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ABSTRACT 

While walking in our natural environment, we continuously solve additional cognitive tasks. 

This increases the demand of resources needed for both the cognitive and motor systems, 

resulting in Cognitive-Motor Interference (CMI). While it is well known that a performance 

decrease in one or both tasks can be observed, little is known about human brain dynamics 

underlying CMI during dual-task walking. Moreover, a large portion of previous investigations 

on CMI took place in static settings, emphasizing the experimental rigor but overshadowing 

the ecological validity. To address these problems, we developed a dual-task walking scenario 

in virtual reality (VR) combined with Mobile Brain/Body Imaging (MoBI). We aimed at 

investigating how brain dynamics are modulated during natural overground walking while 

simultaneously performing a visual discrimination task in an ecologically valid scenario. Even 

though the visual task did not affect performance while walking, a P3 amplitude reduction 

along with changes in power spectral densities (PSDs) during dual-task walking were observed. 

Replicating previous results, this reflects the impact of walking on the parallel processing of 

visual stimuli, even when the cognitive task is particularly easy. This standardized and easy to 

modify VR-paradigm helps to systematically study CMI, allowing researchers to control the 

complexity of different tasks and sensory modalities. Future investigations implementing an 

improved virtual design with more challenging cognitive and motor tasks will have to 

investigate the roles of both cognition and motion, allowing for a better understanding of the 

functional architecture of attention reallocation between cognitive and motor systems during 

active behavior. 
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 INTRODUCTION 

In our daily activities, we need to walk and interact with environmental cues in order to meet 

everyday goals. This entails the processing of both external and internal sensory information 

that help maintaining action goals, react to changing environmental features, and readapt motor 

programs anytime unexpected events occur. Therefore, despite usually perceived as 

undemanding, walking involves both sensory and cognitive systems (Hausdorff et al., 2008; 

Woollacott & Shumway-Cook, 2002). In these highly dynamic situations, our limited 

attentional resources have to be distributed between the motor and cognitive tasks, potentially 

causing a cognitive-motor interference (CMI) (for a review, Al-Yahya et al., 2011). This 

phenomenon has been widely investigated through dual-task walking paradigms and, more 

recently, through new mobile neurophysiological approaches. Particularly, Mobile Brain/Body 

Imaging (MoBI; Makeig et al., 2009; Gramann et al., 2011, 2014; Jungnickel et al., 2019) has 

been proposed as a method for recording brain data during active movement, allowing to gain 

physiological measurements of the whole brain-body system. The general feasibility of the 

MoBI concept has been demonstrated and applied to dual-task walking scenarios (Gramann et 

al., 2010; De Sanctis et al. 2012, 2014; Debener et al., 2012; Duvinage et al., 2013; Hoellinger 

et al., 2013; Castermans et al., 2014; De Vos et al., 2014; Reis et al., 2014). In a pioneering 

work, Gramann and colleagues (2010) analysed the brain dynamics of participants during 

standing, slow and fast treadmill walking, while attending to a visual oddball task. They 

demonstrated that the oddball P3 known from traditional desktop scenarios can be replicated 

in paradigms allowing active walking (Gramann et al., 2010).  

So far, several cognitive tasks have been used to study CMI during walking, such as 

visuo-motor reaction time tasks (Patel et al., 2014), word list generation task (Patel et al., 2014), 

serial subtraction task (Marcar et al., 2014; Patel et al., 2014), stroop task (Patel et al., 2014), 

texting (Plummer et al., 2015), Go/NoGo (De Sanctis et al., 2014; Malcolm et al., 2015; 

Beurskens et al., 2016) or oddball task (Gramann et al., 2010; Gwin et al., 2010; Debener et 

al., 2012; Ladouce et al., 2019; Reiser et al., 2019). These tasks utilized different sensory 

modalities for the cognitive task including the visual and auditory domain as well as different 

postural tasks, including sitting, standing, walking on a treadmill or, in a few recent cases, 

walking over-ground in real contexts (Debener et al., 2012; Plummer et al., 2015; Pizzamiglio 

et al., 2017; Ladouce et al., 2019; Reiser et al., 2019). 

 

1.1 Performance perturbation under CMI 

Irrespective of the cognitive task modality, during CMI, a performance deterioration is usually 

observed in the cognitive and/or in the motor task (Leone et al., 2017). Focusing on the motor 

behavior, studies on dual-task walking demonstrated alterations in gait velocity, stride length 

and stride time (Beurskens et al., 2016; De Sanctis et al., 2014; Malcolm et al., 2015; Patel et 

al., 2014; Pizzamiglio et al., 2017; Plummer et al., 2015). This suggests that gait parameters 

vary with attentional resources even in healthy adults with good locomotor and cognitive 

functions. From a cognitive perspective, behavioral costs have been observed in response to 

both visual (Patel et al., 2014; Plummer et al., 2015) and auditory tasks (Beurskens et al., 2016; 

Reiser et al., 2019). However, in a direct comparison between reporting the content of a 

message presented visually and aurally while detecting obstacles, only the presentation of 
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visual but not auditory messages yielded significant differences in task performance (Silva et 

al., 2019). This suggests that visual tasks, compared to auditory tasks, might generate a more 

pronounced conflict in resource allocation when concurrently walking because gait also 

requires visual attention to control the upcoming path (Imai et al., 2001; Nomura et al., 2005; 

Marigold & Patla, 2008). Focusing on visual tasks, increased visuo-motor reaction times and 

less correct responses have been observed in the execution of the stroop task when walking 

compared to sitting (Patel et al., 2014). On the same line, in comparison to the standing 

condition, a drop in performance under dual-task occurred when walking and concurrently 

texting (Plummer et al., 2015) or performing a visual oddball task (Beurskens et al., 2016). 

 

1.2 Electrophysiological modulations under CMI  

Studies on event related potentials (ERPs) investigating CMI mainly focused on the 

investigation of the P3 component, which is sensitive towards the amount of attentional 

resources engaged to solve a task (Polich, 2007; Israel et al., 1980a, 1980b). In the frequency 

domain, several studies showed power spectral density (PSD) parameters to be related to 

cognitive and/or motor load in stationary dual-task-based studies but not yet in mobile 

investigations. For the latter, only a few and sometimes contradictory observations have been 

reported (Gwin et al., 2010; Presacco et al., 2011; Beurskens et al., 2013; 2016; Marcar et al., 

2014; Pizzamiglio et al., 2017; Peterson & Ferris, 2018). 

