
Evolution of genome structure in the      
Drosophila simulans species complex  
 
Mahul Chakraborty*1, Ching-Ho Chang*2,3, Danielle E. Khost 2,4, Jeffrey Vedanayagam 5,         

Jeffrey R. Adrion 6, Yi Liao 1, Kristi L. Montooth 7, Colin D. Meiklejohn7, Amanda M.             

Larracuente2, J.J. Emerson 1  

*these authors contributed equally to this work 

Affiliations: 
1Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine,           

CA 92697 
2Department of Biology, University of Rochester, Rochester, NY 14627 
3Present address: Division of Basic Sciences, Fred Hutchinson Cancer Research          

Center, Seattle, WA 98109 
4FAS Informatics and Scientific Applications, Harvard University, Cambridge, MA 02138 
5Department of Developmental Biology, Memorial Sloan-Kettering Cancer Center, New         

York, NY, 10065 
6Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403 
7School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502 

correspondence to alarracu@ur.rochester.edu, jje@uci.edu  

 

  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.02.27.968743doi: bioRxiv preprint 

mailto:alarracu@ur.rochester.edu
mailto:jje@uci.edu
https://doi.org/10.1101/2020.02.27.968743
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

ABSTRACT 

The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem           

duplications, and transposable elements, underlies phenotypic evolution and contributes         

to hybrid incompatibilities between species. However, repetitive genomic regions are          

fragmented and misassembled in most contemporary genome assemblies. We         

generated highly contiguous de novo reference genomes for the Drosophila simulans           

species complex ( D. simulans, D. mauritiana, and D. sechellia), which speciated           

~250,000 years ago. Our assemblies are comparable in contiguity and accuracy to the             

current D. melanogaster genome, allowing us to directly compare repetitive sequences           

between these four species. We find that at least 15% of the D. simulans complex               

species genomes fail to align uniquely to D. melanogaster due to structural            

divergence—twice the number of single-nucleotide substitutions. We also find rapid          

turnover of satellite DNA and extensive structural divergence in heterochromatic          

regions, while the euchromatic gene content is mostly conserved. Despite the overall            

preservation of gene synteny, euchromatin in each species has been shaped by clade             

and species-specific inversions, transposable elements, expansions and contractions of         

satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence             

among Y-linked genes, including copy number variation and recent gene duplications           

from autosomes. Our assemblies provide a valuable resource for studying genome           

evolution and its consequences for phenotypic evolution in these genetic model           

species.  
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INTRODUCTION 

Repetitive DNA sequences comprise a substantial fraction of the genomes of           

multicellular eukaryotes, occupying >40% of human and Drosophila melanogaster         

genomes (Britten and Kohne 1968; Treangen and Salzberg 2011; Hoskins et al. 2015).             

These sequences include repeated tandem arrays of non-coding sequences like          

satellite DNAs, self-replicating selfish elements like transposable elements (TEs), and          

duplications of otherwise unique sequences, including genes (Britten and Kohne 1968).           

Despite being historically considered nonfunctional, repetitive sequences are now         

known to play significant roles in both cellular and evolutionary processes. In many             

eukaryotes, satellite DNA, tandem repeats, and/or TEs constitute structures essential          

for genome organization and function, like centromeres and telomeres (Moyzis et al.            

1988; Mason et al. 2008; Klein and O’Neill 2018; Chang et al. 2019; Hartley and O’Neill                

2019). Short tandem repeats near protein-coding genes can regulate gene expression           

by recruiting transcription factors (Rockman and Wray 2002; Gemayel, et al. 2010), and             

euchromatic satellite repeats contribute to X Chromosome recognition during dosage          

compensation in Drosophila males (Menon and Meller 2012; Menon et al. 2014). 

