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ABSTRACT

The discovery of cruciviruses revealed the most explicit example of a common protein

homologue between DNA and RNA viruses to date. Cruciviruses are a novel group of

circular Rep-encoding ssDNA (CRESS-DNA) viruses that encode capsid proteins (CPs)

that  are  most  closely  related  to  those  encoded  by RNA  viruses  in  the  family

Tombusviridae.  The  apparent  chimeric  nature  of  the  two  core  proteins  encoded  by

crucivirus genomes  suggests horizontal gene transfer of  CP genes between DNA and

RNA viruses. Here, we  identified and characterized  451 new crucivirus genomes and

ten CP-encoding circular  genetic elements through  de novo assembly and mining of

metagenomic data.  These genomes  are highly diverse,  as demonstrated by sequence

comparisons and phylogenetic analysis of subsets of the protein sequences they encode.

Most of the variation is reflected in the replication associated protein (Rep) sequences,

and much of the sequence diversity appears to be due to recombination.  Our results

suggest that recombination tends to occur more frequently among groups of cruciviruses

with  relatively similar capsid proteins, and that the exchange of Rep protein domains

between  cruciviruses  is  rarer  than  gene  exchange.  Altogether,  we  provide  a

comprehensive and descriptive characterization of cruciviruses.

IMPORTANCE

Viruses are the most abundant biological entities on Earth. In addition to their impact on

animal and plant health, viruses have important roles in ecosystem dynamics as well as

in the evolution of the biosphere. Circular Rep-encoding single-stranded (CRESS) DNA

viruses are ubiquitous in nature, many are agriculturally important, and are viruses that

appear to have multiple origins from prokaryotic plasmids. CRESS-DNA viruses such

as the cruciviruses, have homologues of capsid proteins (CPs) encoded by RNA viruses.

The genetic  structure of cruciviruses attests  to the transfer of capsid genes  between

disparate groups of viruses. However, the evolutionary history of cruciviruses is still

unclear.  By collecting  and analyzing  cruciviral  sequence  data,  we provide  a  deeper

insight into the evolutionary intricacies of cruciviruses. Our results reveal an unexpected

diversity of this virus group, with frequent recombination as an important determinant

of variability.
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INTRODUCTION

In  the last decade, metagenomics has allowed for the study of viruses from  a

new angle; viruses are not merely agents of disease, but abundant and diverse members

of ecosystems (1, 2). Viruses have been shaping the biosphere probably since the origin

of life, as they are important drivers of the evolution of the organisms they infect (3–5).

However, the origin of viruses is not entirely clear. Viruses, as replicons and mobile

elements, are also subject to evolution. Virus variability is  driven by various mutation

rates,  recombination  and  reassortment  of  genetic  components  (6).  These  attributes,

coupled with types of genomes (RNA or DNA, single or double stranded and circular or

linear), lead to a large genetic diversity in the ‘viral world’. 

Viruses are generally classified based on the nature of their transmitted genetic

material (7). Viral genetic information is coded in either RNA or DNA. Moreover, these

genomes can be single (positive or negative sense) or double stranded, linear or circular,

and can be comprised of a single or multiple molecules of nucleic acid (monopartite or

multipartite, respectively). These different groups of viruses have different replication

strategies,  and  they  harbor  distinct  taxa  based  on  their  genome  arrangement and

composition  (1). The striking differences between viral groups with disparate genome

types suggest polyphyletic virus origins (8).

For example, the highly abundant circular Rep-encoding single-stranded DNA

(CRESS-DNA) viruses may have been derived from plasmids on multiple occasions by

acquiring  capsid  genes  from RNA viruses  (9–11).  Eukaryotic  CRESS-DNA viruses

constitute a diverse and widespread group of viruses with circular genomes –some of

them multipartite– that contains the families Geminiviridae, Circoviridae, Nanoviridae,

Alphasatellitidae,  Genomoviridae,  Bacilladnaviridae,  Smacoviridae and

Redondoviridae  (ICTV  classification  for  some  groups  is  pending  at  this  time),  in

addition to vast numbers of unclassified viruses (12, 13). Universal to all CRESS-DNA

viruses  is  the  Rep,  which  is  involved  in  the  initiation  of  the  virus’  rolling-circle

replication.  Rep homologues are also  encoded in plasmids  (13, 14). Some pathogenic

CRESS-DNA viruses  are  agriculturally  important,  such as  porcine  circoviruses,  and

nanoviruses and geminiviruses that infect a wide range of plant hosts  (12). However,
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many CRESS-DNA viruses have been identified in apparently healthy organisms, and

metagenomics have revealed their presence in most environments (12).

In 2012, a metagenomic survey of a hot and acidic lake in the volcanic Cascade

Range of  the western  USA uncovered a  new type of circular  DNA virus  (15).  The

genome of this virus is a CRESS-DNA virus based on the circularity of its sequence, the

presence of a rep gene, and a predicted stem-loop structure with a conserved nucleotide

sequence (ori) that serves as an origin for CRESS-DNA virus rolling-circle replication

(RCR; reviewed in (16, 17)). Interestingly, the sequence of CP encoded by this genome

resembles those encoded by the RNA viruses in the family Tombusviridae (15). It was

hypothesized that this virus originated by the acquisition of a capsid gene from an RNA

virus through a yet to be demonstrated RNA-DNA recombination event (15, 18). Since

the discovery of this putatively “chimeric virus”, 80 circular sequences encoding a Rep

and  a  CP that  share  homology  to tombusvirus  CPs  have  been  found  in  different

environments around the globe (19, 20, 29–31, 21–28). This growing group of viruses

have been branded “cruciviruses”,  as they imply the  crossing between CRESS-DNA

viruses and RNA tombusviruses  (27).  Cruciviruses have been found associated with

forams  (20),  alveolates hosted by isopods  (26), arthropods  (19,  22),  and in peatland

ecosystems (27), but no host for cruciviruses have been elucidated to date.

