreiPose Data

Legend:

Figure Sup. 1: Experimentation work flow. First, the experiment is set up
using time synchronized cameras that are calibrated subsequently using FreiCalib and
a dedicated calibration recording with RecordTool. Afterwards, experiments can be
recorded and the animals’ pose is estimated subsequently. The pose is estimated in
a predict-inspect-refine loop that starts with an initial model to make predictions.
The predictions are manually inspected and refined if they are not yet sufficiently
accurate. The refined predictions are added to the training set to finetune the model.
The updated model yields improved predictions. After some iterations, no further
manual intervention is necessary and the model yields accurate pose estimates for new
recordings.

We divided our framework into three modules, which allow using them in-
dependently. The modules are RecordTool, FreiCalib and FreiPose.

• RecordTool contains software for recording time synchronized videos. It
directly handles the Basler cameras we used in our experiments. When
using other cameras, this software must be modified accordingly.

• FreiCalib calculates the camera calibration based on time-synchronized
video recordings, where an calibration object is used. Notes on how to
create such a pattern and hints what makes a good calibration sequence
are given in our respective Github repository.

• FreiPose estimates poses based on time synchronized videos taken by
previously calibrated cameras.
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Computational requirements. Running FreiPose involves training large neu-
ral networks so certain hardware requirements should be met. This involves an
Ubuntu 18.04 operating system and a nVIDIA GPU with at least 8GB of mem-
ory. Similar operating systems that also provide nVIDIA Docker might work
as well, but were not tested. Access to a solid-state drive (SSD) for storing
training data is beneficial, but optional.

Video Recording with RecordTool. The module RecordTool builds upon
the proprietary camera drivers of the Basler USB cameras which we used in our
study and provides basic functions for camera usage like starting or stopping
during recordings as well as modifying relevant camera parameters like white
balancing, frame rate, gain, and exposure time. Additionally, the same program
operates the Arduino based trigger system.

We designed RecordTool such that it saves the files into one output folder.
In this folder, each recording is called a run and consists of as many files as there
are cameras. The files follow the naming convention run%03d cam%d.avi, e.g.
run000 cam1.avi. The software is available online alongside with a detailed
description as pointed out in 7.2.

Camera Calibration with FreiCalib. First, video recordings using a suit-
able calibration object should be obtained. FreiCalib allows creating a PDF file
that can be used for manufacturing a pattern calling

python create_marker.py --tfam 36h11 --nx 10 --ny 4

--size 0.05 --double

which will create two PDF files containing the front and back side of a pattern
showing a 10 by 4 grid of tags with size 5 cm each. Alongside with the PDFs
(Fig. Sup. 2), a calibration pattern description file is saved that encapsulates
marker information for subsequent processing steps.

x

y

2x2 tags, size=5.00cm, spacing=1.25cm, id offset=0, front

Figure Sup. 2: Calibration pattern created by FreiCalib. For simplicity a pat-
tern with nx = ny = 2 is depicted. It arranges AprilTags [1] as fiducial identification
patterns in a grid structure similar to other calibration methods [2]. Each tag contains
a binary code, which uniquely identifies it and the codes are chosen towards robust
identification.

For a given recorded calibration sequence, the important parameters describ-
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ing the imaging process can be calculated by running

python calib_M.py {MARKER_PATH} {VID_PATH}

where {MARKER_PATH} is the path to the marker description file and {VID_PATH}

points to the videos showing the calibration sequence. The calibration result
will be saved to the folder of the videos as M.json. The calibration file contains
readable characters and can be opened with any text editor. It contains a
dictionary of lists, where each dictionary item presents either extrinsic, intrinsic
or distortion parameters and the list iterates over cameras.

Additionally, we provide the option to check a previously calculated calibra-
tion with respect to a newly recorded video sequence.

python check_M.py {MARKER_PATH} {VID_PATH} {CALIB_FILE}

This allows for easy verification of the given calibrations validity, e. g. none of
the cameras was (accidentally) moved or altered between calibration and exper-
imentation time.

