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Abstract 
 

Genes for which homologs can be detected only in a limited group of 
evolutionarily related species, called “lineage-specific genes,” are pervasive: essentially 
every lineage has them, and they often comprise a sizable fraction of the group’s total 
genes. Lineage-specific genes are often interpreted as “novel” genes, representing 
genetic novelty born anew within that lineage. Here, we develop a simple method to test 
an alternative null hypothesis: that lineage-specific genes do have homologs outside of 
the lineage that, even while evolving at a constant rate in a novelty-free manner, have 
merely become undetectable by search algorithms used to infer homology. We show 
that this null hypothesis is sufficient to explain the lack of detected homologs of a large 
number of lineage-specific genes in fungi and insects. However, we also find that a 
minority of lineage-specific genes in both clades are not well-explained by this novelty-
free model. The method provides a simple way of identifying which lineage-specific 
genes call for special explanations beyond homology detection failure, highlighting them 
as interesting candidates for further study.  
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Introduction 
 

Homologs are genes that descend from a common evolutionary origin. “Lineage-
specific genes” are defined operationally as genes that lack detectable homologs in all 
species outside of a monophyletic group [1]. Also referred to as “taxonomically-
restricted genes” [2, 3], and as “orphan genes” when found only in a single species [4, 
5], they are ubiquitous in the genomes of sequenced organisms. For example, by 
previous reports, 23% of C. elegans genes are specific to the Caenorhabditis genus [6]; 
6% of honey bee genes are specific to insects [7]; 25% of ash tree genes are specific to 
the species [8]; and 1% of human genes are specific to primates [9]. 

Where do lineage-specific genes come from? A common interpretation is that 
they are “novel” genes. Various proposals for the molecular nature of this novelty have 
been advanced. For example, lineage-specific genes have been interpreted as “de novo 
genes” that have evolved from previously noncoding sequence [10, 11], and as 
duplicated genes that diverged radically in evolving a new function [12]. Though 
different in detail, these proposals share the key assumption that a lack of detectable 
homologs indicates some kind of biological novelty: lineage-specific genes either have 
no evolutionary homologs or no longer perform the same function as their homologs 
outside the lineage [13-16]. We refer to these interpretations collectively as the “novelty 
hypothesis” of lineage-specific genes. The novelty hypothesis has informed work on the 
evolution of new features at molecular, cellular, and organismal scales [16-20]. 

An alternative explanation for a lineage-specific gene is that nothing particularly 
special happened in the gene’s evolutionary history and homologs do exist outside the 
clade, but that computational similarity searches (e.g. BLAST) merely failed to find 
those homologs. We refer to such unsuccessful searches as homology detection failure. 
As homologs diverge in sequence from one another, the statistical significance of their 
similarity declines. Over evolutionary time, with a constant rate of sequence evolution, 
the degree of similarity may fall below the chosen significance threshold, resulting in a 
failure to detect the homolog. Some lineage-specific genes may just be those for which 
this happens to have occurred relatively quickly, even in the absence of any novelty-
generating evolutionary mechanisms. 

Here, we describe a method for evaluating whether this alternative hypothesis of 
homology detection failure is sufficient to account for a lineage-specific gene. We 
develop a mathematical model that estimates the probability that a homolog would be 
detected at a specified evolutionary distance if it was evolving at a constant rate under 
standard, novelty-free evolutionary processes. We apply the method to lineage-specific 
genes in insects and yeasts, and find that many, but not all, lineage-specific genes in 
these taxa can be explained by homology detection failure.  

 
Results 
 
A null model of homolog detectability decline as a function of evolutionary 
distance  
 

We developed a formal test of the null hypothesis that homology detection failure 
is sufficient to explain the lineage-specificity of a gene. Specifically, we model the 
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scenario in which the gene actually existed in a deeper common ancestor, evolved at a 
constant rate, and has homologs outside the clade in which its homologs are detected 
that appear to be absent solely due to homology detection failure. This is an 
evolutionary null model: it invokes no processes beyond the simple scenario of 
orthologs diverging from a common ancestor and evolving at a constant rate.  

Because of its use in previous work on lineage-specific genes and in sequence 
analysis more broadly, we use BLASTP as the search program used to detect 
homologs here. In search programs like BLAST, sequence similarity is used to infer 
homology between two genes. Such programs report a similarity score (referred to as 
“bitscore” by BLAST) between a pair of sequences, as well as the number of sequences 
that would be expected to achieve that similarity score by chance (an E value). When 
this number falls below a significance threshold (e.g. E < 0.001), statistically significant 
similarity is interpreted as evidence that the two genes are homologous. The similarity 
score therefore directly determines whether a homolog is successfully detected in a 
search. 

The key idea in our method is to predict how the similarity score between two 
homologs evolving according to our null model is expected to decline as a function of 
the evolutionary distance between them. We can then ask whether a given gene’s lack 
of detectable homologs outside of the lineage is expected under this null evolutionary 
model. Previous work on this problem has simulated the evolution of each gene [21-24]. 
In preliminary work, we explored similar ideas but found results from detailed 
simulations to be fragile. A simulation approach requires selection of many evolutionary 
parameters, which has led to questions about the sensitivity of results to these details 
[23-27]. 
 We chose instead to analytically model how the similarity score between two 
homologs decays with the evolutionary distance between them. Briefly, our model 
assumes that the similarity score between two homologs is proportional to the percent 
identity between them, and that every position in the protein mutates at the same 
protein-specific rate, which is constant over evolutionary time. With these assumptions, 
the expected similarity score S between two homologs separated by an evolutionary 
divergence time t is given by S(t) = ae-bt, where the protein-specific parameters a and b 
are related to the protein’s length and the protein’s evolutionary rate, respectively. The 
variance of this similarity score is given by s2 = a(1-e-bt)(e-bt). A fuller explanation of 
these formulas can be found in the methods.   
  We can predict similarity scores for a given gene if we have three inputs: a gene 
from a chosen focal species, the similarity scores of successfully identified homologs of 
the gene in a few other species (S), and the evolutionary distances between the focal 
species and these other species (t).  (As described in the following section and 
methods, we precalculate these evolutionary distances t from an aggregate of many 
genes from the set of species under consideration, and therefore they do not depend on 
the particular gene under consideration.) We use these inputs to find the gene-specific 
values of the parameters a and b that produce the best fit to our equation describing 
how similarity scores decline within the species where homologs were detected. We 
then use these parameters to extrapolate and predict the expected similarity score of 
hypothetical homologs of the gene at evolutionary distances beyond those of the 
species whose homologs were used in the parameter fitting. Given an E-value 
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threshold, this predicted similarity score, and the expected variance of the similarity 
score, we can estimate the probability that a homolog will be undetected at these longer 
evolutionary distances. In the analyses that follow, we use a relatively permissive E-
value threshold of 0.001. 