The circular genome of known cruciviruses is variable in size, ranging from 2.7

to 5.7 kb and often contains ORFs in addition to the  Rep and  CP, which have been

found  in  either  a  unisense  or  an  ambisense  orientation  (20,  27).  The  function  of

additional crucivirus ORFs is unclear due to the lack of sequence similarity with any

characterized  protein. The  genome replication of CRESS-DNA viruses is initiated by

the Rep protein, that binds to direct repeats present just downstream of the stem of the

ori-containing stem-loop structure and nicks the ssDNA  (32, 33). The exposed 3’OH

serves as a primer for cellular enzymes to replicate the viral genome via RCR (33–35).

The exact terminating events of CRESS-DNA virus replication are poorly understood

for most CRESS-DNA viruses, but Rep is known to be involved in the sealing of newly

replicated genomes (33, 35–37). 

Rep has  a  domain  in  the N-terminus that  belongs to  the HUH endonuclease

superfamily (38). This family of proteins is characterized by a HUH motif (Motif II), in

which two histidine residues are separated by a bulky hydrophobic amino acid, and a
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Tyr-containing  motif  (Motif  III)  that  catalyzes  the  nicking  of  the  ssDNA  (38–41).

CRESS-DNA virus Reps also contain a third conserved motif in the N-terminal portion

of the protein (Motif I), likely responsible for dsDNA binding specificity (42). In many

CRESS-DNA viruses, the HUH motif has been substituted for a similar motif that lacks

the second histidine residue (e.g. circoviruses have replaced HUH with HLQ) (10, 38).

The C-terminal portion of eukaryotic CRESS-DNA virus Reps contain a Superfamily 3

helicase  domain  (S3H)  that  may  be responsible  for  unwinding  dsDNA  replicative

intermediates (43, 44). This helicase domain is characterized by Walker A and B motifs,

Motif C and an Arg finger. Previous studies have identified evidence of recombination

in the endonuclease and helicase domains of Rep, which  contributes to the potential

ambiguity of  Rep  phylogenies  (45).  Interestingly,  the  Rep  proteins  of  different

cruciviruses  have  been  shown  to  be similar  to  CRESS-DNA  viruses  in  different

families,  including  circoviruses,  nanoviruses, and  geminiviruses  (20,  27).  In  some

cruciviruses, these differences in phylogeny have been observed between the individual

domains of a single Rep protein  (21, 27).  The apparent polyphyly of crucivirus Reps

suggests recombination events involving cruciviruses and other CRESS-DNA viruses,

even within Reps (20, 21).

All characterized CRESS-DNA viruses package their DNA into small capsids

with icosahedral symmetry or their geminate variants, built from multiple copies of the

CP encoded in their genome (12). The CP of these CRESS-DNA viruses appears to fold

into an eight-strand ß-barrel  that conforms to the single jelly-roll (SJR) architecture,

which is also commonly found in eukaryotic RNA viruses (46). The CP of cruciviruses

has no detectable sequence similarity with the capsid of other CRESS-DNA viruses, and

is predicted to adopt the SJR conformation found in the CP of tombusviruses (15, 20,

21). Three domains can be distinguished in tombusviral CPs (47, 48). From the N- to

the C-terminus: i) The RNA-interacting or R-domain, a disordered region that faces the

interior of the viral  particle to interact with the nucleic  acid through abundant basic

residues (49, 50), ii) the shell or S-domain containing the single jelly-roll fold and the

architectural base of the capsid (48) and iii) the protruding or P-domain, that decorates

the surface of the virion and is involved in host transmission (51). In tombusviruses, the

S-domain of 180 CP subunits interact with each other to assemble around the viral RNA

in a T=3 fashion, forming a Ø~35 nm virion (48, 52).
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The study of  cruciviruses  suggests evidence  for the transfer  of  capsid  genes

between disparate viral groups, which can shed light on virus origins and the phenotypic

plasticity  of virus  capsids.  Here,  we document  the discovery of  461 new crucivirus

genomes  (CruV)  and  cruci-like  circular  genetic  elements  (CruCGE)  identified in

metagenomic  data  obtained  from different  environments  and  organisms.  This  study

provides a comprehensive analysis of this greatly expanded dataset and explores the

extent of cruciviral diversity –mostly due to Rep heterogeneity– impacted by rampant

recombination.
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MATERIALS AND METHODS

Recovery of viral genomes from assembled viromes.

A  total  of  461  crucivirus-related  sequences  were  identified  from  1168

metagenomic surveys (Supp. Tables 1 and 2). 1167 viromes from 57 published datasets

and one unpublished virome were obtained from different  types of environments:  i)

aquatic  systems  (freshwater,  seawater,  hypersaline  ponds,  thermal  springs  and

hydrothermal  vents),  ii)  engineered  systems  (bioreactor,  food  production),  and  iii)

eukaryote-associated  flora (human,  insect  and other  animal feces,  human saliva  and

fluids, cnidarians and plants). New cruciviral sequences were identified in these viromes

by  screening  circular  contigs  for  the  presence  of  CPs  from  previously  known

cruciviruses (20) and tombusviruses, using a BLASTx bit-score threshold of 50.