Experimentation using FreiPose. After obtaining a valid calibration, the
actual experiment can be conducted. To get started, an initial configuration
of the framework is necessary, which mainly involves defining the keypoints
needed for the task and additional task specific settings. A detailed description
of these parameters is located in the Github repository and is encapsulated in
a configuration file denoted by {CFG_FILE}.

To predict poses on a given set of videos, the calls

python predict_bb.py {CFG_FILE} {VID_PATH}

python predict_pose.py {CFG_FILE} {VID_PATH}

are sufficient. The commands will save predictions into a new file denoted by
{PRED_FILE} in the folder of the videos and its content can be visualized with

python show_pred.py {CFG_FILE} {PRED_FILE}

To inspect the predictions in detail and select frames for manual annotation the
Selection Tool (Fig. Sup. 3a) is used for. It is started by calling

python select.py {CFG_FILE} {PRED_FILE}

The user is guided through the selection process by prediction confidences and
automatic selection methods presented by the GUI. Frames selected for labeling
are extracted from the videos and saved in a separate folder {FRAME_FOLDER}

as individual frames. The labeling tool (Fig. Sup. 3b) can be used in parallel
by multiple persons and is started by

python label.py {CFG_FILE} {FRAME_FOLDER}

Sup. 29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 27, 2020. ; https://doi.org/10.1101/2020.02.27.967620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.967620
http://creativecommons.org/licenses/by-nc-nd/4.0/


The labeling tool can load the networks’ pose predictions, which allows for
speeding up the labeling procedure as the networks’ predictions improve. The
user can resort to correcting erroneous labels instead of labeling the complete set
of keypoints from scratch. The labeling tool leverages multi-view geometry, i.e.
it triangulates the annotations in the individual camera views to a 3D hypothesis
and visualizes their locations. This allows the annotator to stop annotating as
soon as the hypothesis is consistent across views, which yields a tremendous
reduction of labeling effort because usually annotation in few camera views is
sufficient.

The folder containing the labeled data is registered to the framework by
creating an entry in its configuration file. Afterwards, the network can be fine
tuned by calling

python train_bb.py {CFG_FILE}

python train_pose.py {CFG_FILE}

a b

Figure Sup. 3: GUIs for viewing predictions and refining annotations. a
User interface for inspection and selection of frames, where refined annotation is neces-
sary. The selection is guided by a confidence score of the network (lower right corner).
b The selected frames are extracted from the videos and can be labeled by the annota-
tion tool, which enables the user to annotate by dragging keypoints from the example
image and dropping them onto the camera frames. It leverages the multi-view infor-
mation by calculating a 3D point hypothesis based on the annotated 2D points.

Sup. 1.3 Additional Experimental Results

We complement the main papers’ experiments with Fig. Sup. 4, which provides
JPE results on a per keypoint level in the full dataset and full camera setting.
Fig. Sup. 4a shows the JPE as box plots for both approaches. Largest errors are
present for the highly articulated paw and tail keypoints. Compared to FreiPose
the error and variance of DLC is much larger for these keypoints. Fig. Sup. 4b
is obtained by calculating the percentage of predictions that do not exceed a
certain error threshold, which shows that FreiPose can detect keypoints much
more reliably than DLC. Within an 5 mm error threshold FreiPose can detect
57.3% keypoints compared to 28.7%, which DLC can detect.
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Figure Sup. 4: Keypoint errors and percentage of correct keypoints for
freely moving rats. a Box plot of the keypoint prediction error per keypoint for
FreiPose (green) and DLC (blue), where whiskers indicate 1.5 × IQR. Largest im-
provements between FreiPose and DLC are observed for highly articulated keypoints,
e. g. paws. b Percentage of correct keypoints for a given threshold. For any given
error tolerance FreiPose retrieves more keypoints correctly than DLC. Both plots refer
to the evaluation set containing 614 samples of three trials.