 

ERPs of CMI during walking 

A decreased P3 amplitude at centro-parietal electrodes from single to dual-tasks was often 

related to the restricted availability of cognitive resources (Polich, 2007). P3 amplitude 

reductions in mobile EEG walking studies were interpreted as a reflection of a greater demand 

for attentional resources when walking (Debener et al., 2012; De Sanctis et al., 2014; Malcolm 

et al., 2015; Ladouce et al., 2019; Reiser et al., 2019). In contrast, a significant increase of P3 

amplitude was reported over fronto-central regions when walking as compared to sitting in 

young participants (De Sanctis et al., 2014). Interestingly, in some cases the P3 amplitude 

modulation was observed in dual-task walking paradigms even in the absence of behavioral 

evidence of performance cost (De Sanctis et al., 2014; Malcolm et al., 2015). 

P3 latency modulations were also observed in dual-task walking scenarios. An earlier 

P3 onset was observed over frontal and centro-parietal regions when walking compared to 

sitting in young healthy adults (De Sanctis et al., 2014; Malcolm et al., 2015). 

 

PSDs of CMI during walking 

Stationary dual-task studies have demonstrated that a tonic increase in theta power (4-7 Hz) 

together with a decrease in alpha power (8-12 Hz) are often observed over wide areas of the 

scalp under higher task demand (Klimesh et al., 1999). Focusing on MoBI studies, despite the 

diversity of task designs and modalities, higher PSD in the theta band has been observed when 

walking compared to standing or resting still (Presacco et al., 2011; Peterson & Ferris, 2018). 

At the same time, lower alpha activity over widespread areas of the scalp (from frontal to 

parietal cortex, and in some cases over the whole scalp) has also been observed when walking 

as compared to standing or resting (Beurskens et al., 2016; Peterson & Ferris, 2018). In 

addition, a decreased alpha power was observed when performing cognitively engaging tasks 
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such as walking in an interactive virtual environment (Wagner et al., 2014) and closed-loop 

brain-computer interface (BCI) control of a virtual avatar walking (Luu et al., 2017).   

For the beta-band (12-30 Hz), different results have been observed for dual-task 

modulations during walking. In established stationary setups, increased beta power has been 

observed over parieto-occipital brain areas when cognitive load increased (Belyavin & Wright, 

1987; Gola et al., 2013) or when increasing the effort to stay alert (Boksem et al., 2005; 

Lafrance et al., 2000). Further, beta power increases were reported for performing demanding 

motor tasks (i.e. grasping tasks; Zaepffel et al., 2016) or when walking as compared to resting 

(Presacco et al., 2011). Focusing on mobile setups, Beurskens et al., (2016) detected a beta 

power increase over frontal regions when walking while performing a motor task whereby all 

the effort was attributable to the motor system. This beta power increase was more pronounced 

for a secondary motor task condition than an additional secondary cognitive task (Go/NoGo 

task). The same study also showed decreased beta power over frontal and central electrodes 

when walking while performing the Go/NoGo task with respect to single-task walking. A 

similar decrease in beta band power was demonstrated at frontal, central and parietal electrodes 

during single-task walking as compared to standing still (Pizzamiglio et al., 2017). The role of 

beta band activity in attention processes is well established for numerous thalamic and cortical 

centers of the visual system (Wróbel, 2000 for a review). However, mechanisms of beta power 

modulation by cognitive and/or motor task load are still unclear. 

Gamma power (> 30 Hz) is implicated in active cortical processing and was shown to 

increase with greater postural instability (Slobounov et al., 2009) which is likely to occur in 

dynamic situations like walking. Gait cycle dependent modulations in the gamma band have 

been reported over frontal, central, and parietal cortex of healthy walking adults (Gwin et al., 

2011). Marcar et al. (2014) observed an increase of gamma power when walking whilst 

performing a serial subtraction task. Recently, an increased power at high frequencies was also 

reported by Peterson and Ferris (2018) when walking as compared to standing. However, 

frequencies above 30 Hz may be compromised by cranial muscle activity (both facial and neck 

muscles) (O'Donnell et al., 1974; Goncharova et al., 2003; Whitham et al., 2008). Therefore, 

neural activity in the gamma frequency band has to be interpreted with caution and relies on 

analyses tools addressing mixtures of different physiological signals at the channel level.  

 

1.3 The importance of ecological validity 

So far, a large portion of neurophysiological CMI investigations took place in static and 

artificial settings. Newer mobile EEG and MoBI approaches assessed CMI with treadmill 

setups, but only rarely during natural overground walking (Debener et al., 2012; Pizzamiglio 

et al., 2017; Ladouce et al., 2019; Reiser et al., 2019). This leads to a lack of ecological validity, 

which plays a prominent role when studying real-world neural dynamics and behaviors 

(Gramann et al., 2011; 2014). Particularly when investigating dual-task walking using 

secondary tasks that tax the visual modality, it is necessary to replace static desktop displays 

and treadmill setups with ecologically more valid but controlled paradigms. This is because 

orienting movements of our head naturally occur during everyday additional visual tasks and 

gait parameters might be dynamically adapted dependent on the task at hand. This is not 

possible during treadmill walking where participants have to keep up a certain gait velocity to 
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secure their position on the treadmill while focusing on a visual display directly in front of 

them.  

Visual information processing while walking is important for at least two reasons. First, 

walking requires visual control of the upcoming area to avoid falls or collisions (Imai et al., 

2001; Nomura et al., 2005); as a consequence, an additional visual task will rely on the same 

resources which are necessary to visually control walking and thus compete (Wickens et al., 

1983; Wickens, 2002). Secondly, the sensory features and position of additional visual stimuli 

(eccentricity in the visual field) have a strong impact on visual information processing 

(Carrasco et al., 1995; Staugaard et al., 2016). Therefore, detecting peripheral and potentially 

less salient visual stimuli might require more attentional resources compared to more centrally 

ones, revealing a higher dual-task cost when concurrently walking. 

In the present study, we simulated an everyday situation through virtual reality (VR) in 

which people stood or walked freely while discriminating and responding to external visual 

stimuli. We hypothesize a performance decrease in the visual discrimination task, particularly 

for more peripherally as compared to more centrally presented visual stimuli, when the 

cognitive and motor tasks had to be performed simultaneously. Higher perceived subjective 

mental load was also expected when walking under dual-task. As reported in previous studies 

(De Sanctis et al., 2014; Malcolm et al., 2015), we expected to find the P3 component evoked 

by the onset of a visual stimulus to peak earlier over frontal and central areas of the brain, and 

to show lower amplitude over centro-parietal areas in the dual-task condition as a consequence 

of the reallocation of cognitive resources under dual-task conditions. Finally, we also expected 

to observe higher theta and lower alpha power from frontal to parietal brain areas as a function 

of the mental load evoked by the dual-task. Moreover, increased beta and gamma power were 

hypothesized under dual-task walking compared to the single-task situation.  