Additionally, sequences CruV-240, CruV-300, CruV-331, CruV-338 and CruV-

367 were retrieved from Joint Genome Institute (JGI)’s IMG/VR repository  (53), by

searching  scaffolds  with  a  function  set  including  the  protein  family  pfam00729,

corresponding to the S-domain of  tombusvirus capsids. The sequences with an RdRP

coding  region  were  excluded,  and  the  circularity  of  the  sequences,  as  well  as  the

presence of an ORF encoding a tombusvirus-like capsid, were confirmed with Geneious

11.0.4 (Biomatters, Ltd).

Annotation of crucivirus putative genes.

The 461 cruciviral sequences were annotated and analyzed in Geneious 11.0.4.

Coding sequences (CDSs) were semi-automatically annotated from a custom database

(Supp.  Table  3)  of  protein  sequences  of  published cruciviruses  and close homologs

obtained  from  GenBank,  using  Geneious  11.0.4’s  annotation  function  with  a  25%

nucleotide  similarity  threshold.  Annotated  CDS  were  re-checked  with  GenBank

database  using  BLASTx  to  identify  sequences  similar  to  previously  described

cruciviruses  and putative  relatives.  Sequences  containing  in-frame stop codons were

checked for putative splicing sites  (54), or translated using a ciliate genetic code only

when usage rendered a complete ORF with similarity to other putative crucivirus CDSs.

Predicted ORFs longer than 300 bases with no obvious homologs and no overlap with

CP or Rep-like ORFs were annotated as "putative ORFs".
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Putative Stem-loop annotation.

Stem-loop structures  that  could  serve as  an  origin  of  replication  for  circular

ssDNA  viruses  were  identified  and  annotated  using  StemLoop-Finder  (Pratt  et al.,

unpublished, (55, 56)). The 461 cruciviral sequences were scanned for the presence of

conserved  nonanucleotide  motifs  described  for  other  CRESS-DNA  viruses

(NANTANTAN,  NAKWRTTAC,  TAWWDHWAN,  &  TRAKATTRC) (12).  The

integrated ViennaRNA 2.0 library was used to predict  secondary structures of DNA

around the detected motif, including the surrounding 15-20 nucleotides on either side

(57,  58).  Predicted  structures  with  a  stem  longer  than  four  base  pairs  and  a  loop

including seven or  more  bases  were subjected  to  the  default  scoring system, which

increases the score by one point for each deviation from ideal stem lengths of 11 base

pairs  and  loop  lengths  of  11  nucleotides.  A  set  of  annotations  for  stem-loops  and

nonanucleotides  was created  with StemLoop-Finder  for  those with a score of  15 or

below. Putative stem-loops were excluded from annotation when a separate stem-loop

was found with the same first base, but attained a greater score, as well as those that

appeared to have a nonanucleotide within four bases of its stem-loop structure’s first or

last nucleotide.

Conservation analysis and visualization

Pairwise  identity  matrices. The  pairwise  identity  (PI)  between the  protein  sequence

from  translated  cruciviral  genes  was  calculated  with  SDTv1.2  (59),  with MAFFT

alignment option for CPs and S-domains, and MUSCLE alignment options for Reps.

Sequence conservation annotation.  CP sequence conservation represented in Fig. 2A

was  generated  with  Jalview  v2.11.0  (60),  and  reflects  the  conservation  of  the

physicochemical properties for each column of the alignment (61).

Sequence logos. Sequence logos showing frequency of bases in nonanucleotides at the

origin of replication or residue in conserved Rep motifs were made using the weblogo

server (http://weblogo.threeplusone.com/; (62)).

Structural representation of capsid conservation. The 3D structure of CP was modeled

with Phyre2 (63). The generated graphic was colored by sequence conservation with

Chimera v.1.13 (64), from the alignment of the 47 capsid sequences  from each of the

CP-based clusters (Fig. 3B).
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Phylogenetic analyses.

Multiple  sequence  alignments.  CP sequences  were  aligned  using  MAFFT  (65) in

Geneious 11.0.4, with a G-INS-i algorithm and BLOSUM 45 as exchange matrix, with

an open gap penalty of 1.53 and an offset value of 0.123, and manually curated. Rep

protein  sequences  were  aligned  using  PSI-Coffee  [http://tcoffee.crg.cat/;  (66)].  Rep

alignments  were manually inspected and corrected in Geneious 11.0.4,  and trimmed

using TrimAI v1.3 with a strict plus setting (67). To produce individual alignments of

the endonuclease and helicase domains the full length trimmed alignments were split at

the Walker A motif (45).

Phylogenetic  trees.  Phylogenetic  trees  containing  the  entire  dataset  of  cruciviral

sequences were built on Geneious using the FastTree plugin  (68). For the analysis of

sequence subsets,  trees were inferred with PhyML 3.0 web server [http://www.atgc-

montpellier.fr/phyml/;  (69)],  using  an  aLRT  SH-like  support  (70).  The  substitution

model for each analysis was automatically selected by the program.

Intergene and interdomain comparison. Tanglegrams were made using Dendroscope

v3.5.10 (71) to compare the phylogenies between different genes or domains within the

same set of crucivirus genomes.