In both humans and fruit flies, genetic polymorphism composed of repetitive           

sequences makes up a larger proportion of the genome than all single nucleotide             

variants (SNVs) combined (Chakraborty et al. 2018; The 1000 Genomes Project           

Consortium 2015). Moreover, repetitive sequence variants can have significant fitness          

effects, underlie ecological adaptations, drive genome evolution, and participate in          

genomic conflicts (e.g. (Daborn et al. 2002; Aminetzach et al. 2005;           

Montchamp-Moreau et al. 2006; Tao et al. 2007b, 2007a; Fishman and Saunders 2008;             

Larracuente and Presgraves 2012; Ellison and Bachtrog 2013; Van’t Hof et al. 2016;             

Battlay et al. 2018; Chakraborty et al. 2018, 2019)). The selfish proliferation of repetitive              

sequences can alter protein coding genes (Lipatov et al. 2005), create intragenomic            

conflicts (Doolittle and Sapienza 1980; Orgel and Crick 1980) and trigger evolutionary            
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arms races within and between genomes (Werren et al. 1988; Aravin et al. 2007; Ellis et                

al. 2011; Cocquet et al. 2012; Lindholm et al. 2016; Blumenstiel 2019; Parhad and              

Theurkauf 2019; Rathje et al. 2019). For example, centromeric repeats can drive            

through female meiosis, causing rapid evolution of centromere proteins to restore equal            

segregation (Henikoff et al. 2001). Repeats can also be the target of selfish meiotic              

drivers in males (e.g. (Larracuente and Presgraves 2012)), which may drive the rapid             

evolution of these repeats to escape the driver (e.g. (Cabot et al. 1993; Larracuente              

2014)). The lack of recombination and male-limited transmission of Y chromosomes           

also create opportunities for conflicts involving repetitive DNA to evolve, such as            

sex-chromosome meiotic drive. Such conflicts have driven the proliferation of sex-linked           

gene families in mammals and Drosophila (Cocquet et al. 2012; Kruger et al.             

2019)(reviewed in (Jaenike 2001)). These conflicts may also impose selection          

pressures that trigger the rapid turnover of Y-linked repeats (Lohe and Roberts 1990;             

Bachtrog 2004; Larracuente and Clark 2013; Mahajan et al. 2018; Wei et al. 2018). 

The very nature of repetitive sequences makes them difficult to study.           

Whole-genome shotgun sequencing of reads shorter than common repeats yields          

erroneous, fragmented, and incomplete genome assemblies in repetitive regions         

(Salzberg and Yorke 2005; Hoskins et al. 2002; Alkan et al. 2011; Treangen and              

Salzberg 2011; Hoskins et al. 2015). Reference-quality genomes have historically been           

available only for distantly related species, making it difficult to investigate the            

evolutionary dynamics of repetitive sequences (reviewed in (Plohl et al. 2012; Lower et             

al. 2018; Blumenstiel 2019)). Long-read based assemblies help solve these challenges           

because they can be nearly complete, contiguous, and accurate even in repetitive            

genomic regions (Steinberg et al. 2014; Berlin et al. 2015; Chaisson et al. 2015;              

Chakraborty et al. 2016; Mahajan et al. 2018; Chakraborty et al. 2018; Solares et al.               

2018; Chang and Larracuente 2019). 

To understand the contributions of repetitive sequences to genome structure and           

evolution, we sequenced and assembled reference-quality genomes of Drosophila         

simulans, D. sechellia, and D. mauritiana. These three species, collectively known as            
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the Drosophila simulans species complex (or sim-complex (Kliman et al. 2000)),           

comprise the nearest sister species to D. melanogaster, and are virtually equally related             

to each other (Fig. 1A), likely as a consequence of rapid speciation (Garrigan et al.               

2012; Pease and Hahn 2013). The four fruit fly species together comprise the D.              

melanogaster species complex (or mel-complex) (Hey and Kliman 1993). The          

mel-complex serves as a model system for studying speciation (Tao et al. 2001; Wu              

2001; Meiklejohn et al. 2018), behavior (Ding et al. 2019), population genetics (Kliman             

et al. 2000; Begun et al. 2007; Garrigan et al. 2012), and molecular evolution (Moriyama               

and Powell 1997; Ranz et al. 2007; Hu et al. 2013). All four species are reproductively                

isolated from one another, producing either sterile or lethal hybrids (Barbash 2010).            

They exhibit unique ecological adaptations: D. sechellia larvae specialize on a host fruit             

toxic to most other Drosophila species (R’Kha et al. 1991) whereas D. melanogaster             

larvae can thrive in ethanol concentrations lethal to the sim-complex species (Merçot et             

al. 1994). In euchromatic regions, these species show ~95% sequence identity (Begun            

et al. 2007; Garrigan et al. 2012). However, the degree of interspecific divergence in              

repetitive genomic regions that are not represented in current assemblies is unknown            

(Chakraborty et al. 2018; Miller et al. 2018).  