This key idea is illustrated in Figure 1, which shows examples of fitting similarity 
scores versus evolutionary distance for several different yeast and insect genes.  
 
The null model adequately describes the decay of ortholog detectability with 
evolutionary distance  
 

We applied our model to genes of the yeast S. cerevisiae and the fly D. 
melanogaster and their orthologs in several fungal and insect outgroups respectively. 
We focus on the fungi and insects because their genomes are well-annotated, they 
have closely related and well-annotated sister species, and they have been the focus of 
previous work on lineage-specific genes [5, 11, 28-31]. For S. cerevisiae, we included 
11 fungal species spanning a divergence time of ~600 million years [32]; for D. 
melanogaster, we included 21 insect species spanning a divergence time of ~400 
million years [33]. These species are listed in Figure 2. 
  Before using our null model to ask whether it explains the lack of detected 
homologs of lineage-specific genes, we confirmed that it is a good approximation of how 
similarity scores decay with evolutionary distance. To do this, we tested how well the 
model represents the decay of similarity scores of general S. cerevisiae and D. 
melanogaster genes in increasingly distant species. If the model fits this decay well for 
most genes, it is likely a good representation of the minimal evolutionary process in the 
null hypothesis, and can therefore detect deviations from that process.   

To obtain evolutionary distances from the focal species (t values), represented by 
the x axis in Figure 1, we used 102 genes from the Benchmarking Universal Single 
Copy Ortholog (“BUSCO”) [34] database to calculate evolutionary distances in 
substitutions/site between S. cerevisiae and each of the 11 other fungi, and 125 
BUSCO genes to calculate evolutionary distances between D. melanogaster and each 
of the 21 other insects (Methods). In both taxa, to show that distances can be reliably 
computed using a small number of genes, we also re-calculated these distances using 
two random subsets of 15 BUSCO genes. Distances computed from these different 
gene sets were similar (Supplemental Table 1). Figure 2 shows evolutionary distances 
inferred from one of the 15 gene sets between the focal organism S. cerevisiae and the 
11 other fungi, and between the focal organism D. melanogaster and the 21 other 
insects. For reference, Figure 2 depicts these distances along with a topology taken 
from previous phylogenetic studies of these taxa [33, 35]; branch lengths are not to 
scale. We use these distances, computed from one of the 15 gene subsets, in all results 
presented in the main text below. 

We next took all annotated S. cerevisiae and D. melanogaster proteins 
(Supplemental Table 2) and identified the similarity scores of their detectable orthologs 
in each of the 11 other fungal and 21 other insect outgroup species respectively. (For S. 
cerevisiae and D. melanogaster, the score is the comparison of the protein with itself.) 
We identified orthologs using reciprocal best BLASTP search with a threshold of E < 
0.001 (Methods). Reciprocal best BLASTP is not a perfect means of distinguishing 
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orthologs from paralogs, and results in some genes failing to be assigned to orthologs in 
some species, but suffices for the purpose and is easy to do at scale. 
 With these similarity scores (S) and evolutionary distances (t) in hand, we tested 
how well our model explains the observed decline in similarity scores with increasing 
evolutionary distance in fungal and insect genes. Our model predicts a linear 
relationship between the log of ortholog similarity scores and evolutionary distance. We 
therefore assessed the fit of the model by performing a linear regression of the log of 
each protein’s similarity score, ln S(t), against the inferred evolutionary distance to the 
focal species, t, and computing the square of the Pearson correlation coefficient (r2), 
which measures how much of the variance in ln S(t) is explained by t.  

The model predicts similarity scores reasonably well. The mean and median r2 
were 0.92 and 0.95 for similarity scores of S. cerevisiae genes (Supplemental Figure 
1b). We repeated this with D. melanogaster proteins and their orthologs in the other 
insects, where the mean and median r2 were 0.84 and 0.91 for similarity scores of D. 
melanogaster genes (Supplemental Figure 1e). Results were similar using the two other 
sets of estimated distances (Supplemental Figure 1).  

As well as considering the fit of each gene to the expected value of the model, 
we tested how well our estimate for the variance of the similarity score captured the 
observed scatter around this expected value. To do this, for the ortholog of each S. 
cerevisiae gene in each species, we calculated the difference between the actual and 
expected similarity score and expressed it as a multiple of the predicted standard 
deviation s = Öa(1-e-bt)(e-bt) of the similarity score (a Z score). We expect these Z-scores 
to follow a normal distribution if our model’s estimated variance is correct, which is 
roughly what we observe (Supplemental Figure 2a-c). Approximately 92% of S. 
cerevisiae orthologs have observed scores within 3 s.d. of the prediction; for a standard 
normal distribution, 99% are expected. 7% of scores are below three s.d., and 1% are 
above three s.d. Results in D. melanogaster are similar: 88% have observed scores 
within 3 s.d., 8% below, and 4% above. We attribute the skew toward predicted scores 
that are higher than observed scores to the fact that our model neglects how insertions 
and deletions may disrupt the length of a local alignment. Results were similar when 
using the two other sets of estimated distances (Supplemental Figure 2d-f). 