 

 

MATERIALS AND METHODS 

2.1 Participants 

25 right-handed participants with normal or corrected to normal vision as well as normal color 

vision were recruited. All participants reported to be in good health and free of any neurological 

impairments. They also reported the absence of medication containing psycho/neuroleptics, as 

well as intoxicant use within the last 24 hours prior to the experiment. 3 participants were 

excluded from the analysis due to technical issues. The remaining sample included data from 

22 participants: 6 females (age range: 20-31 years, M = 25.5, SD = 3.92) and 16 males (age 

range: 21-34 years, M = 27.2, SD = 4.48). Before the experiment, participants were asked to 

report their height in centimeters for adapting the virtual environment (height range for female: 

170-172 cm, M = 170.33 cm, SD = 0.83 cm; height range for male: 170-181 cm, M = 174.38 

cm, SD = 4.15 cm). The study was approved by the TU Berlin ethics committee. All 

participants gave written informed consent and were recruited through the local online 

participant portal (https://proband.ipa.tu-berlin.de). Participants obtained credits for 

compensation. 
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2.2 Technical set-up 

To investigate the neural correlates of CMI, we designed the following experimental 

framework following the MoBI set-up shown in figure 1. It consisted of a 128 channels EEG 

MOVE system (Brain Products GmbH, Gilching, Deutschland), in combination with actiCAP 

(Easycap GmbH, Herrsching, Germany), and a VR headset (ACER WMR; 2.89”, 2880 x 1440 

resolution, refresh rate of 90 Hz, 100° field of view with a weight of 440 grams). The headset 

was tethered to a Zotac gaming computer (Zotac PC, Intel 7th Gen Kaby Lake processor, 

GeForce GTX 1060 graphics, 32GB DDR4-2400 memory support, Windows 10 OS) placed in 

a backpack. The Zotac system was extended with two batteries that allowed swapping them 

approximately after three blocks of experimental session (circa 40 minutes) without shutting 

down the VR. Participants were projected into a virtual environment (VE) designed in Unity 

(2017.3). In addition, a prototype of VR-EEG adapters (Wenzel, 2018) was used to reduce the 

mechanical pressure on frontal and occipital channels of the EEG cap induced by the VR 

goggles. The adapters further minimized the signal to noise ratio by reducing headset 

movements accompanying locomotion. Both behavioral and neural data streams were 

synchronized via Lab Streaming Layer (Kothe, 2014). 

 

 
Fig. 1: Overview of the technical setup for the MoBI experiment  
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2.3 Experimental design  

The experiment took place at the Berlin Mobile Brain/Body Imaging Laboratories (BeMoBIL), 

with a dedicated room providing an experimental space of 150 m2 for participants to move 

around without restrictions. The virtual space provided an elliptical path that was 10.8 m long 

and 2.5 m wide. Data collection took place in one single experimental session. During the 

training phase, participants were asked to walk along the oval path and to follow a red moving 

sphere (figure 2). Prior to the experiment, each participant was able to adjust the speed of the 

sphere to their preferred natural walking pace using the controller in a training session. The 

speed was then kept constant during the experiment. In the second part of the training phase, 

participants were instructed to follow the sphere while performing a visual discrimination task. 

This part consisted of 15 trials with the aim of familiarizing with the task and the virtual 

environment. 

 In the main experiment participants performed a visual discrimination task while 

walking or standing with the movement conditions alternating in six blocks. Each block 

consisted of 240 trials amounting to 720 trials per movement condition and a total of 1440 trials 

per participant. The initial movement condition was counterbalanced across participants; fifty 

percent of participants started in the standing while the other in the walking condition. Between 

each block, participants were asked to take a break, allowing them to sit down for a few minutes 

and to flip-up the VR headset. Since the headset display could be flipped up without moving 

the headset position on the head, the position of electrodes was not affected.  

As illustrated in figure 2, a virtual green field was used as the background. The red 

sphere, controlling for the subject’s walking speed, was placed centrally on the grey path and 

participants were instructed to keep their gaze towards the sphere at all times to reduce head 

movement. A yellow cube (Yellow condition) or a blue cube (Blue condition) were presented 

for 200 ms in a pseudo-random fashion in the left (Left condition) or in the right (Right 

condition) hemifield at 15° or 35° eccentricity (15° and 35° condition respectively). 

Participants had to press the trigger on the right controller whenever a blue cube was presented 

and the trigger on the left controller when a yellow cube appeared, creating congruent and 

incongruent hand-hemifield conditions relatively to the position where the stimuli appeared. If 

participants responded correctly within a 1.5 second time interval after stimulus presentation, 

the response was labelled as ‘correct’; vice versa if a wrong trigger was pressed, it was 

registered as ‘incorrect’; if none of the triggers were pressed, the response was classified as 

‘missed’. After each response, a 2000 ms time window was introduced before the presentation 

of the next stimulus. Task and instructions were identical for both the standing and the walking 

phase.  

Only right-handed participants were recruited, and the walking direction was chosen to 

be counterclockwise in order to avoid possible effects of handedness on the turning behavior 

(Angelique et al., 2002; Mohr et al., 2004, 2007; Karim et al., 2016). Second, the height of the 

sphere and the stimuli were fixed at the height of the participant (right above the eye level) and 

not to the headset, such that the sphere was not affected by head movement during locomotion. 

Third, when moving the head away from the red sphere, the sphere stopped moving and 

changed its color to black until participants turned their heads back in line with the sphere. In 

this way, we controlled for the head orientation. 
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Fig. 2: First person view of the participant. A red sphere is placed centrally on the path controlling the 

walking pace. Next to it, two examples of targets for the visual discrimination task are shown: in the 

Left hemifield the Yellow target, in the Right hemifield the Blue target. Targets could appear in a 

randomized fashion in the left and right hemifield and at 15° or 35° of eccentricity at the same height 

of the participant. On the left, an illustration of the check point that participants had to reach for starting 

the experiment. 

 

2.4 EEG recording and preprocessing 

EEG recordings were conducted with a 128-channel mobile EEG system (MOVE, Brain 

Products, Munich, Germany), with a sampling frequency of 1000 Hz. Two EOG electrodes 

were placed under each eye to measure vertical eye movements and EEG electrodes were 

placed equidistant according to a custom layout. Impedances of all scalp electrodes were kept 

below 10Κohm. Raw data was offline processed using MATLAB R2018a (MathWorks, 

Natick, MA, USA) and EEGLAB 14.1.2b toolbox (SCCN, University of California San Diego, 

USA, 2018). All preprocessing steps were conducted using the BeMoBIL Preprocessing 

Pipeline (Klug, 2019) which specifically aims to generalize and simplify the processing of 

continuous EEG data acquired during MoBI experiments. 