Here we use high-coverage long read sequencing to assemble sim-complex          

genomes de novo, permitting us to resolve repetitive regions that have, until now,             

evaded scrutiny. These assemblies are comparable in completeness and contiguity to           

the latest release of the D. melanogaster reference genome. Our results uncover a             

dynamic picture of repetitive sequence evolution that leads to extensive genome           

variation over short timescales. 
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Figure 1. Reference-quality de novo genome assemblies of the Drosophila          
melanogaster species complex. (A) Phylogeny showing the evolutionary relationship         
among the members of four mel-complex species. (B) Contiguities of the new            
assemblies from the sim-complex and the reference assembly of D. melanogaster (R6).            
The contigs were ranked by their lengths and their cumulative lengths were plotted on              
the Y-axis. The colors represent different species. The D. melanogaster genome is the             
release 6 assembly (Hoskins et al. 2015). For previous work, D. simulans is             
ASM75419v3 (Hu et al. 2013), D. sechellia (r1.3) is from ( Drosophila 12 Genomes             
Consortium 2007), and D. mauritiana  is from (Garrigan et al. 2014) . 
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RESULTS 

Contiguous, accurate, and complete assemblies resolve previous       

misassemblies 

We collected deep (100–150 fold autosomal coverage) long read sequence data from            

adult male flies (supplemental Fig. S1–2; supplemental Table S1) to assemble           

reference-quality genomes de novo for the three sim-complex species. Our assemblies           

are as contiguous as the D. melanogaster reference (Hoskins et al. 2015) (Fig. 1B,              

supplemental Fig. S3, supplemental Table S2). In all three species, single contigs span             

the majority of each chromosome arm, except the X Chromosome in D. sechellia. Our              

scaffolds include the entirety of the euchromatin and large stretches of pericentric            

heterochromatin (Fig. 1B, Fig. 2, supplemental Fig. S4). We assembled more than            

20-Mbp of pericentric heterochromatin (Fig. 2A), overcoming difficulties associated with          

these genomic regions (Khost et al. 2017; Chang et al. 2019).  

Comparison of our assemblies to the D. melanogaster genome recovers synteny           

expected between the species across major chromosome arms (Fig. 2; supplemental           

Fig. S4). Genome-wide, ~15% of sim-complex genome content fails to align uniquely to             

D. melanogaster. Within aligned sequence blocks, the sim-complex species show ~7%           

divergence from D. melanogaster (supplemental Fig. S5). Preservation of synteny          

between the genomes suggests that there are no large errors, which is further             

supported by the evenly distributed long-read coverage (supplemental Fig. S1–2) and           

mapping of BAC sequences across the assembled chromosomes (supplemental Fig.          

S6; supplementary text). We corrected errors previously noted in the draft assemblies of             

these species (supplemental Fig. S7 and supplemental Table S3), including a ~350-kb            

3L subtelomeric fragment misassembled onto the 2R scaffold in the previous D.            

simulans assembly (Schaeffer et al. 2008). Our assemblies are also highly accurate at             

the nucleotide level, as concordance between our assemblies and Illumina data is  
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Figure 2. Chromosomal rearrangements in the sim-complex species. We used mauve           
(A) and minimap2 (Li 2018) (B) to show synteny between the members of the              
sim-complex and D. melanogaster. A) Colored rectangles show positions of syntenic           
collinear blocks free from internal rearrangements compared to the D. melanogaster           
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comparable to that of D. melanogaster (cf QV = 44.0–46.3 for sim-complex species vs.              

44.3 for D. melanogaster; supplemental Table S4). The sim-complex assemblies are           

highly complete, with numbers of single-copy conserved Dipteran orthologs (BUSCO;          

(Simão et al. 2015)) comparable to that of D. melanogaster (98.6-99% BUSCO;            

supplemental Table S5). Moreover, we detected more D. melanogaster orthologous          

genes in our sim-complex assemblies compared to the previous assemblies          

(supplemental Table S6; supplementary text). 