We asked whether the best-fit values of the parameters a and b found for the 
fungal proteins are correlated with the interpretation of these parameters in our model. 
We expect values of a to be related to gene length, and values of b to be related to 
evolutionary rate. Using comparisons to S. cerevisiae genes, we plotted a versus gene 
length and b vs. maximum likelihood estimates of evolutionary distance in 
substitutions/site in multiple alignments of proteins from S. cerevisiae and the four most 
closely related species.  The a parameter is indeed highly correlated with gene length 
(r2 = 0.99), and b is more weakly correlated with gene-specific evolutionary rate (r2 = 
0.47) (Supplemental Figure 3). The distributions of the estimated a and b parameters 
across all genes are long-tailed and approximately log-normal (Supplemental Figure 4), 
consistent with other analyses of distributions of gene length [36] and evolutionary rate 
[37].  
 
Many lineage-specific genes can be explained by homology detection failure  
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 Having validated our null model for similarity score decline, we then focused on 
lineage-specific genes and used the model to ask our central question: how often is 
homology detection failure alone enough to explain a lineage-specific gene?  
 We first considered annotated S. cerevisiae proteins that are lineage-specific to 
the sensu stricto yeasts, a young lineage sharing a common ancestor ~20 Mya 
containing the five species S. cerevisiae, S. paradoxus, S. mikatae, S. bayanus, and S. 
uvarum (Figure 2a), which has been the focus of previous work on lineage-specific 
genes [11, 30]. We identified 375 such sensu stricto-specific genes, defined as having 
homologs detectable by BLASTP in at least one of these species but lacking detectable 
homologs in the nearest outgroup S. castellii or in any other outgroups according to a 
permissive E-value threshold of 0.001 (Methods). Between 40 and 70% of sensu stricto 
specific genes identified in two previous studies are included in this set [11, 30]. The 
remainder are either ORFs not used in our initial search because they are marked as 
dubious in both the Saccharomyces Genome Database and Refseq and so have been 
removed from the S. cerevisiae Refseq annotation, or because we detected homologs 
outside of the sensu strictos, likely due to our permissive E-value threshold. Since our 
detectability model is regression-based, we only use it on genes with a minimum of 3 
observed homologs (including the gene in the focal species); for example, we could not 
perform this computation on the S. cerevisiae gene BSC4 [38], proposed to have a very 
recent de novo origin and thus only found in S. cerevisiae. We applied our model to 155 
sensu stricto-specific proteins. 
 For each of these 155 lineage-specific genes, we used the best-fit values of the a 
and b parameters found above to extrapolate and predict the score of an ortholog at the 
evolutionary distance of S. castellii under the null model. Using parameters from the 
sensu stricto lineage to extrapolate to more distant species corresponds to assuming 
that these two groups of orthologs have evolved in the same manner since their 
divergence from their common ancestor. Finally, we calculated the probability that a 
homolog at the evolutionary distance of S. castellii would be detected, P(detected | null 
model, tcastellii), by using our model for similarity score variance to generate a probability 
distribution for the score and computing the percentage of the probability mass in this 
distribution below our chosen detectability threshold (corresponding to an E-value of 
0.001).  

This analysis is illustrated for one example of a sensu stricto-restricted S. 
cerevisiae protein, Uli1, in Figure 3. Uli1 has been implicated in the unfolded protein 
response [39], making it one of only a few sensu stricto specific genes with 
experimental evidence of function, and its lineage-specificity has prompted previous 
studies to propose that it originated de novo [11, 30]. However, we find that the 
probability that an ortholog of this gene would be detectable in S. castellii, P(detected | 
null model, tcastellii), is approximately 0, indicating that a null evolutionary model is 
sufficient to explain the lineage specificity of this short and rapidly-evolving gene. 

The result of performing this test on all of these 155 sensu stricto-specific genes 
is shown in Figure 4a, which depicts the distribution of probabilities of detecting a 
homolog in the outgroup S. castellii given the null model and the evolutionary distance 
between S. cerevisiae and S. castelli, P(detected | null model, tcastellii). Many genes have 
a very high probability of being undetected, and a majority are more likely to be 
undetected than detected: 55% have P(detected | null model, tcastellii) below 0.05, and 
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73% percent below 0.5. This implies that homology detection failure is sufficient to 
explain a large number, potentially a majority, of these lineage-specific genes. 
Homologs of these genes only being detected in sensu stricto species does not require 
invoking evolutionary novelty.  

We repeated this procedure for D. melanogaster genes restricted to the 
Drosophila genus. This young lineage shared a common ancestor ~70 Mya, with the 
housefly M. domestica as the nearest outgroup in our analyses (Figure 5a). We 
identified 1611 Drosophila-restricted genes (Methods), of which 1273 had enough 
identified orthologs in the Drosophila lineage to perform our analysis. Again, many 
Drosophila-restricted genes are very likely to be undetected: 46% percent have values 
of P(detected | null model, tdomestica) below 0.05, and 76% percent are below 0.5 (Figure 
5a). Homology detection failure is therefore also sufficient to explain many lineage-
specific genes in this group.  

 As both the sensu stricto yeasts and the drosophilid flies are relatively young 
lineages, we asked whether these results generalize to older lineages. In fungi, we 
tested two additional lineages with approximate divergence times of ~70 Mya (Figure 
4b) and ~250 Mya [32] (Figure 4c). In insects, we also tested two additional lineages, 
with approximate divergence times of ~150 Mya (Figure 5b) and ~350 Mya [33] (Figure 
5c). We calculated P(detected | null model, toutgroup) for each of these four additional 
lineages. Results in all of these lineages are very similar to those in the younger 
lineages tested above: we predict that a large number of lineage-specific genes have 
very low probabilities of being detected, with a majority more likely to be undetected 
than detected (Figures 4b,c, 5b, c). Homology detection failure is thus sufficient to 
explain a large number of lineage-specific genes in these older lineages as well. 