The raw EEG data was first filtered to the range of 0.2 Hz and 90 Hz using a finite 

impulse response (FIR) filter with zero phase (see beemobil_filter()) and resampled to 250 Hz. 

Subsequently, bad channels were identified and removed by automated rejection using kurtosis 

(the threshold was set to 5 standard deviations (SDs) from mean kurtosis) and probability 

functions (with a threshold of 3 SDs from mean probability distribution). Removed channels 

were interpolated with spherical interpolation and data were subsequently re-referenced to 

average reference. This “precleaned” dataset was screened for additional spikes and other 

artifacts (e.g. muscle activity, noise) by visual inspection. Then, for the identification and 

removal of eye blink artifacts we utilized the procedure of adaptive mixture independent 

component analysis (AMICA, Palmer et al., 2012; Hsu et al., 2018). To this end, the raw data 

were bandpass filtered to 1 Hz - 90 Hz to improve the decomposition to independent 

components (ICs) (Winkler et al., 2015). The resulting decomposition matrices representing 

the weights and spheres obtained from the AMICA procedure were applied on the “precleaned 

dataset” (described above) to allow for further component investigation in IC space. ICs 

representing eye movements (e.g. blinks) were removed based on visual inspection of their 
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component activity profile as well as component power spectra (Makeig et al., 1996; Chaumon 

et al., 2015). Additionally, prior to IC rejection, we performed additional plausibility testing of 

our IC selection in terms of its equivalent dipole location to be certain that they did not reflect 

any brain activity.  

After IC removal and back-projection to channel space, the dataset was further highpass 

filtered with a frequency of 40 Hz. Finally, the cleaned continuous dataset was epoched with 

onset of each visual stimulus with a pre-stimulus time of -200 ms to 1000 ms after stimulus 

presentation, and a baseline correction was performed subtracting the -200ms to 0ms pre-

stimulus interval from the signal at each channel and trial. During this step, we additionally 

accounted for a constant temporal delay of 15 ms that were caused by the Brain Vision RDA 

interface, the WIFI (MOVE) transmission and an additional delay resulting from the Unity 

software. 

 

 
 

Fig. 3: Overview of the preprocessing pipeline for the continuous raw EEG data 

 

2.5 Statistical analysis 

In the following, the standing condition is referred to as “Single-task” condition, and the 

walking phase is referred to as “Dual-task” condition. Besides differences between Single- and 

Dual-task (factor: ‘Task’), we investigated potential lateralization of behavioral and brain 

responses (factor: ‘Hemifield’) and differences induced by the color of the target (factor: 

‘Target’). Moreover, we investigated potential effects induced by the position where stimuli 

appeared (factor: ‘Eccentricity’). All statistical analyses were conducted using repeated 

measures ANOVA. When sphericity assumptions were violated in the Mauchly’s test of 

sphericity (Mauchly, 1940), the p-values were adjusted following the Greenhouse-Geisser 
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correction (Greenhouse & Geisser, 1959). Additionally, we performed post-hoc tests using the 

Bonferroni method (Bonferroni, 1936) to correct for multiple comparisons. This statistical 

procedure was applied to analyze all the following dependent measurements. 

 

NASA TLX 

To investigate the perceived workload, each participant was asked to fill in the NASA TLX 

(NASA Task Load Index; Hart et al., 1988) questionnaire always after the third and the fourth 

experimental block, thus after a Single-Task or after a Dual-Task phase, dependent on the initial 

starting condition. The total workload assessed by the questionnaire was divided into the six 

subjective subscales (‘Items’): mental demand, physical demand, temporal demand, 

performance, effort and frustration. We used the questionnaire to assess whether the walking 

activity had an influence on the subjective mental load. Single items were also investigated 

separately to investigate a potential impact of the movement condition. Therefore, a 2x6 

repeated measures ANOVA for factors ‘Task’ and ‘Items’ was computed. 

 

Performance 

Three 2x2x2x2 repeated measures ANOVAs were calculated to analyze reaction times, 

percentage of misses and percentage of incorrect responses. For all three dependent variables, 

we tested the same within factors: ‘Task’ (Single- vs Dual-task), ‘Eccentricity’ (15° vs 35°), 

‘Hemifield’ (Left vs Right) and ‘Target’ (Blue vs Yellow). Reaction times were defined as the 

time between stimulus onset and button press and analyzed only for correct response trials. 

Accuracy in task performance was operationalized through the number of missed and incorrect 

response trials over the total number of trials that remained after artifact correction during the 

EEG pre-processing. This secured identical trials to enter the performance and EEG statistics. 

Missed trials were defined as missing responses within the 1.5 seconds after the stimulus onset, 

and incorrect trials as a deviation from required response pattern (wrong button response). 

 

ERPs 

The P3 component evoked by the visual discrimination task was analyzed for the midline 

electrodes of the custom layout that were closest to the standard midline locations. These 

locations are denoted with an apostrophe (Fz’, Cz’, CPz’, Pz’, POz’, Oz’). From this, the centro-

parietal regions, where the P3 maximum is usually observed, as well as brain activity at more 

frontal and occipital regions were investigated on their modulatory effect of the P3 in terms of 

amplitude, onset time (latency) and topographic distribution. To this end, individual maximum 

positive peak within a time window of 300-600 ms was detected and the mean value of the 

peak within an 80 ms (40 ms before and after the time of the peak) range around the peak was 

computed for further statistical analyses. To have a more accurate estimate of the P3 peak 

amplitude, the same procedure was repeated with different amplitude windows (maximum 

peak +/- 10ms, 20ms, 30ms, 40ms). For the final analyses, an 80ms range (maximum peak +/- 

40ms) was chosen as the results revealed the same direction of effects and the longer time 

window was more suitable for including a relatively smeared P3 component. P3 latency (ms) 

and amplitude (µV) means were analyzed in a full-factorial design (2x2x2x2x6) with ‘Task’ 

(Single- vs Dual-task), ‘Eccentricity’ (15° vs 35°), ‘Hemifield’ (Left vs Right), ‘Target’ (Blue 

vs Yellow) and ‘Channel’ (Fz’, Cz’, CPz’, Pz’, POz’, Oz’) as repeated measure factors. The 
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effects of the factors ‘Channel’ and ‘Task’ are in the focus of interest and thus explored more 

thoroughly in results and discussion. However, complete results are reported in the 

supplementary material. 