We also assembled entire Wolbachia genomes from D. mauritiana ( wMau) and           

D. sechellia ( wSech) (supplemental Table S7); our D. simulans wXD1 strain was not             

infected with Wolbachia. Our assemblies reveal extensive and previously unknown          

structural divergence between closely related Wolbachia genomes. w Sech is 95.1%          

identical to w Ha (supergroup A) from D. simulans. We detect a single inversion             

differentiating wSech from wHa (supplemental Fig. S8A). wMau is 95.8% identical to            

w No from D. simulans (supergroup B), and >99.9% identical to other recently published             

Wolbachia genomes from D. mauritiana (available from NCBI under accessions          

CP034334 and CP034335)(Lefoulon et al. 2019). We infer extensive (15) structural           

rearrangement events between recently diverged Wolbachia lineages, w No and wMau,          

under double-cut-and-join (DCJ) model (supplemental Fig. S8B) (Lin and Moret 2008). A           

recent study of Wolbachia from different isolates of D. mauritiana identified four            

deletions in wMau relative to w No (Meany et al. 2019). Our assemblies indicate that              
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reference (r6; see details in Materials and Methods). Each chromosome arm is plotted             
with its own scale, with position in megabases indicated above each chromosome.            
Blocks that appear below the black line are in an inverse orientation. Lines connect              
homologous colored blocks between genomes, and crossing lines indicate structural          
rearrangements. Along the euchromatic chromosome arms, there are three major          
inversion events (X, 3R, and 4). The heterochromatic regions have significantly more            
rearrangements than the euchromatin (see text). Pericentromeric heterochromatic        
regions are marked with a solid black bar and the circles correspond to centromeres.              
B) The dot plots for the whole genome and each chromosome arm between the              
sim-complex species and D. melanogaster. 
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these deletions are associated with other SVs. Three of the four deletions (CNVs 1, 3,               

and 4 in supplemental Fig. S8C) occur at rearrangement breakpoints, while the fourth             

(CNV 2) shows a segment repeated in wNo flanking the segment deleted in wMau.              

Finally, w Mau maintains a single-copy segment in one of the deletions (CNV 1) which              

itself is a dispersed duplication in w No (supplemental Fig. S8C). It remains unclear             

whether any of these structural changes contribute to the lack of fecundity effects or              

cytoplasmic incompatibility caused by infection with wMau (Meany et al. 2019).  

Clade- and species-specific genomic rearrangements 

We computed locally collinear alignment blocks with Mauve (Lin and Moret 2008)            

to infer genomic rearrangements between species. We discovered 535–542         

rearrangements between D. melanogaster and the sim-complex (~90 mutations per          

million years), and 113–177 rearrangements within the sim-complex (226–354         

mutations per million years; supplemental Table S8). Heterochromatic regions harbor          

95% of all genomic rearrangements (supplemental Fig. S9 and supplemental Table S8).            

In euchromatin, there is an enrichment of rearrangements on the X Chromosome: 63%             

of all identified rearrangements (17/27) between D. melanogaster and the sim-complex           

species and all but one (12/13) rearrangement within the sim-complex species are            

X-linked (Fig 2A; supplemental Table S8).  

Within euchromatin, D. simulans, D. mauritiana , and D. sechellia differ from D.            

melanogaster by 23, 25, and 21 inversions, respectively. We recovered the 13.6-Mb D.             

melanogaster-specific 3R inversion (In(3R)84F1; 93F6–7; 3R:8,049,180–21,735,108)      

that was initially characterized cytologically (Sturtevant and Plunkett 1926) and          

confirmed by breakpoint cloning (Ranz et al. 2007)(Fig. 2). Among nine inversions            

shared in all sim-complex species, four are also present in the outgroup species D.              

yakuba and D. ananassae, suggesting that they occurred in the D. melanogaster            

lineage. The remaining five are found only in the sim-complex species. The sim-mau,             

sim-sec, and mau-sec species pairs share 5, 3, and 4 euchromatic inversions absent in              

the third species, respectively. For example, D. sechellia and D. mauritiana, but not D.              
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simulans, share a 460-kb X-linked inversion (X:8,744,323–9,203,725 and        

X:8,736,133–9,203,526, respectively) spanning 45 protein-coding genes (Fig. 2,        

supplemental Fig. S10A). 

We also observe evidence for two large (>100-kb) inversions within          

pericentromeric heterochromatin on Chromosomes 3 and X (Fig. 2, supplemental Fig.           