As a control, we asked our model to predict the probability of detecting homologs 
of genes that are not lineage-specific, meaning that these genes have homologs that 
are detected both inside and outside of the lineage. We repeated the same procedure 
on all non-lineage-specific genes in the six lineages tested above. As we did for the 
lineage-restricted genes, we used only similarity scores from orthologs within the given 
lineage to calculate the probability of detecting homologs in the nearest outgroup to the 
lineage, P(detected | null model, toutgroup). If our model operates correctly, it should 
predict high values of P(detected | null model, toutgroup) for these genes, since their 
homologs are in fact detected. In accordance with this expectation, our model predicts 
that the vast majority (>97% in all lineages) of these genes have a very high probability 
of being detected, P(detected) > 0.95 (Figures 4, 5). This analysis, like earlier analyses, 
was robust to the use of different sets of genes for calculating evolutionary distances 
(Supplemental Table 3). 
 
More sensitive homology searches detect beyond-lineage homologs for many 
lineage-specific genes well-explained by homology detection failure 
 

If a gene being lineage-specific is due to the failure of BLASTP to detect 
homologs that are in fact present, we would expect that a more sensitive search will 
sometimes succeed in finding homologs where BLASTP did not. We asked whether this 
was the case for genes whose lineage-specificity was consistent with the hypothesis of 
detection failure: can we use a more sensitive method to find previously undetected 
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homologs for these genes? We refer to such homologs, detected using a different 
method in species outside of the originally defined lineage, as “beyond-lineage 
homologs.”  

We used sensu stricto yeast-specific genes as a case study to ask this question. 
These yeasts and several of their nearest outgroups have a high degree of conservation 
of chromosomal gene order (synteny), presenting the opportunity for a more sensitive 
search. A standard similarity search tests all proteins in a large database of sequences, 
such as a complete proteome. The resulting multiple testing burden requires a higher 
score to achieve statistical significance than would be required for a search over a 
smaller number of sequences. In these yeasts, synteny allows us to restrict a similarity 
search to one candidate gene at the orthologous chromosomal locus, reducing the 
multiple testing burden and enabling ortholog identification with a lower score. For the 
fungal species used here, a proteome-wide search would need a BLASTP score of ~37 
to achieve an E-value of 0.001, but a single-protein search would only require a score of 
~24. Orthologs with scores between these two values would be missed in our initial 
search but successfully detected with synteny-guided similarity searches.   

We used this strategy to search for beyond-lineage orthologs for all sensu stricto-
specific genes for which the null model of detection failure is a reasonable explanation. 
We use a threshold of P(detected | null model) < 0.95 to define these genes. This 
choice is a conservative threshold that corresponds to genes that are insignificant 
according to a traditional significance test threshold of P(undetected | null model) = 1 – 
P(detected | null model) > 0.05. There are 126 sensu stricto-specific genes that pass 
this threshold.   

To identify the orthologous locus in outgroup yeasts for these 126 S. cerevisiae 
genes, we used the Yeast Gene Order Browser (YGOB), an online resource that 
curates the chromosomal orthology relationships between species including the sensu 
stricto yeasts, S. castellii, K. waltii, A. gossypii, and K. lactis [40]. 24 of these 126 sensu 
stricto-specific genes have an orthologous locus in at least one of these outgroup 
yeasts listed in YGOB. For all of these genes, the upper bound of the 99% prediction 
interval for the similiarity score predicted by our model is above the detectability 
threshold of 24 bits, indicating that they are potentially detectable by this analysis. Of 
these 24 genes, 11 had an annotated gene at the orthologous locus in at least one 
outgroup species with significant (E<0.001) similarity to the S. cerevisiae gene. In all but 
2 of these cases, the similarity score fell within our prediction interval (in those 2 cases, 
the similarity score was slightly higher than predicted). These 11 genes and their 
proposed orthologs are listed in Supplemental Table 4.  

In total, we found beyond-lineage homologs for 46% of genes for which we were 
able to perform a synteny analysis. We note that this is a conservative estimate. We 
only considered ORFs that are already annotated in outgroup species, although 
unannotated orthologs may be present. Additionally, the lower bound of the 99% 
similarity score prediction interval for all remaining 54% of these genes is lower than the 
threshold required for detection via synteny, so that all have some probability of 
orthologs still being missed in this analysis.  
 
Some lineage-specific genes are poorly explained by homology detection failure 
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In all lineages studied here, there are also lineage-specific genes that are poorly 
explained by the null hypothesis: their similarity score declines too slowly to make 
homology detection failure alone a good explanation for their lineage-specificity. These 
are the genes with high values of P(detected | null model). In all six lineages we studied, 
10-20% of lineage-specific genes have detection probabilities of 0.95 or greater 
(Figures 4,5).   

This result is illustrated by one such sensu stricto-specific protein, Spo13, in 
Figure 6. Spo13 has been proposed as a candidate de novo gene [30] by virtue of its 
lineage-specificity, and this analysis highlights it as a particularly promising novel gene 
candidate amongst the large number of other lineage-specific genes in the sensu stricto 
lineage.   

The existence of lineage-specific genes like Spo13, which our null model predicts 
should have detectable homologs outside of the lineage, indicates that evolutionary 
mechanisms beyond those included in the null model may be operating. Among such 
mechanisms are those postulated by the novelty hypothesis, like de novo origination 
and duplication-induced neofunctionalization. However, other known mechanisms could 
also explain such genes. These include processes that cause the gene tree to deviate 
from the species tree, like horizontal gene transfer and any mechanisms that change 
the evolutionary rate of a protein on a restricted part of the tree.  
 