 

PSDs 

For the PSD (Power Spectral Density) analysis, spectral power (µV 2/Hz) in 4-8 Hz (theta), 8-

10 Hz (lower alpha), 10-12 Hz (upper alpha), 12-30 Hz (beta), and 30-40 Hz (gamma) band 

were extracted from the same stimulus-locked epochs used for the ERPs analysis and averaged 

across each condition. Again, here we focused primarily on the central midline electrodes (Fz’, 

Cz’, CPz’, Pz’, POz’, Oz’): a 2x2x2x2x6 repeated-measures ANOVA was computed for each 

defined frequency band on factors ‘Task’ (Single- vs Dual-task), ‘Eccentricity’ (15° vs 35°), 

‘Hemifield’ (Left vs Right), ‘Target’ (Blue vs Yellow) and ‘Channel’ (Fz’, Cz’, CPz’, Pz’, POz’, 

Oz’). Given our hypotheses, the presentation of results focuses only on the effects of the factors 

‘Channel’ and ‘Task’ for each of the frequency bands. The complete results are reported in the 

supplementary material. 

 RESULTS 

3.1 Subjective measures 

NASA TLX 

The 2x6 repeated-measures ANOVA computed on the NASA TLX subscales did not yield any 

significant main effect for ‘Task’ or ‘Items’. Only the interaction between ‘Task’ and ‘Item’ 

was statistically significant (F5,11 = 2.766, p = .031, η2p = .116). The data revealed a tendency 

for higher ratings regarding the mental, physical and temporal demand in the Dual-Task 

condition while there was a tendency towards higher performance, effort and frustration scores 

in the Single-task situation. However, corrected post-hoc tests did not reveal significant 

differences between the conditions (Single-Task vs Dual-Task) for single items. 

 

3.2 Performance measures 

Reaction time 

the analysis of reaction time, we found no significant main effect of ‘Task’ on response times. 

However, a significant main effect for the factor ‘Eccentricity’ was observed (F1,17 = 99.3, p < 

.001, η2p = .825) revealing increased reaction times for stimuli appearing at 35° eccentricity as 

compared to 15° eccentricity. Significant effects were observed also for the factors ‘Target’ 

(F1,17 = 8.04, p < .05, η2p = .277) and ‘Hemifield (F1,17 = 8.77, p < .01, η2p = .295) , and for 

their interaction (F1,17 = 43.24, p < .001, η2p = .673). Post-hoc comparisons for the interaction 

between ‘Target’ and ‘Hemifield’ showed increased reaction times when responding with the 

left hand to Yellow targets that appeared in the Right hemifield as compared to the same targets 

that appeared in the Left hemifield (p < .001), and compared to Blue targets that appeared in 

the Right hemifield and that were responded to with the right hand (p < .001). Similarly, the 

reaction time was longer for responses with the right hand to Blue targets when they appeared 

in the Left hemifield as compared to the same targets when appearing in the Right hemifield (p 

< .001), and to Yellow targets appearing in the Left hemifield (p < .05). Finally, reaction time 

were about 23ms longer when responding to Yellow targets with the left hand appearing in the 
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Left hemifield compared to responding to Blue targets with the right hand appearing in the 

Right hemifield (p < .001). 

 

Accuracy 

The analysis of response accuracy revealed no significant main effect of ‘Task’ on the 

percentage of incorrect trials or the percentage of missed trials. However, a significant main 

effect of ‘Eccentricity’ for the number of missed targets (F1,17 = 5.94, p = .024, η2p = .221) and 

incorrect responses (F1,17 = 8.35, p < .01, η2p = .285) was found. A higher percentage of 

incorrect responses (4.62%) and missed stimuli (1.68%) was observed when stimuli appeared 

more peripherally as compared to more centrally presented stimuli (respectively, 3.59% of 

incorrect responses and 0.75% of missed). Moreover, the analysis of incorrect responses 

demonstrated a significant interaction between the factors ‘Target’ and ‘Hemifield’ (F1,17 = 

20.52, p < .001, η2p = .494). The pattern replicated the same effect that was already observed 

for response times. Specifically, significant differences were observed when detecting Blue 

targets (with the right hand) in the Left hemifield (6.7% of incorrect trials) as compared to 

detecting the same targets (with the right hand) in the Right hemifield (p < .001; 2.77% of 

incorrect trials) and Yellow targets (with the left hand) in the Left hemifield (p < .001; 2.66% 

of incorrect trials). At the same time, detecting Yellow targets (with the left hand) in the Right 

hemifield (4.31% of incorrect trials) led to significantly more incorrect trials as compared to 

detecting the same Yellow targets (with the left hand) in the Left hemifield (p < .05; 2.66% of 

incorrect trials) and Blue targets (with the right hand) in the Right hemifield (p < .01; 2.77% of 

incorrect trials). Finally, detecting Yellow targets with the left hand in the Right hemifield 

yielded higher percentage of incorrect responses (1.36% of incorrect trials) when compared 

with detecting Blue targets with the right hand in the Left hemifield (p < .01; 1.11% of incorrect 

trials). 

 

3.3 ERPs (Event-Related Potentials) 

P3 Latency 

The 2x2x2x2x6 ANOVA computed on the P3 latency (ms) evoked by the visual discrimination 

task yielded a significant main effect only for the factor ‘Channel’ (F5,8 = 7.11, p = .003, η2p = 

.253). No significant effect was found neither for the factor ‘Task’ (F1,8 = 2.63, p > .1, η2p = 

.112) nor for its interaction with ‘Channel’ (F5,8 = 1.4, p > .2, η2p = .063).  

 

P3 amplitude 

Significant main effects for the factors ‘Channel’ (F5,8 = 11.07, p < .001, η2p = .345), and ‘Task’ 

(F1,8 = 14.16, p < .01, η2p = .403) were observed. These main effects were qualified by their 

interaction (F5,8 = 4.053, p < .01, η2p = .162). Post-hoc test showed significant differences in 

P3 amplitude for the channels CPz’ (p < .05), Pz’ (p < .001) and Oz’ (p < .001). A strong P3 

amplitude reduction was observed in all posterior electrodes in the Dual-Task as compared to 

the Single-task condition (CPz’ Single-Task: M = 5.56, SD = 2.29; Dual-Task: M = 5.07, SD = 

2.46; Pz’ Single-task: M = 3.2, SD = 2.41; Dual-Task: M = 2.62, SD = 2.64; Oz’ Single-task: 

M = 3.96, SD = 2.31; Dual-Task: M = 3.34, SD = 2.13).  
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Fig. 4: ERP components extracted for each midline channel. Blue curve depicts the ERP waveform for 

correct responses during the Single-task condition, while the red curve during the Dual-task condition. 

The shadow around each component reflects the relative standard deviation. 
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Fig. 5: P300 amplitude distributions evoked by the visual discrimination task. Violin plots are relative 

to the ‘Task’ condition and separated by ‘Channel’ (on the X axis). 