Sequence similarity networks. A total of  540 CP  amino acid sequences, and  600 Rep

amino acid sequences were uploaded to EFI–EST web server for the calculation of PIs

[https://efi.igb.illinois.edu/efi-est/;  (72)].  A  specific  alignment  score  cutoff  was

established for  each dataset  analyzed,  and xgmml files  generated  by EFI-EST  were

visualized and edited in Cytoscape v3.7.2 (73).

Accession numbers

Provided in Supp. Table 1.
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RESULTS & DISCUSSION

Expansion of the crucivirus group.

To broaden our understanding of the diversity and relationships of cruciviruses,

461 uncharacterized circular DNA sequences containing predicted CDSs with sequence

similarity  to the  CP of tombusviruses were compiled from metagenomic sequencing

data. The data came from published and unpublished metagenomic studies, carried out

in a wide variety of environments, from permafrost to temperate lakes, and on various

organisms  from red  algae  to invertebrates  (Metagenomes  and  their  metadata  are

provided in Supp. Table 2). The selected genomes are assumed to be complete  and

circular based on the terminal redundancy identified in de novo assembled genomes.

The cruciviral  sequences were named sequentially, beginning with the smallest

genome, which was named CruV-81 to account for the 80 crucivirus genomes reported

in  prior  literature (15,  19,  28–31,  20–27).  The  average  GC  content  of  the  newly

described cruciviral sequences is 42.9 ± 4.9 % (Fig. 1B) with genome lengths spanning

from  2,474  to  7,947  bases  (Fig.  1A),  some  exceeding  the  size  of  described

bacilladnaviruses (≤6,000 nt (74)), the largest CRESS-DNA viruses known (12).

Of the 461 sequences that contain a CP ORF, 451 have putative coding regions

with sequence similarity to Rep of CRESS-DNA viruses (10). The CP and Rep ORFs

are  encoded  in  a  unisense  orientation  in  40%  of  the  genomes  and  an  ambisense

orientation in 58% of the genomes. The remaining ~2% correspond to  ten CruCGEs

with no clear Rep CDS.  Five of these CruCGEs contain a predicted origin of rolling-

circle replication (RCR) (Supp. Table 1), indicating that they are circular genomes that

undergo RCR characteristic of other CRESS-DNA virus genomes (16, 17).

One possible reason for the lack of a Rep ORF in certain sequences is that some

of these may be sub-genomic molecules or possible components of multipartite viruses

(75).  Some  CRESS-DNA  viruses,  such  as  geminiviruses  and  nanoviruses,  have

multipartite genomes  (76).  Moreover,  some  ssRNA  tombunodaviruses;  including

Plasmopara halstedii  virus A and  Schlerophthora macrospora  virus A –viruses that

contain  the  most  similar  capsid  sequences  to  cruciviral  capsids  (15,  27)–  also have

multipartite genomes  (77).  Unfortunately,  no  reliable  method  yet  exists  to  match

different  sequences  belonging  to  the  same  multisegmented  virus  in  metagenomes,
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making  identification  of multipartite or  segmented  viruses  from  metagenomic  data

challenging (76).

Stem-loop structures with conserved nonanucleotide motifs as putative origins

of replication were predicted and annotated in 277 cruciviral sequences with StemLoop-

Finder (Pratt  et al., unpublished). In some cases, more than one nonanucleotide motif

with similar scores were found for a single genome, resulting in more than one stem-

loop  annotation.  Of  the  annotated  genomes,  223  contain  a  stem-loop  with  a

nonanucleotide with a NANTANTAN pattern, with the most common sequence being

the canonical circovirus motif TAGTATTAC, found in 64 of the genomes (Supp. Table

1;  (78)). The majority of the 54 sequences that do not correspond to NANTANTAN

contain a TAWWDHWAN nonanucleotide motif, typical of genomoviruses  (79). The

frequency of bases at each position in the nonanucleotide sequence is given in Fig. 1C,

and reflects similarity to motifs found in other CRESS-DNA viruses (10).

Crucivirus capsid protein (CP)

The CP of cruciviruses is predicted to have a single jelly-roll (SJR) architecture,

based  on  its  homology  to  tombusvirus  CPs  for  which  3D  structures  have  been

determined [Fig. 2A; (80–82)]. The SJR conformation is found in CPs of both RNA and

DNA  viruses  (46).  The  SJR  CP of  tombusviruses  and  cruciviruses  contains  three

distinct  domains:  the  RNA-binding  or  R-domain,  the  shell  or  S-domain,  and  the

protruding or P-domain (Fig. 2A). All 461 crucivirus CPs analyzed in this study contain

a complete S-domain. This domain contains a distinct jelly-roll fold and interacts with

the S-domain of other capsid subunits in the virion of related tombusviruses (48). The

S-domain has greater sequence conservation than the remaining regions of the CP (Fig.