Characterization of yeast lineage-specific genes that are poorly explained by 
homology detection failure  
 
  We next aimed to characterize genes whose lineage-specificity is poorly 
explained by homology detection failure. We again used sensu stricto-specific genes as 
a case study, allowing for synteny analysis and the biological insight provided by many 
genes in S. cerevisiae being comparatively well-studied. We selected the subset of 
sensu stricto-specific genes, including Spo13, whose lineage-specificity is poorly 
explained by homology detection failure, i.e. for which P(detected | null model) > 0.95. 
These are genes on the other side of the threshold applied above: the null hypothesis 
strongly predicts that homologs should be detected, making their lineage-specificity 
incompatible with the null hypothesis. There are 25 sensu stricto-specific genes that 
satisfy this threshold. While a thorough study of these genes is beyond our scope, we 
report a few initial observations.  
 “De novo origination,” the process of a new gene emerging from previously non-
coding sequence, is a commonly proposed origin of lineage-specific genes [12]. We 
asked how many of these 25 lineage-specific genes could plausibly be such de novo 
genes. By definition, genes that have emerged de novo in the sensu stricto lineage 
should have no out-of-lineage homologs, and so the more sensitive synteny-based 
homology search strategy used above should fail to find such homologs. We performed 
a synteny-based search for out-of-lineage homologs for these 25 genes in the same 
way as above. For 20 of these 25 genes, an orthologous locus is listed in YGOB. Of 
these 20, 12 have annotated genes with significant similarity (E<0.001) at the 
orthologous locus in at least one outgroup species. Thus, 12 of 25 genes, or just under 
half, of genes that are not well-explained by homology detection failure did not originate 
de novo in the sensu stricto lineage. This is a conservative estimate of the total number 
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of genes that have out-of-lineage homologs, since, as described above, even this 
synteny-based homology search has finite sensitivity. Spo13, the gene shown in Figure 
5, is one example of these lineage-specific genes that nonetheless are not de novo 
originated: it has out-of-lineage orthologs identifiable by synteny in S. castellii, K. waltii, 
K. lactis, and A. gossypii.  

Genes that acquire a new function following duplication and divergence 
(“neofunctionalization”) are another proposed source of lineage-specific genes [12]. We 
therefore asked how many of our sensu stricto-specific genes have a paralog, 
consistent with the hypothesis that they emerged through duplication and divergence. 
Based on BLASTP searches within the S. cerevisiae genome, we find that 4 of the 25 
lineage-specific genes have annotated paralogs specific to some subset of the sensu 
stricto yeasts, which therefore likely emerged after their divergence from S. castellii. We 
also find using YGOB that another 4 of these 25 genes have annotated paralogs 
resulting from the yeast whole genome duplication, which occurred before the 
divergence of S. castellii from the sensu stricto yeasts. In total, 8/25, or fewer than one-
third, of these genes show evidence of having been the result of duplication events. 
However, we note that this estimate for the number of genes with paralogs is again 
conservative due to the finite sensitivity of the homology searches.  

Finally, we performed a gene ontology enrichment test (Methods) to determine if 
certain biological processes were statistically overrepresented among these 25 genes. 
We find significant enrichment of genes involved in several GO categories relating to 
spore formation and meiosis, including “ascospore-type prospore membrane assembly” 
(p = 7*10-5; 3 observed vs 0.7 expected) and “meiotic cell cycle process” (p = 5*10-5; 7 
observed vs 1 expected). Spo13, involved in meiotic cell cycle regulation through its 
roles in maintaining sister chromatid cohesion during meiosis I and promoting 
kinetochore attachment [41], is one such example.  

A table of these 25 genes and the features discussed above can be found in 
Supplemental Table 5. 

 
Discussion 
 
 The widespread interpretation of lineage-specific genes as evolutionarily novel 
assumes that absence of evidence for detectable homologs in outgroups is evidence 
that homologs are absent. The model we have presented here allows us to formally test 
the alternative, null hypothesis: homologs do exist outside the specified lineage, but 
they have diverged, at a constant novelty-free evolutionary rate, beyond the ability of a 
similarity search program to detect them. We find that this hypothesis is sufficient to 
explain a large number of lineage-specific genes in two taxa where lineage-specific 
genes have been interpreted as exhibiting some kind of evolutionary novelty.  
 Our results caution against automatically assuming that lineage-specific genes 
are novel. We cannot exclude the possibility that some genes explainable by homology 
detection failure are nonetheless novel: failing to reject a null hypothesis is not the same 
as accepting it. However, we argue that in the absence of additional evidence, the more 
conservative hypothesis of detection failure should be preferred to the more exotic one 
of evolutionary novelty. Our case study in the sensu stricto yeasts finds that more 
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sensitive synteny-based homology searches successfully find previously undetected 
homologs for many lineage-specific genes, supporting this preference. 
 Although we find that many lineage-specific genes can be adequately explained 
by homology detection failure, we also find a minority of lineage-specific genes in fungi 
and insects that cannot. This leaves open the possibility that these genes are 
biologically novel. However, the reason that these genes reject our null model is not 
addressed by our present work. Our initial analyses do show that many of these genes 
are neither de novo genes nor have detectable paralogs, suggesting that processes 
other than the commonly proposed hypotheses of de novo origination and duplication-
divergence may be at play. There are many possible processes that could cause genes 
to deviate from our null model, but one speculative example lies in the observed 
enrichment in yeast of genes involved in meiotic processes, exemplified by Spo13. This 
strikes us as suggestive of meiotic drive phenomena, which have been observed in 
yeast [42] and have been shown to cause rapid protein divergence [43], producing 
clade-specific rate accelerations leading to lineage-specific genes. More detailed 
characterization of these genes is required to understand if and in what way they are 
evolutionarily novel.  
 Another recent paper used a different approach to estimate the fraction of 
lineage-specific genes that are attributable to homology detection failure [44]. Vakirlis et 
al. used a small set of “microsyntenic blocks” to count how often a gene is not 
recognizably similar to its presumptive homolog in the syntenic position in a 
comparative genome. Assuming this sample approximates the frequency at which 
homologous genes diverge beyond recognition, they extrapolate this fraction to all 
genes.  They conclude that 20-45% of lineage-specific genes in yeast, fly, and human 
phylogenies are attributable to homology detection failure. We consider this result to be 
in broad agreement with ours, although our results suggest somewhat larger estimates, 
and future effort will be needed to reconcile the two results to say whether homology 
detection failure accounts for a majority or a minority of lineage-specific genes.  
  There is increasing consensus that homology detection failure is frequent. It 
should be taken into account in studies that aim to use lineage-specific genes to identify 
candidates for genetic novelty. Our approach allows us to determine whether a 
particular lineage-specific gene is attributable to homology detection failure, and our 
approach is generalizable to a wide range of taxa, beyond the well-studied clades 
where synteny analysis can be used. We expect it to be useful in the wide variety of 
studies that aim to identify “new” genes that may underlie the evolution of 
morphological, behavioral, and other novel traits [7, 45-49]. An implementation of our 
method is freely available as source code at github.com/caraweisman/abSENSE, and 
as a web server at eddylab.org/abSENSE. 
 