 

 

In addition, but not in the focus of interest for this study, significant effects were 

observed also for ‘Target’ (F1,8 = 5.54, p < .05, η2p = .209), for the interaction ‘Target’ by 

‘Hemifield’ (F1,8 = 5.04, p < .05, η2p = .194) and for the three-way interaction between  

‘Target’, ‘Hemifield’ and ‘Task’ (F1,8 = 7.6, p < .05, η2p = .266). Significant differences in P3 

amplitude between congruent and incongruent hand-hemifield response conditions were 

observed when responding to Blue targets in the Left hemifield with the right hand as compared 

to responding to the same targets with the right hand when they appeared in the Right hemifield 

(p < .01) and responding with the left hand to Yellow targets that appeared in the Left hemifield 

(p < .001). Similarly, responding to Yellow targets that appeared in the Right hemifield with 

the left hand led to significantly lower P3 amplitudes as compared to responding with the left 

hand to the same Yellow targets in the Left hemifield (p < .01). As revealed by post-hoc 

comparisons for the interaction ‘Task’ by ‘Target’ by ‘Hemifield’, the differences in P3 

amplitude linked to congruent and incongruent hand-hemifield response conditions were 

observed only in the Dual-task. Within this task condition, a lower P3 amplitude was observed 

when detecting Blue targets in the Left hemifield and responding with the right hand as 

compared to responding to the same targets in the Right hemifield but had to respond with the 

right hand (p < .001) and responding with the left hand to Yellow targets that appeared in the 

Left hemifield (p < .001). Finally, responding with the left hand to Yellow targets that appeared 

in the Right hemifield led to significantly lower P3 amplitudes as compared to responding with 

the left hand to the same Yellow targets in the Left hemifield (p < .05) and responding with the 

right hand to Blue targets appearing in the Left hemifield (p < .01). 
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3.4 PSDs (Power Spectral Densities) 

Theta 

Significant main effects were observed in the theta frequency band (4-8 Hz) for the factors 

‘Channel’ (F5,8 = 12.79, p < .001, η2p = .379) and ‘Task’ (F1,8 = 39.98, < .001, η2p = .656). In 

addition, a significant interaction effect between ‘Channel’ and ‘Task’ was observed (F5,8 = 

3.42, p < .01, η2p = .140), revealing a significantly lower theta power in the Single-task as 

compared to the Dual-Task condition for all the midline channels Fz’ (p < .001), Cz’ (p < .001), 

CPz’ (p < .001), Pz’ (p < .001), POz’ (p < .001), and Oz’ (p < .001). 

 

Lower alpha 

Significant results for the factor ‘Channel’ (F5,8 = 9.05, p < .001, η2p = .301) and for its 

interaction with the factor ‘Task’ (F5,8 = 4.59, p < .01, η2p = .180) were found for the lower 

alpha frequency range (8-10 Hz). Post-hoc analysis revealed lower alpha power in the Dual-

Task condition as compared to the Single-task condition, reaching significance at channels 

CPz’ (p < .05), Pz’ (p < .05) and POz’ (p < .001) but not Fz’, Cz’ and Oz’. 

 

Upper alpha 

In the 10-12 Hz range, significant effects were only found for ‘Channel’ (F5,8 = 3.62, p < .05, 

η2p = .147).  The interaction ‘Channel’ x ‘Task’ also reached significance (F5,8 = 4.2, p < .05, 

η2p = .167), revealing a significantly lower average power for the upper alpha band in the Dual-

Task condition as compared to the Single-task condition for electrodes Fz’ (p < .001), Cz’ (p < 

.001), CPz’ (p < .001) and Pz’ (p < .05). 

 

Beta 

PSD differences in the beta frequency band (12-30 Hz) were observed, with significant main 

effects of interest for the factors ‘Channel’ (F5,8 = 10.72, p < .001, η2p = .338) and ‘Task’ (F1,8 

= 4.6, p < .05, η2p = .180). A significant interaction effect for the same factors also emerged 

(F5,8 = 9.16, p < .001, η2p = .304). Post-hoc tests revealed a significant lower power in the beta 

band for the Single-task as compared to Dual-Task for Pz’ (p < .001), POz’ (p < .001) and Oz’ 

(p < .001), and the opposite trend in CPz’ (p < .001). 

 

Gamma 

Power in the gamma frequency band (30-40 Hz) yielded significant main effects for the factors 

‘Channel’ (F5,8 = 14.8, p < .001, η2p = .120) and ‘Task’ (F1,8 = 21.9, p < .001, η2p = .167), and 

also for their interaction (F5,8 = 28.05, p < .001, η2p = .205). Post-hoc comparisons revealed a 

significantly higher gamma power when comparing the Dual-Task with the Single-task 

conditions for all midline electrodes: Fz’ (p < .001), Cz’ (p < .001), CPz’ (p < .001), Pz’ (p < 

.001), POz’ (p < .001), Oz’ (p < .001). 
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Fig. 6: Power Spectral Densities (PSDs) extracted from EEGLAB for each of the midline channels are 

depicted relatively to the ‘Task’ condition. All the spectra were divided in five bands (theta: 4-8 Hz; 

lower alpha: 8-10 Hz, upper alpha: 10-12 Hz; beta: 12-30 Hz; gamma: 30-40 Hz), independently 

analyzed through five 2x2x2x2x6 repeated measures ANOVAs. Bands highlighted in grey have yielded 

significant effects and are complemented by stars indicating the significance level of the test (*: p ≤ 

0.05; **: p ≤ 0.01; ***: p ≤ 0.001). 
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DISCUSSION 

The present study was designed to give further insights into the human brain dynamics of dual-

task walking, particularly when the cognitive task taxes the same visual resources that are also 

required for natural overground walking. To this end, we used a visual discrimination task in 

VR and analyzed the impact of dual-task walking on cognitive performance and brain dynamics 

using the MoBI approach. The head mounted VR allowed for a dynamic presentation of stimuli 

dependent on the participants actual heading in the simulated environment, providing higher 

ecological validity while, at the same time, ensuring control of potential confounding factors. 

In this way we were able to address a relevant aspect of mobile cognition which is resource 

conflicts during walking when visual stimuli in different areas of the visual field are processed.  

In this framework, task performance was assessed using reaction times and percentage 

of incorrect and missed responses as a measure of accuracy. The NASA TLX was performed 

once after the Single-task and once after the Dual-Task condition to measure the subjectively 

perceived mental load. In addition, the P3 component and the PSDs evoked by the cognitive 

task were analyzed. We hypothesize that CMI is likely to affect response time and accuracy in 

a visual discrimination task, particularly when visual stimuli are to be detected more 

peripherally. Moreover, a dual-task cost was expected to impact P3 latencies and amplitudes 

as well as PSDs in the theta and alpha frequency bands, as well as in higher frequencies, as a 

consequence of the reallocation of attentional resources related to the dual-task load. 