2A), likely due to its functional importance in capsid structure. In tombusviruses, the S-

domain  contains  a  calcium  binding  motif  (DxDxxD),  which  was  not  identified in

previously described cruciviruses (83). However,  we detected this Ca-binding motif in

68 CPs of the newly identified cruciviral sequences. These crucivirus sequences form a

distinct cluster, shown in red in Fig. 3B. The S-domain is flanked on the N-terminus by

the R-domain, which in cruciviruses appears variable in size (up to  320  amino acids

long), and appears to be truncated in some of the CP sequences (e.g. CruV-386 and

CruV-493). The R-domain is characterized by an abundance of basic residues at the N-
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terminus, followed by a Gly-rich tract (Fig. 2A). The P-domain, on the C-terminal end

of the CP sequence, is generally the largest domain, with the exception of CruV-385,

where it appears to be truncated. The conservation of CP suggests a similar structure for

all cruciviruses. However,  those cruciviruses with larger genomes may assemble their

capsids in a different arrangement to accommodate their genome. While the capsids of

tombusviruses have been shown to adopt a T=1 icosahedral conformation, rather than

the usual T=3, when the R-domain is partially or totally removed (82), we have not seen

a correlation between the length of CP domains and genome size in our dataset that

could  be  indicative  of  alternative  capsid  arrangements.  Furthermore,  no  packaging

dynamics relating genome size and virion T-number arrangement have been determined

in  CRESS-DNA  viruses,  although  sub-genomic  elements  of  geminiviruses  can  be

packaged in non-geminate capsids (84, 85).

Interestingly,  CruV-420 contains not one tombusvirus-related CP, but two. A

recent compilation of CRESS-DNA viruses from animal  metagenomes also contains

four genomes with two different CPs in their capsid (31). Whether these viruses use two

different  CPs  in  their  capsid  (as  some  RNA  viruses  do),  or  whether  these  are

intermediates  in  the  exchange  of  CP  genes,  as  predicted  from  the  gene  capture

mechanism proposed by Stedman (2013) (18), is unclear. If the latter is true, CP gene

acquisition  by  CRESS-DNA  viruses  may  be  much  more  common  than  previously

thought.

Crucivirus Rep

The Reps of CRESS-DNA viruses typically  contain an endonuclease domain

characterized by conserved motifs I, II and III, and a helicase domain with Walker A

and B motifs, motif C, and an Arg-finger [Fig. 2B; (12)]. The majority (85.9%) of the

crucivirus  genomes described  in this  dataset  contain all  of the expected  Rep motifs

(Supp. Table 4). However,  five genomes (CruCGE-110, CruCGE-296, CruCGE-436,

CruCGE-471 and CruCGE-533) with overall sequence homology to other Reps (35.8,

32.7, 49.7, 60.2 and 57.2 % PI with other putative Reps in the databases, respectively),

lack any detectable conserved motifs within their sequence. Thus, these sequences are

considered CP-encoding cruci-like circular genetic elements (CruCGEs).
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The  endonuclease  catalytic  domain  of  Rep  (motif  II),  including  HUH,  was

identified in 441 of the genomes of which 95.2% had an alternative HUH, with the most

common arrangement being HUQ (70.0%), also found in circoviruses and nanoviruses

[(10, 25, 39); Fig. 2B]. 26.2% of the crucivirus motif II deviate from the HUH motif by

additionally replacing the second hydrophobic residue (U) with a polar amino acid (Fig.

2B; supp. Table 4),  with 53 of Reps with the sequence HYQ (12.0%), also  found in

smacoviruses (10, 23, 45).

We identified  thirteen putative Reps in these crucivirus genomes that lack all

four motifs  typically  found in  S3H  helicases  (e.g.  CruV-166, CruV-202,  CruV-499;

Supp. Table 4). Recent work has shown that the deletion of individual conserved motifs

in the helicase domain of the Rep protein of beak and feather disease virus does not

abolish ATPase and GTPase activity (86). The absence of all four motifs may prevent

these putative  Reps from performing helicase  and ATPase activity  using previously

characterized mechanisms. However, it is possible that crucivirus Reps that lack these

motifs  are  still  capable  of  ATP  hydrolysis  and  associated  helicase  activity.

Alternatively,  these  activities  may  be  provided  by  host  factors  (87),  or by  a  viral

replication-enhancer protein – as is the case with the AC3 protein of begomoviruses

(88).

We identified 36 crucivirus genomes whose putative rep genes contain in-frame

stop codons or the HUH and SF3 helicase are in different frames, suggesting that their

transcripts may require intron splicing prior to translation. Acceptor and donor splicing

sites  identical  to  those  found  in  maize  streak  virus  (54) were  found  in  all  these

sequences,  and the putatively  spliced  Reps annotated accordingly.  In  five of the 36

spliced Reps, we were unable to detect any of the four conserved motifs associated with

helicase/ATPase activity, which are encoded in the predicted second exon in most cases.

CruV-513 and CruV-518 also contain predicted splicing sites in their CP gene.

No  GRS  motifs  –which  have  been  identified  as necessary  for  geminivirus

replication  (89), and  have also been found in genomoviruses  (90)– were detected in

Reps in our dataset. We were unable to detect any conserved Rep motifs present in

cruciviruses that are absent in other CRESS-DNA viruses.  Given the conservation of

Rep motifs in these newly-described cruciviruses, we expect most to be active in RCR. 
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Crucivirus CPs share higher genetic identity than their Rep proteins

To assess the diversity in the proteins of cruciviruses, the percentage pairwise

identity (% PI) between the protein sequences was calculated for CP and Rep  using

SDTv1.2 (Fig. 3). The average % PI for CP was found to be 33.1± 4.9 % PI (Figs. 3A

and 3D), likely due to the high levels of conservation found in the S-domain (40.5 ± 8.4

% PI; Figs. 3B and 3D), while the average % PI for Rep is quite low at 24.7% (± 5.6

SD; Figs. 3C and 3D). The high variation of the Rep protein sequence relative to CP in

cruciviruses correlates with a previous observation on a smaller dataset (20).