 
 

Methods 
 
Model of similarity score as a function of evolutionary distance 
 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.02.27.968420doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968420
http://creativecommons.org/licenses/by/4.0/


 12 

  Our model assumes that a similarity score S between two homologs is 
proportional to the number of sites that are identical in these two homologs. After the 
homologs diverge from their common ancestor, we assume that they undergo a 
substitution-only mutation process, in which each site in the proteins mutates into a non-
identical site at the same protein-specific rate b per unit of evolutionary time. Neglecting 
the possibility of reversion, the probability that a site will not undergo a mutation within a 
time t following homolog divergence is e-bt, as given by the Poisson distribution. Given a 
constant number N0 of total sites in the protein, the number of sites that remain identical 
at that time t is binomially distributed with mean N0e-bt. If each identical site contributes 
the same amount c to the total similarity score, then the mean similarity score at time t 
is S(t)  = cN0e-bt. The variance of the similarity score at time t is s2 = cN0(1-e-bt)(e-bt), 
from the variance of a binomial distribution. In the text, we refer to cN0 as a, as these 
two parameters only appear as a product. 
  The simplifying approximations in this model abstract away the detailed effects of 
the substitution score matrix, insertion and deletion scores, and local versus global 
sequence alignment. Nonetheless, they appear to suffice to approximate S(t) in the 
regime of observable (i.e. statistically significant) local alignment scores S(t) >> 0, 
although we somewhat underestimate the empirically observed variance, and have 
some skew toward overestimating S(t) (Supplemental Figure 2). 
 
 
Identification of S. cerevisiae and D. melanogaster orthologs 
 We downloaded previously annotated proteomes of S. cerevisiae, D. 
melanogaster, and the other yeast and insect species indicated in Table 1 from several 
sources, largely Refseq and GenBank. Accession IDs for Refseq and GenBank 
proteomes and download links for those from other sources are listed in Supplemental 
Table 2. We performed a BLASTP (version 2.8.0) search [50] with an E-value threshold 
of 0.001 using the S. cerevisiae proteome as the query against each of the 11 other 
yeast proteomes independently. We also performed the reciprocal of each of these 
searches, using each of the 11 other yeast proteomes as the query against the S. 
cerevisiae proteome. We used a custom Python script to identify reciprocal best BLAST 
hits for each S. cerevisiae protein in each of the other yeast proteomes. A protein in the 
other species’ proteome was considered a reciprocal best hit to the S. cerevisiae protein 
if a) the E-value of the S. cerevisiae protein against that protein was the lowest of any in 
that species’ proteome and b) the E-value of that protein against the S. cerevisiae 
protein was the lowest of any protein in the S. cerevisiae proteome. Proteins in the other 
yeast and insect species satisfying this reciprocal best hit criterion were considered 
orthologs of the S. cerevisiae and protein. When no significant homology to a S. 
cerevisiae protein was detected in another species, or when the reciprocal best hit 
criterion was not met by any protein in that species, no ortholog was assigned in that 
species. We repeated this same procedure for all D. melanogaster proteins and each of 
the 21 other insect species’ proteomes. 
 
Calculation of evolutionary distances  

Because evolutionary distance t only appears in our model as a product with the 
gene-specific rate parameter b, we can use a subset of genes in the species group to 
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infer these relative distances. Each gene’s value of b will scale these relative distances 
appropriately when fit to the model. We used BUSCO genes as the subset of genes 
from which to estimate distances, as they are generally well-conserved, facilitating 
ortholog identification and alignment. We downloaded a list of eukaryotic BUSCO genes 
[34] from the BUSCO web server (https://busco.ezlab.org/) and identified all of these 
genes for which we were able to identify an ortholog of the corresponding S. cerevisiae 
gene in all 11 other yeast species (“Identification of orthologs” above). We found 102 
such BUSCO genes. We used the alignment software MUSCLE (version 3.8.31) [51] 
with default parameters to create a multiple sequence alignment of the orthologs from 
all 12 yeast species for of each of these 102 genes. We then concatenated these 
alignments and used the Protdist program from the PHYLIP software package (version 
3.696) [52] with default parameters to find pairwise evolutionary distances for all 12 
yeast species in substitutions per site. To test the effect of using a smaller number of 
genes to infer these distances, we then randomly and independently selected two 
subsets of 15 of these 102 genes, and performed the same alignment and distance 
calculation procedure on each of these two subsets. We then performed the same 
procedure using D. melanogaster genes and the 21 other insect species. Here, there 
were 125 BUSCOs for which we were able to identify orthologs in all species, and the 
two random subsets of 15 genes were selected from among these 125. Refseq 
accessions for genes in the three sets of BUSCOs in both taxa are listed in 
Supplemental Table 6. 
 