Qualitative Examples. Comparison of DLC and FreiPose method on a quali-
tative basis shows that the DLC based single view estimation plus post-hoc tri-
angulation is prone to erroneous predictions from individual views (Fig. Sup. 5).
DLC was run with a RANSAC based triangulation method to take outlier mea-
surements into account. Keypoint predictions with a confidence below c = 0.1
were discarded. The triangulation method is part of the released code within
the FreiPose Github repository. Despite these modifications, DLC’s predictions
were not reliably correct.
Swing-stance classification from pose prediction We used FreiPose to
classify the paw states into swing and stance phases for each of the 4 paws indi-
vidually, by adding a simple classifier. The classification was based on behavior
variables describing Paw Height over Ground and the Paw Velocity, which are
calculated from the pose estimation. We use a linear SVM trained on 79 frames
and evaluated on 96 different frames of the same animal. Comparison to a man-
ually labeled ground truth shows, that the classifiers trained on our prediction
reaches a balanced accuracy of 79.1% compared to 58.2% for DLC averaged over
all paws. This shows that increased accuracy of the pose estimation is important
for downstream tasks. Detailed results are summarized in Table Sup. 1.
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Paw
DLC FreiPose

Accuracy ↑ TP ↑ TN ↑ FP ↓ FN ↓ Accuracy ↑ TP ↑ TN ↑ FP ↓ FN ↓
Front Left 50.0% 80 0 25 0 65.4% 79 1 17 8

Front Right 50.0% 65 0 40 0 79.0% 654 11 10 30
Back Left 70.6% 85 5 8 7 83.3% 90 0 5 10

Back Right 84.4% 76 12 3 14 85.3% 88 0 5 12
Overall 58.2% 306 17 76 21 79.1% 311 12 37 60

Table Sup. 1: Extended result of swing stance classification. Positive indicates
presence of swing state of the respective paw. For calculating the accuracy we use the
balanced class weight average to account for the imbalance in number of samples of
both classes, i. e. (tp + tn)/(tp + tn + fp + tn). tp - true positive, fp -false positive,
tn- true negative, fn- false negative.
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Annotator DLC 2D DLC 3D FreiPose

a

b

c

d
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f

Figure Sup. 5: Qualitative comparison between FreiPose and DLC. Rows
a, b, respectively c, d and e, f, show images recorded at the same time but from
different cameras. DLC is able to correctly estimate poses in rows a, c, e but during
triangulation from 2D predictions to 3D points the less accurate predictions from
b, d and f have a deteriorating influence on the final results even though robust
triangulation techniques were used. On the other side FreiPoses’ predictions look
visually similar to the annotations created by a human annotator.
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Behavioral Embedding In the main article (Fig. 3) we clustered the move-
ments to identify time points corresponding to 4 types of movement related
behavior: locomotion, rearing, cleaning, and inspection of nearby environment.
Here we provide an overview of the clustering procedure (Fig. Sup. 6). A more
detailed description is part of the online methods (6.3.2).
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b cFigure Sup. 6: Overview over behavioral clustering algorithm. The modified
algorithm for unsupervised clustering of behavior based on a mapping approach for
fruit flies [3]. Postural decomposition was achieved via PCA of the pairwise-distance
matrix of keypoints. The frequency of the components was calculated via wavelet
transform. Extracted features were embedded via t-SNE and individual behavioral
clusters identified with watershed clustering followed by assignment of clusters to be-
havioral labels by visual inspection and evaluation. Refers to main Fig. 3

Trajectory Clustering. In the main article in Fig. 4 and Fig. 5 we showed the
application of FreiPose to detect modulation of neurons due to paw movements.
We applied the same analysis based on DLC (Fig. Sup. 7). The detection of
neuronal modulation with DLC is very limited in freely moving animals.
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Figure Sup. 7: DLC predictions impair the detection of neuronal tuning
compared to holistic 3D prediction from FreiPose. a Population response to
right (contralateral) paw movements during locomotion. b Trajectories of the right
paw during step-like paw movements extracted via DLC predictions. Note the strong
bias to the left, putatively originated from the tendency of DLC to miss-label left
and right paws. c The responses of the two neurons from main Fig. 5 have been
reanalyzed based on DLC extracted paw trajectories. Similar tuning for neuron 43
could be extracted. However, no tuning was detected based on DLC predictions for
neuron 32. Refers to main Fig. 4 and Fig. 5