To  compare  cruciviruses  to  other  viral  groups  with  homologous  proteins,

sequence similarity networks were built for CP and Rep (Fig. 4). For the CP, related

protein sequences  from tombusviruses  and unclassified  RNA viruses were included.

The virus sequences were connected when the similarity between their protein sequence

had an e-value < 1e–20, sufficient to connect all cruciviruses and tombusviruses, with

the  exception  of  CruV-523 (Fig.  4A).  However,  using  BLASTp,  CruV-523 showed

similarity to other RNA viruses with an e-value < 1e–9, which were not included in the

analysis.  The  CP  sequence  similarity  network  analysis  demonstrates  the  apparent

homology  of  the  CPs  in  our  dataset  with  the  CP  of  RNA  viruses;  specifically  to

unclassified  RNA  viruses  that  have  RdRPs  similar  to  either  tombusviruses  –also

described as tombus-like viruses (77, 91, 92)– or to nodaviruses. The latter RNA viruses

are proposed to belong to a chimeric group of viruses named tombunodaviruses (93).

For sequence similarity network analysis of Rep, sequences from CRESS-DNA

viruses  belonging  to  the  families  Circoviridae,  Nanoviridae,  Alphasatellitidae,

Geminiviridae,  Genomoviridae,  Smacoviridae  and  Bacilladnaviridae were used (Fig.

4B). Due to the heterogeneity of Rep (Fig. 3C), the score cutoff for the network was

relaxed to an e-value < 1e–10; nonetheless,  ten divergent sequences lacked sufficient

similarity to form connections within the network. While the Rep of the different viral

families clustered in specific regions of the network, the similarity of cruciviral Reps

spans the diversity of all CRESS-DNA viruses, and blurs the borders between them.

Though there are cruciviruses that appear to be closely related to geminiviruses and

genomoviruses, these connections are less common than with other classified CRESS-

DNA families (Fig. 4B). While still  highly divergent from each other, the conserved
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motifs in the Rep still share the most sequence similarity with CRESS-DNA viruses

(Fig. 2B).

The broad sequence space  distribution  of  cruciviral  Rep sequences  has  been

proposed to reflect multiple Rep acquisition events through recombination with viruses

from different CRESS-DNA viral families (20). However, the apparent larger diversity

of cruciviral Reps relative to classified CRESS-DNA viruses can be due to the method

of study, as most  classified CRESS-DNA viruses have been discovered from infected

organisms  and  are  grouped mainly  based  on  Rep  similarity  (1).  By  contrast,  here

crucivirus sequences are  selected according to the presence of a tombusvirus-like CP.

Moreover, the Rep of cruciviruses could be subject to higher substitution rates than CP

(26). It is possible that sequence divergence in CP is more limited than in the Rep due to

structural constraints.

Horizontal gene transfer among cruciviruses.

To gain  insight  into  the  evolutionary  history  of  cruciviruses,  we carried  out

phylogenetic analyses of their CPs and Reps. Due to the high sequence diversity in the

dataset, two smaller subsets of sequences were analyzed:

i) CP-based clusters. Clusters with more than six non-identical CP sequences whose S-

domains share a % PI greater than 70% were identified from Fig. 3B. This resulted in

the identification of seven clusters,  and a more divergent, yet clearly distinct, cluster

was included (pink in Fig. 3B). A total of 47 genomes from the eight different clusters

were  selected for  sequence comparison. The protein sequences  of CP and Rep were

extracted, aligned, and their phylogenies inferred and analyzed using tanglegrams (Fig.

5A). The CP  phylogeny shows that the eight CP-based clusters  form separate clades

(Fig.  5A).  On  the  other  hand,  the  phylogeny  of  Rep  shows  a  different  pattern  of

relatedness  between  those  genomes (Fig.  5A).  This  suggests  different  evolutionary

histories  for the CP and Rep proteins,  which could be  due to recombination  events

between cruciviruses, as previously proposed with smaller datasets (20, 21). 

ii) Rep-based clusters. To account for the possible bias introduced by selecting genomes

from CP  cluster groups and to  increase the  resolution in  the phylogeny of  the Rep

sequences, clusters with more than six Rep sequences sharing PI > 45 and < 98% were
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identified. A total of 53 genomes from six clusters (Fig. 3C) were selected, and their CP

and Rep protein  sequences  analyzed. The  phylogeny of  Reps  shows distinct  clades

between the sequences from different clusters (Fig. 5B). When the phylogeny of Rep

was compared to that of their corresponding CPs, we observed the presence of groups of

cruciviruses that clade with each other in both the Rep and the CP. Discrepancies in

topology between  Rep and CP were observed as  well,  particularly in  the  CP clade

marked with an asterisk in Fig. 5B. This clade corresponds to the highly-homogeneous

red CP-based cluster shown in Fig. 3B, and suggests that gene transfer is more common

in cruciviruses with a more similar CP, likely infecting the same type of organism. On

the other hand, the presence of cruciviral groups with no trace of genetic exchange may

indicate that lineages within the cruciviral group may have undergone speciation in the

course of evolution.