Correlation of b parameter with evolutionary rate 
 To determine the correlation between each gene’s best-fit value of the b 
parameter in our model and the substitution rate, we used alignments of 5261 S. 
cerevisiae genes and their orthologs in all four other sensu stricto yeast species 
generated by a previous study [53]. We opted not to include more distantly related 
species in these alignments for the sake of more reliable ortholog identification and 
alignment construction. We used the protdist function of the PHYLIP package (version 
3.696) [52] on these alignments to infer the number of substitutions per site between the 
S. cerevisiae gene and its ortholog in the most distant sensu stricto yeast S. 
kudriavzevii (we chose a fairly distant representative of these species to minimize 
sampling error from low substitution counts), and correlated this value with the b 
parameter inferred from the regression analysis.  
 
Identification of lineage-specific genes 
 To identify S. cerevisiae genes specific to the three yeast lineages tested here, 
we performed a BLASTP search [50] with an E-value threshold of 0.001 for each gene 
in the S. cerevisiae proteome as the query against each of the 11 other yeast 
proteomes independently, using the same proteomes listed in Supplementary Table 2. If 
the BLASTP search detected no homologs of the S. cerevisiae gene in the proteomes 
of any of these species outside of the specified lineage, we considered it lineage-
specific. We applied the same criterion using the 21 other insect proteomes to identify 
D. melanogaster genes specific to the three insect lineages tested here. 
 
Synteny-based homology searches 
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 We used version 7 of the Yeast Gene Order Browser’s online web tool 
(http://ygob.ucd.ie/) [40]. For tested S. cerevisiae genes, if the gene was included in this 
YGOB version, we determined whether an orthologous chromosomal region in any of 
the outgroup yeast species used here had been identified in the browser. If so, we 
searched for any genes in these outgroup species at the locus that were annotated in 
the browser. We considered genes to be within the outgroup orthologous locus if they 
were between the outgroup’s orthologs of the closest S. cerevisiae genes up- and 
downstream of the query gene. If annotated genes existed at the orthologous locus, we 
performed a BLASTP search of the S. cerevisiae sequence against the sequences of all 
outgroup genes at that locus as listed in YGOB, and called orthology in cases where 
this single-search E-value was <0.001.  
 
Gene ontology analysis 
 We used the Gene Ontology Consortium’s online web server 
(http://geneontology.org/) [54] to test whether or not certain biological functions were 
enriched in the set of sensu stricto-specific genes that we found to be poorly explained 
by detection failure. We performed a Fisher’s exact test using the “GO biological 
process complete” annotation data set for all S. cerevisiae genes.  
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Main figures 
 
 

 
 
 
Figure 1: Depictions of the fit of the null model of similarity score decline with 
evolutionary distance for three representative proteins from S. cerevisiae (a) and D. 
melanogaster (b). Colored points represent the BLASTP score between the protein and 
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its ortholog in the species that is at the evolutionary distance indicated on the x axis. 
Tick marks on the x axis represent each of the species used here. For visual clarity, 
only some species names and evolutionary distances are included, indicated with black 
tick marks; gray tick marks represent the other unlabeled species. The dashed line 
represents the detectability threshold, the score below which an ortholog would be 
undetected at our chosen E-value of 0.001. The best fit values of a and b are shown for 
each protein. The r2 value is also shown and was calculated from a linear regression of 
the log of the similarity score versus evolutionary distance. 
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Figure 2: Inferred evolutionary distances between each fungal species and S. cerevisiae 
(a) and each insect species and D. melanogaster (b). The tree topologies for these taxa 
are based on previously published studies [33, 35] and were not calculated here; branch 
lengths are not to scale. The fungal sensu stricto lineage, referenced frequently in the 
text, is shaded in yellow. 
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Figure 3:   Illustration of the prediction of detectability decline for the S. cerevisiae 
protein Uli1, displayed as in Figure 1. At the evolutionary distance of the nearest 
outgroup S. castellii, the entire prediction interval lies below the detectability threshold, 
indicating a ~0% probability that an ortholog would be detected under the null model 
even if an S. castellii ortholog were present. 
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Figure 4: Distributions of detectability prediction results for three yeast lineages (a, b, c). 
Top: results for all lineage specific genes. Middle: results for all non-lineage specific 
genes. Bottom: lineage tested as shown by yellow shading. In c), note that Y. lipolytica 
is the topological outgroup to the shaded lineage, but is not the closest species by 
evolutionary distance (branch lengths are not to scale).  
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Figure 5: Distributions of detectability prediction results for three insect lineages (a, b, 
c). Top: results for all lineage specific genes. Middle: results for all non-lineage specific 
genes. Bottom: lineage tested as shown by the yellow shading. In a), note that C. 
capitata is the topological outgroup to the shaded lineage, but is not the closest species 
by evolutionary distance (branch lengths are not to scale). 
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Figure 6: Detectability prediction results for the S. cerevisiae protein Spo13, displayed 
as described in Figure 3. At the evolutionary distance of the nearest outgroup S. 
castellii, the entire prediction interval lies well above the detectability threshold, 
indicating a ~100% probability that an ortholog should be detected in this species under 
the null model. 
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Supplemental tables and figures 
 
 
 