 

Subjective measures 

Our results did not reveal significant differences in the perceived mental load between the 

Single-task and Dual-Task conditions. Despite a significant interaction of the factors ‘Task’ 

and ‘Item’, no significant difference between the scores for any of the single items were found 

in the post-hoc contrasts. Therefore, against our hypothesis, the overall results from the NASA 

TLX reflected a comparable workload for the Dual-Task and the Single-task conditions. Only 

a general tendency for higher mental, physical and temporal demand in the Dual-Task situation 

and a tendency towards higher performance, effort and frustration scores in the Single-task 

situation were observed. However, none of the single items reached significance when the 

appropriate Bonferroni correction was applied. This might have been due to the secondary task, 

which, arguably, was particularly easy for the young healthy population under investigation. 

Nonetheless, it is of interest to point out that even for such a low-demanding cognitive task that 

did not reveal any differences in perceived mental load, the behavioral measures and brain 

dynamics revealed systematic task-related differences. 

 

Performance measures 

The absence of a main effect of the factor ‘Task’ for all dependent measures of performance 

likely reflects the relatively low complexity of the chosen secondary cognitive task. 

Interestingly, 504 overall missed trials were counted in the Dual-Task condition, in contrast to 

258 missed trials observed in the Single-task condition. Even though this is a clear tendency 

for a behavioral cost induced by the dual-task walking, this trend failed to reach significance.  

By contrast, our hypothesis regarding the impact of the target eccentricity was 

supported. Reaction times were significantly slower when responding to stimuli appearing at 
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35° as compared to 15° eccentricity. In addition, a higher miss rate and higher incorrect 

responses were observed for stimuli at 35° eccentricity as compared to those presented at 15° 

eccentricity. Previous studies already demonstrated such an eccentricity effect in vision and 

attention (Carrasco et al., 1995; Staugaard et al., 2016). Some argue that the effect can be 

explained by the neurophysiological differences between central and peripheral vision 

(Carrasco & Frieder, 1997). Others state that this could reflect a central bias in the allocation 

of attentional resources (Wolfe et al., 1998; Brown et al. 2005). Either way, it has long been 

established that the fovea has higher visual acuity, spatial resolution and contrast sensitivity 

relatively to the periphery (Carrasco & Frieder, 1997), and it also appears to be favoured in the 

distribution of attention (Wolfe et al., 1998; Brown et al. 2005). The eccentricity effect was 

observed in our novel virtual dual-task walking paradigm as well, proving this approach to 

replicate more traditional laboratory setups during natural overground walking and challenging 

the recent results reported by Cao and Haendel (2019). As shown by our results, the position 

of a salient and attention demanding stimulus can impact visual information processing with 

higher accuracy and faster responses in the central visual field.  

An interaction effect between ‘Target’ and ‘Hemifield’ was found both for reaction 

times and incorrect responses. This can be explained with the Simon effect (Simon, 1969) that 

predicts increased reaction times and a higher percentage of incorrect responses when targets 

have to be responded to with an incongruent hand-hemifield response assignment (Yellow-

Right or Blue-Left) as compared to the conditions with congruent hand-hemifield responses 

(Yellow-Left or Blue-Right).  

 

ERPs (Event-Related Potentials) 

Even though the performance measures did not provide any direct evidence for a main effect 

of increased effort in the Dual-Task condition, the ERP results clearly indicated differences in 

neural processing between Single- and Dual-Task. Indeed, a significant impact of the ‘Task’ 

condition was observed for the P3 amplitude, showing a strong reduction in the Dual-Task as 

compared to the Single-task (figures 4 and 5). These effects differed topographically and were 

most pronounced over posterior leads (CPz’, Pz’, Oz’). This P3 amplitude reduction with a 

posterior maximum replicated previous results on P3 amplitude reductions in dual-task walking 

scenarios (De Sanctis et al., 2014; Malcolm et al., 2015; Ladouce et al., 2019; Reiser et al., 

2019). However, in contrast to the above mentioned papers, the P3 onset latency did not differ 

between Single- and Dual-task conditions.   

Furthermore, it is important to note that the EEG recordings at POz’ were particularly 

noisy and thus difficult to interpret. As depicted in figure 7, the straps of the Mixed Reality 

goggles were situated precisely over this electrode, likely inducing significant pressure and 

mechanical noise. This was confirmed by the P3 signal-to-noise ratio (SNR) which was 

calculated in each of the midline channels dividing the ERP amplitude by the standard deviation 

in the prestimulus interval (Debener et al., 2008). For POz’, the SNR was significantly lower 

compared to the SNR at all other midline electrodes except for channel Cz’ (POz’-Fz’: p < .05; 

POz’-Cz’: p = .27; POz’-CPz’: p < .001; POz’-Pz’: p < .001; POz’-Oz’: p < .01). It is thus 

reasonable to assume that the ERPs at POz’ were compromised by the constant mechanical 

pressure of the VR headset, making it difficult to detect reliable peak onset-latencies. 
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Fig. 7: Depiction of the EEG waveform of the POz electrode that is contaminated by noise caused by 

the pressure of the ASUS Mixed Reality headset 

 

Finally, the same Simon effect (Simon, 1969) found in the reaction times and the 

response accuracy was observed for the P3-component as well. A smaller P3 amplitude was 

observed for incongruent hand-hemifield responses (Blue Left and Yellow Right) in contrast to 

congruent responses (Blue Right and Yellow Left). These results have repeatedly been observed 

in previous static setups (Ragot et al., 1990; Zhou et al., 2004; Melara et al., 2008) and are here 

replicated for a naturalistic walking task. Interestingly, as shown by the three-way interaction 

between ‘Task’, ‘Target’ and ‘Hemifield’, the incongruence of hand-hemifield response did 

not affect P3 amplitude within the Single-task but only within the Dual-task condition. These 

results indicate a greater difficulty for the Dual-task walking condition when participants 

needed to respond to targets with an incongruent hand-hemifield assignment. An increased 

difficulty and associated P3 amplitude in the walking as compared to the standing condition 

can be explained by a resource conflict. Due to increased resources necessary for walking, the 

additional button press response created stronger interference compared to the standing 

(Ruffieux et al., 2015). Such a resource conflict is reduced for standing in which the Simon 

effect was thus marginalized. While the Simon effect in our setup is noteworthy, the more 

important finding was an impact of the hand-hemifield incongruence on brain dynamics only 

during natural overground walking but not while standing. 