To  investigate  possible  exchanges  of  individual  Rep  domains  among

cruciviruses, the Rep alignments of the analyses of the CP-based and Rep-based clusters

were split at the beginning of the Walker A motif to separate endonuclease and helicase

domains. From the analysis of the CP-based clusters, we observed incongruence in the

phylogenies  between  endonuclease  and  helicase  domains  (Fig.  6A),  suggesting

recombination within crucivirus Reps, as has been previously hypothesized with a much

smaller  dataset  (21).  This  incongruency is  not  observed  in  the  analyzed  Rep-based

clusters (Fig. 6B). This is likely due to the higher similarity between Reps in this subset

of sequences, biased by the clustering based on Rep. We do observe different topologies

between the trees, which may be a consequence of different evolutionary constraints to

which  the endonuclease and helicase  domains  are  subject.  The  detection  of CP/Rep

exchange and not of individual Rep domains in Rep-based clusters suggests that the rate

of intergenic recombination is higher than intragenic recombination in cruciviruses.

Members of the SAR supergroup are potential crucivirus hosts

While no crucivirus host has been identified to date, the architecture of the Rep

protein found in most cruciviruses, as well as the presence of introns in some of the

genomes, suggests a eukaryotic host. The fusion of an endonuclease domain to a S3H

helicase domain is observed in other CRESS-DNA viruses which are known to infect

eukaryotes (38). This is distinct from Reps found in prokaryote-infecting CRESS-DNA
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viruses  –which  lack  a  fused  S3H  helicase  domains  (94)–  and  other  related  HUH

endonucleases involved in plasmid RCR and HUH transposases (38). Additionally, the

CP of cruciviruses, a suggested determinant of tropism (95, 96), is homologous to the

capsid of RNA viruses known to infect eukaryotes. The RNA viruses with a known host

with capsids most similar to cruciviral capsids (tombunodaviruses) infect oomycetes, a

group of filamentous eukaryotic stramenopiles (77). 

Cruciviruses  have  been  found  as  contaminants  of  spin  columns  made  of

diatomaceous silica (21), in aquatic metagenomes enriched with unicellular algae (20),

in the metagenome of  Astrammina rara –a foraminiferan protist part of the rhizaria–

(20), and associated with epibionts of isopods, mainly comprised of apicomplexans and

ciliates, both belonging to the alveolates (26). These pieces of evidence point toward the

stramenopiles/alveolates/rhizaria  (SAR)  supergroup  as  a  candidate taxon  to  contain

potential crucivirus hosts (97). No host prediction can be articulated from our sequence

data. However, at least five of the crucivirus genomes only render complete translated

CP and Rep sequences  when using a  relaxed genetic  code.  Such alternative genetic

codes have been detected in ciliates, in which the hypothetical termination codons UAA

and UAG encode for a glutamine (98). The usage of an alternative genetic code seems

evident in CruV-502 –found in the metagenome from seawater collected above diseased

coral colonies (99)– that uses a UAA codon for a glutamine of the S-domain conserved

in 33.5% of the sequences. While the data accumulated suggest unicellular eukaryotes

and SAR members as crucivirus-associated organisms, the host of cruciviruses remains

elusive, and further investigations are necessary.

Classification of cruciviruses

Cruciviruses have circular genomes that encode a Rep protein probably involved

in  RCR.  The  single-stranded  nature  of  packaged  crucivirus  genomes  has  not  been

demonstrated  experimentally;  however,  the  overall  genomic  structure  and  sequence

similarity underpins the placement of cruciviruses within the CRESS-DNA viruses. 

The  classification  of  the  CRESS-DNA  viruses  is  primarily based  upon  the

phylogeny of the Rep proteins, although commonalities in CP and genome organization

are also considered (13). This taxonomic criteria is challenging in cruciviruses, whose
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Rep proteins are highly diverse and apparently paralogous. Whether the use of proteins

involved  in  replication  for  virus  classification  should  be preferred  over  structural

proteins has been previously questioned (100).

The capsid of cruciviruses, as well as the capsid of other CRESS-DNA virus

families like circoviruses, geminiviruses and bacilladnaviruses, possess the single-jelly

roll architecture (46). However, there is no obvious sequence similarity between the CP

of  cruciviruses  and  that  of  classified  CRESS-DNA  viruses.  The  crucivirus  CP  –

homologous to the capsid of tombusviruses– is an orthologous trait within the CRESS-

DNA viruses.  Hence,  CP constitutes  a  synapomorphic  character  that  demarcate  this

group  of  viruses  from  the  rest  of  the  CRESS-DNA  viral  families.  Thus,  the

classification of cruciviruses is challenging. 

CONCLUDING REMARKS

Cruciviruses are a growing group of CRESS-DNA viruses that encode CPs that

are homologous to those encoded by tombusviruses. Over 500 crucivirus genomes have

been recovered from various environments across the globe.  These genomes  vary in

size,  sequence  and  genome  organization.  While  crucivirus  CPs  are relatively

homogeneous, the Reps are relatively diverse amongst the cruciviruses, spanning the

diversity  of  all  classified  CRESS-DNA  viruses.  It  has  been  hypothesized  that

cruciviruses  emerged  from the  recombination  between  a  CRESS-DNA  virus  and  a

tombus-like RNA virus  (15, 18).  Furthermore, cruciviruses seem to have recombined

with each other to exchange functional modules between them, and probably with other

viral  groups,  which  blurs their  evolutionary  history.  Cruciviruses  show evidence  of

genetic  transfer,  not  just  between  viruses  with  similar  genomic  properties,  but  also

between disparate groups of viruses such as CRESS-DNA and RNA viruses.
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Figure 1 

 