Optogenetic Stimulation Experiment. In the main paper, we showed that
a classifier trained on Animal3 generalizes consistently to the remaining animals
(Fig. 6). We obtained the same generalization when the classifier was trained on
Animal1 (Fig. Sup. 8a) or Animal2 (Fig. Sup. 8b). In addition to the behavioral
variables found in Fig. 6 (’Paw Front Right: Height’ for 30 Hz and ’Paw Front
Right: Height over Ground’), also other variables were detected. Most of the
additional variables in the 30 Hz case were related to facial factors that indicate
a significant ’Head Roll’. For classifiers trained on Animal1 or Animal2 similar
periodic movement relative to the head is detectable in the 10 Hz case.
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Figure Sup. 8: Permutations of the optogenetic stimulation experiment.
Similar findings during automatic attribution of the simulation effect when training
was performed on Animal1 (a) or Animal2 (b). Shown is the F-score of the respective
classifier and white dots indicate significance below a p-value of 0.001 (Bonferroni
adjusted) supported by the chi2 test between predicted and actual classes.

Sup. 1.4 Architectural Details of FreiPose

The implementation of our approach uses Tensorflow [4] and is available through
our Github repository.

For bounding box detection we used a COCO [5] pretrained MobileNet V2
[6], which was retrained for the task of detecting the foreground objects. In the
freely moving rat scenario, it was trained using each view of the 1199 labeled
time instances separately, i.e., a total of 9592 samples. We trained it for 150 k
iterations using a learning rate of 0.004 and the RMSProp optimizer. As data
augmentation operations, we employed random flipping, cropping, scaling, and
color space variation.

For the reaching task, due to the action always happening in the same space,
we used a fixed, predefined region of interest rather than a detector.

For pose estimation we extend the approach by Zimmermann et al.[7] by the
refinement module for increased accuracy. Detailed discussion of this approach
is provided in section 6.4. The network was trained for 60 k using ADAM
optimizer [8] with a base learning rate of 10−4 and decay by a factor of 0.1
every 30 k steps. To improve convergence we found it helpful to not train the
refinement module for the first 30 k steps.
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Name Number of factors
Keypoints in cartesian rat local frame 12 · 3 = 36

Keypoints velocity in cartesian rat local frame 12 · 3 = 36
Keypoints distance to rat local frame origin 12

Keypoints distance velocity to rat local frame origin 12
STFT of Keypoint distance to rat local frame origin using 33 frequencies 12 · 33 = 396

Keypoint distance to ground plane 12
STFT of Keypoint distance to ground plane using 33 frequencies 12 · 33 = 396

Body elevation: ^(g, [11, {0, 5}]) 1
Head elevation: ^(g, [10, {0, 5}]) 1

Head roll: ^(g, [0, 5]) 1
Head nick: ^([11, {0, 5}], [{0, 5}, 2]) 1
Paw right: ^([11, {0, 5}], [{0, 5}, 2]) 1
Paw left: ^([11, {0, 5}], [{0, 5}, 7]) 1

Angle velocity of the aforementioned angles 6
Total 912

Table Sup. 2: Tested behavioral variables. ^(.) measures the angle between two
three dimensional vectors and [a, b] defines an vector that goes from point a to point
b. The notation {a, b} calculates the average of the points a and b. 3D points are
denoted as keypoint indices, that find their textual counterpart in Table 8. The rat
local coordinate frame is defined with its origin at {0, 5}, its z axis being aligned with
the up pointing normal of the ground plane and its y axis rotated towards [{0, 5}, 11].
STFT - short-time Fourier transform.
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