 

PSDs (Power Spectral Densities) 

Gradually proceeding from lower to higher frequency bands, the present study replicated an 

inverse modulation of theta and alpha activity related to the task demand. An increased theta 

power in the Dual- as compared to the Single-task was observed over frontal and centro-parietal 

areas spreading out to occipital sites. Moreover, a decreased alpha power has been observed as 

well, which was prominent from central sites up to parieto-occipital regions for lower alpha 

frequencies, and from frontal up to parietal regions for the upper alpha frequency range. These 

modulations have previously been observed in a dual-task walking paradigm of Beurskens et 

al. (2016) and were replicated in the present study during walking overground in a virtual 

scenario, providing evidence for higher demands during dual-task walking reflected in lower 

alpha activity in frontal and central brain regions. In contrast to the study by Beurskens and 

colleagues (2016), the observed alpha decrease was not limited to frontal and central sites but 

was observed over widespread regions from frontal to parieto-occipital midline channels.  
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Moving towards higher frequencies, we further observed an increase of beta power 

particularly pronounced over parietal and occipital leads. Previous static paradigms described 

a link between beta activity and attentional modulation in the visual system (Belyavin & Wright 

in 1987; Gola et al., 2013), and also a relation with increasing effort to stay alert (Lafrance et 

al., 2000; Boksem et al., 2005). Less consistent patterns for beta modulation were observed in 

paradigms that involved walking participants. Here, beta power has been observed to increase 

(Presacco et al., 2011) and sometimes to decrease (Pizzamiglio et al., 2017). Moreover, while 

walking, a more pronounced increase of beta power has been observed for a secondary motor 

task condition than an additional secondary cognitive task (Beurskens et al., 2016). Given the 

highly contradictory observations reported in several MoBI dual-task walking paradigms, it is 

difficult to dissociate possible beta modulations specifically related to the cognitive or motor 

demand. In addition, considering that a walking phase without additional cognitive task was 

not included in our experimental design, no clear conclusion can be drawn from our results. 

Future studies will have to systematically address the impact of different dual task modalities 

and response requirements on beta modulations during walking.  

Finally, we observed a strong increase of gamma activity when walking for all midline 

electrodes. This power increase became increasingly pronounced from frontal to occipital sites. 

Gamma has previously been shown to be related to body instability, which can occur in 

dynamic situations like walking (Slobounov et al., 2009). Increased gamma activity was also 

observed when walking and performing an additional cognitive task (Marcar et al., 2014). Both 

factors were involved in the present study replicating previous results and pointing to a role of 

gamma activity in the stabilization of posture as well as additional tasks during walking. A 

functional role of gamma in CMI during natural overground walking however, cannot be drawn 

from the present study as we did not systematically control between these two factors. In 

addition, interpretations of gamma activity have to consider a potential confound due to (neck) 

muscle activity, which is likely to contaminate the surface EEG signal when walking (Whitham 

et al., 2008). Since gamma modulations are usually related to the motor activity itself, future 

studies will have to replicate CMI effects including different conditions of motor and cognitive 

tasks and how these impact gamma activity. 

 

Principal contributions, limitations and future directions  

The fundamental role of vision during motion has been stated clearly (Imai et al., 2001; Nomura 

et al., 2005; Marigold & Patla, 2008): when walking, visual information processing is required 

to secure a stable gait pattern. However, due to fixed desktop restrictions, most previous 

investigations marginalized the possible impact of visual information processing during 

walking on a treadmill. As an option for studying the neural mechanisms underlying CMI 

during walking, MoBI is certainly a suitable method (Gramann et al., 2010; Presacco et al., 

2011; Debener et al., 2012; De Sanctis et al., 2014; Marcar et al., 2014; Malcolm et al., 2015; 

Beurskens et al., 2016; Pizzamiglio et al., 2017; Ladouce et al., 2019; Reiser et al., 2019) 

confirmed by the results of the presented study. In addition, the incorporation of a VR system 

to MoBI setups opens up a wide range of possibilities for studying visual dual-task walking in 

all its facets. 

 Within the present virtual framework, the main question was whether and how attention 

is allocated when discriminating visual stimuli at different eccentricities while standing and 
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walking. In this context, the perceived mental load during the Single- and the Dual-task did not 

differ, and neither did the performance. From a neural perspective, instead, our results 

demonstrated that simply walking overground at a natural speed already interferes with the 

execution of a low-demanding cognitive task in the visual domain, even in the absence of 

performance cost. This was revealed by a P3 amplitude reduction when executing the cognitive 

task in motion as compared to standing. This was also reflected in the frequency domain with 

increasing theta and decreasing alpha power over widespread regions of the brain. These 

mechanisms are known to capture attentional variations accompanying task demand variations 

(Klimesh et al., 1999; Polich, 2007) and were here registered during more natural cognitive 

processing while walking. Even though important modulations at higher frequencies were also 

observed, whether and how those are related to cognitive and motor load is still under debate 

(Belyavin & Wright, 1987; Gwin et al., 2011; Marcar et al., 2014).  

Thus, on the same interpretative line of previous works on mobile cognition (Debener 

et al., 2012; De Sanctis et al., 2014; Malcolm et al., 2015; Beurskens et al., 2016; Pizzamiglio 

et al., 2017; Ladouce et al., 2019; Reiser et al., 2019), our results reflect CMI to take place 

during Dual-task walking even when involving only a low-effort visual discrimination task. As 

an addition to previous works, it was also demonstrated that the above-mentioned neural 

markers can be used to identify changes in attention during active behaviors involving visual 

processing in VR during overground walking. However, the visual discrimination task used in 

the present study was particularly easy for the young population which did not show 

performance costs related to the Task condition. Future investigations implementing an 

improved virtual design with more challenging cognitive and motor tasks will have to 

investigate the roles of both cognition and motion in brain dynamic modulations, still 

controlling relevant experimental features in an ecologically valid way. 

Overall, humans are not static agents passively perceiving changing stimuli from the 

environment. Every healthy individual has the power to actively move in the surroundings, 

processing environmental information, preparing actions, and interacting with the external 

world. This complex intersection between environmental and bodily dynamics needs to be 

emphasized in experimental contexts rather than being marginalized. The combination of the 

MoBI with VR, while still not representing cognitive processes in the real world, allows for 

more ecologically valid dual-task walking investigations, taking a step toward the investigation 

of more natural and active behaviors involving visual processing. It allows for simulating close-

to-reality situations which have a moderate degree of conformity with the real world, but allow 

for investigating even potentially dangerous contexts. For instance, crossing the street while 

texting is an undemanding but possibly unsafe behavior which can be safely simulated in VR. 

This kind of setup allows for enhancement of ecological validity when studying natural 

behaviors in real world contexts, particularly those involving visual attention while moving in 

the surrounding. We are confident that the implementation of head mounted VR systems in 

dual-task scenario will provide an important contribution to better understand ‘natural 

cognition’, representing the step from the laboratory setting to the real world. 
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