Figure 1. Genome properties of 461 new cruciviral circular sequences. (A) Histogram of cruciviral 
genome lengths categorized in 50 nt bins. (B) Percentage of G + C content versus A + T in each of the 
sequences described in this study (C) Relative abundance of nucleotides in the conserved 
nonanucleotide sequence of the 211 stem-loops and putative origins of replication represented 
predicted with StemLoop-Finder (Pratt et al., unpublished) in Sequence Logo format. 
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Figure 2 

 

Figure 2. Protein conservation in cruciviruses. (A) Top: distribution of domains, isoelectric point 
and conservation in a consensus capsid protein (CP). 461 CP protein sequences were aligned in 
Geneious 11.0.4 with MAFFT (G-INS-i, BLOSUM 45, open gap penalty 1.53, offset 0.123) and 
trimmed manually. The conservation of the physico-chemical properties at each position was obtained 
with Jalview v2.11.0, and the isoelectric point was estimated in Geneious 11.0.4. The region of CP rich 
in glycine is highlighted with a green bar. Bottom: Structure of a cruciviral CP (CruV-359) as 
predicted by Phyre2 showing sequence conservation based on an alignment of the 47 CP protein 
sequences from the CP-based clusters. (B) Conserved motifs found in cruciviral Reps after aligning all 
the extracted Rep protein sequences using PSI-Coffee. Sequence logos were generated at http://
weblogo.threeplusone.com to indicate the frequency of residues at each position. 
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Figure 3 

Figure 3. Diversity of cruciviral proteins. (A) CP diversity. Pairwise amino acid identity (PI) 
between the CPs predicted for 461 cruciviral sequences. The alignment and analysis were carried out 
with SDT, using the integrated MAFFT algorithm. (B) S-domain diversity. Left: PI matrix between 
the capsid protein (CP) predicted S-domain of the 461 sequences described in this study. The alignment 
and analysis were carried out with SDT, using the integrated MAFFT algorithm. The colored boxes 
indicate the different clusters of sequences used to create the CP-based clusters sequence subset. 
Right: Unrooted phylogenetic tree obtained with FastTree from a manually curated MAFFT alignment 
of the translated sequences of the S-domain (G-INS-i, BLOSUM 45, open gap penalty 1.53, offset 
0.123). The colored branches represent the different clusters observed in the matrix. Scale bar indicates 
substitutions per site. (C) Rep diversity. Left: Pairwise identity (PI) matrix between all Reps found in 
cruciviral genomes in this study. The alignment and analysis were carried out with SDT, using the 
integrated MUSCLE algorithm. Right: Unrooted phylogenetic tree obtained with FastTree from an 
PSI-Coffee alignment of the translated sequences of Rep trimmed with TrimAl v1.3. The colored 
branches represent the different clusters that contain Rep-based clusters sequence subset. Scale bar 
indicates substitutions per site. (D) PI frequency distribution. The frequency of PI values for each of 
the putative proteins or domains analyzed is shown. 
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Figure 4 

Figure 4. Similarity networks of cruciviral proteins with related viruses. (A) Capsid proteins (CP) 

represented by colored dots are connected with a solid line when the similarity between them is greater 

than e-value=1e–20. The dashed line represents an e-value = 6e-7 between the nodes corresponding to 

the CP of CruV-523 and turnip crinkle virus, as given by BLASTp. (B) Replication-associated protein 

(Rep) translations, represented by colored dots, are connected with a solid line when the similarity 

between them greater than e-value=1e–10. The eight nodes at the bottom left did not connect to any 

other node. All networks were carried out with pairwise identities calculated in the EFI–EST web 

server and visualized in Cytoscape v3.7.2. 
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Figure 5 
 

Figure 5. Comparison of phylogenies of CP and Rep proteins of representative cruciviruses. (A) 
Tanglegram calculated with Dendroscope v3.5.10 from phylogenetic trees generated with PhyML from 

Cp (PhyML automatic model selection LG+G+I+F) and Rep (PhyML automatic model selection 

RtREV+G+I) alignments. The tips corresponding to the same viral genome are linked by lines that are 

color-coded according to the clusters obtained from Fig. 3A (CP-based clusters). (B) Tanglegram 

calculated with Dendroscope v3.5.10 from phylogenetic trees generated with PhyML from Cp (PhyML 

automatic model selection LG+G+I+F) and Rep (PhyML automatic model selection RtREV+G+I) 

alignments. The tips corresponding to the same viral sequence are linked by lines that are color-coded 

according to the clusters obtained from Fig. 3B (Rep-based clusters). The clade marked with an asterisk 

is formed by members of the red cluster of subset A. Branch support is given according to aLRT SH-

like (Anisimova & Gascuel, 2006). All nodes with an aLRT SH-like branch support inferior to 0.8 were 

collapsed with Dendroscope prior to constructing the tanglegram. 
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Figure 6 
 

Figure 6. Comparison of phylogenies between the endonuclease and helicase domains of Reps 
from representative cruciviruses. (A) Tanglegram calculated with Dendroscope v3.5.10 from 
phylogenetic trees generated with PhyML from separate alignments of Rep endonuclease and helicase 
domains. The tips corresponding to the same viral genome are linked by lines that are color-coded 
according to the clusters obtained from Fig. 3A (CP-based clusters). (B) Same as A but with sequences 
from the clusters obtained from Fig. 3B (Rep-based clusters). All nodes with an aLRT SH-like branch 
support inferior to 0.8 were collapsed with Dendroscope v3.5.10 prior to constructing the tanglegram.
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