Species 
Inferred distance 
to S. cerevisiae 

(substitutions/site),  
102 BUSCOs 

Inferred distance to 
S. cerevisiae 

(substitutions/site),  
15 BUSCOs subset 1 

Inferred distance to 
S. cerevisiae 

(substitutions/site),  
15 BUSCOs subset 2 

S. cerevisiae 0 0 0 
S. paradoxus 0.05 0.05 0.05 

S. mikatae 0.09 0.09 0.09 
S. kudriavzevii 0.10 0.11 0.10 

S. bayanus 0.11 0.12 0.11 
S. castellii 0.36 0.39 0.44 
K. waltii 0.49 0.49 0.51 

A. gossypii 0.52 0.52 0.54 
K. lactis 0.52 0.56 0.58 

A. nidulans 1.02 0.90 0.99 
S. pombe 1.00 0.92 0.95 

Y. lipolytica 0.90 0.95 0.89 
 
 
 

Species 
Inferred distance 

to D. melanogaster 
(substitutions/site), 

125 BUSCOs 

Inferred distance to 
D. melanogaster 

(substitutions/site), 
15 BUSCO subset 1 

Inferred distance to 
D. melanogaster 

(substitutions/site), 
15 BUSCO subset 2 

D. melanogaster 0 0 0 
D. simulans 0.02 0.02 0.02 
D. sechelia 0.02 0.02 0.02 
D. erecta 0.04 0.03 0.04 
D. yakuba 0.04 0.03 0.04 

D. 
pseudoobscura 0.14 0.13 0.11 

D. persimilis 0.14 0.14 0.12 
D. willistoni 0.16 0.14 0.16 

D. virilis 0.17 0.15 0.15 
D. grimshawi 0.18 0.16 0.16 
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D. mojavensis 0.18 0.18 0.17 
M. domestica 0.30 0.27 0.29 

C. capitata 0.31 0.28 0.33 
A. aegypti 0.48 0.43 0.48 

A. gambiae 0.49 0.46 0.50 
Z. nevadensis 0.58 0.53 0.60 
T. castaneum 0.58 0.54 0.58 
A. mellifera 0.62 0.57 0.62 

B. germanica 0.62 0.57 0.65 
B. terrestris 0.62 0.57 0.63 

B. mori 0.62 0.57 0.60 
A. pisum 0.69 0.67 0.67 

 
Supplemental Table 1a (top), 1b (bottom): inferred distances in substitutions/site from S. 
cerevisiae to each yeast species (top) and from D. melanogaster to each insect species 
(bottom). Distances were inferred from all BUSCOs with orthologs identifiable in each 
species group, as well as from 15 genes randomly selected from these BUSCOs. The 
“15 BUSCOs subset 1” distances were used for all main figures in the text. 
 
Supplemental Table 2 (attached): Sources of species protein annotations used in this 
study. 
  
Supplemental Table 3 (attached): Correlation coefficients for gene detectability 
prediction results based on evolutionary distance estimates derived from three different 
sets of genes (the same as those shown in Supplemental Table 1).  
 
Supplemental Table 4 (attached): List of 11 S. cerevisiae genes for which synteny-
based searches in YGOB revealed candidate out-of-lineage orthologs, the YGOB IDs of 
those orthologs, and their synteny search E-values.  
 
Supplemental Table 5 (attached): List of sensu stricto-specific S. cerevisiae genes that 
are poorly explained by the hypothesis of detection failure and their features as 
described in summary in the text. (Attached file.)  
 
Supplemental Table 6 (attached): List of RefSeq accession IDs for BUSCOs used in 
evolutionary distance calculations.  
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Supplemental Figure 1a-f: r2 distributions for the fit to the model of S. cerevisiae and D. 
melanogaster genes using evolutionary distances derived from three sets of genes.  
a: S. cerevisiae genes with distances derived from 102 BUSCOs. b: S. cerevisiae genes 
with distances derived from a randomly-selected subset of 15 of the BUSCOs used in a. 
c: S. cerevisiae genes with distances derived from a second randomly-selected subset 
of 15 of the BUSCOs used in a. d: D. melanogaster genes with distances derived from 
125 BUSCOs. e: D. melanogaster genes with distances derived from a randomly-
selected subset of 15 of the BUSCOs used in d. f: D. melanogaster genes with 
distances derived from a second randomly-selected subset of 15 of the BUSCOs used 
in d.  
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Supplemental Figure 2: Distribution of position of BLASTP scores between S. cerevisiae 
and outgroup yeast (top) and D. melanogaster and outgroup insects (bottom) relative to 
the predicted confidence interval. 0 indicates that the score has the same value as the 
best fit to the model; multiples of sigma indicate that the score is that many standard 
deviations above or below the best fit value. a: S. cerevisiae genes with distances 
derived from 102 BUSCOs. b: S. cerevisiae genes with distances derived from a 
randomly-selected subset of 15 of the BUSCOs used in a. c: S. cerevisiae genes with 
distances derived from a second randomly-selected subset of 15 of the BUSCOs used 
in a. d: D. melanogaster genes with distances derived from 125 BUSCOs. e: D. 
melanogaster genes with distances derived from a randomly-selected subset of 15 of 
the BUSCOs used in d. f: D. melanogaster genes with distances derived from a second 
randomly-selected subset of 15 of the BUSCOs used in d.  
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Supplemental figure 3a,b: Correlation between best-fit parameters and gene properties 
in yeast. 3a: Correlation between each S. cerevisiae protein’s best-fit value of a and its 
length in amino acids. The a parameter is consistently larger than the length due to 
most identical alignment positions contributing a score larger than 1 according to the 
scoring scheme used here (BLOSUM62). 3b: Correlation between each S. cerevisiae 
protein’s best-fit value of b and its relative evolutionary rate in substitutions per site from 
sensu stricto protein alignments (Methods).  
 

 
 
Supplemental figure 4a,b: Distribution of best fit parameter values for all S. cerevisiae 
proteins. 4a: Distribution of the best-fit a values for all S. cerevisiae proteins.  
4b: Distribution of the best-fit b values for all S. cerevisiae proteins.  
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