S11A–D). Because D. erecta shares the same configuration as the sim-complex           

species, the pericentric inversion on Chromosome 3 likely occurred in the D.            

melanogaster lineage (supplemental Fig. S12). We also observed an ~700-kb inversion           

in the X heterochromatin of sim-complex species spanning 35 genes (22.4–23.1Mb on            

D. melanogaster X; Fig. 2, supplemental Fig. S4B, 4H, 4N and S10). This inversion is               

sim-complex specific, and is absent in D. melanogaster, D. yakuba, and D. erecta. We              

also find large, species-specific heterochromatic inversions on 3R in D. sechellia (Fig. 2,             

supplemental Fig. S11A–B) and 2R in D. mauritiana (supplemental Fig. S13). 
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Figure 3. The repeat content across the chromosome arms in mel-complex species. We             
estimated the repeat content in the genome using RepeatMasker (Smit et al. 2013).             
Each bar represents the proportion of different repeat types in 100-kb windows. The red              
dashed vertical lines indicate the euchromatin-heterochromatin boundaries. 

Repetitive DNA 

Our annotations of repetitive DNA (supplementary File S1) revealed substantially          

greater repeat abundance in the sim-complex genomes compared to older assemblies           

of these species (supplemental Fig. S14). On the five large chromosome arms, the             

density of repetitive elements increases approaching the euchromatin-heterochromatin        
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boundary, consistent with patterns of TE density in D. melanogaster (Kaminker et al.             

2002; Bergman et al. 2006)(Fig. 3). Below we describe our analyses of the different              

classes of repetitive elements. 

Distribution of satellites 
We identified three novel complex satellite arrays in the sim-complex, which we named             

for their monomer size (90U, 193XP, and 500U). 500U is located primarily on the              

unassigned contigs and cytologically near centromeres (Chang et al. 2019; Talbert et al.             

2018). The 90U satellite corresponds to one of the non-transcribed ribosomal DNA            

(rDNA) spacer (NTS) subunits (Stage and Eickbush 2007). 90U repeats are adjacent to             

the 28S rDNA subunit and the 240-bp NTS repeat sequences, both on X-linked and              

unassigned contigs. We find a large 193XP locus in the pericentromeric           

heterochromatin adjacent to, but distinct from, the rDNA locus. In D. simulans and D.              

mauritiana, the 193XP loci span at least 48 kb. The 193XP locus is shared across the                

sim-complex but is absent in the outgroup species D. melanogaster, D. erecta, and D.              

yakuba , suggesting that it arose in the ancestor of the sim-complex. Consistent with our              

assemblies, we detect fluorescence in situ hybridization signal for 193XP only on the X              

pericentromere in the sim-complex (supplemental Fig. S15). 

We also find smaller satellite arrays in the euchromatin (supplemental Table S9)            

as has been previously reported (Kuhn et al. 2012; Gallach 2014; Waring and Pollack              

1987; DiBartolomeis et al. 1992). Satellites comprise only ~0.07% of bases in            

autosomal euchromatin, but they comprise 1% of X-linked euchromatin in D.           

melanogaster and D. simulans, up to 2.4% in D. mauritiana, and more than 3.4% in D.                

sechellia (supplemental Table S9). The number in D. sechellia is a minimum estimate             

because its assembly contains 6 gaps in X-linked euchromatic satellite regions. The            

location, abundance, and composition of euchromatic satellites differ substantially         

between species. For example, a complex satellite called Rsp-like (Larracuente 2014)           

recently expanded in D. simulans and D. mauritiana , and inserted into new X-linked             

euchromatic locations within existing arrays of another satellite called 1.688. Large           
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blocks of 1.688 (Lohe and Brutlag 1987) and Rsp-like (Larracuente 2014; Sproul et al.              

2020) differ in abundance and location in the heterochromatin of all four species. 

Transposable elements  

We annotated euchromatic TEs across D. melanogaster and the three          

sim-complex species (see Methods). Unless otherwise noted, our results are based on            

comparisons of TE content (i.e. number of bases) rather than the number of TE              

insertions (i.e. number of events). We find that the sim-complex genomes host 67–83%             

as much TE sequence as D. melanogaster (Fig. 4A). The major difference in TE              

composition among the four mel-complex species is the enrichment of LTR           

retrotransposons in D. melanogaster (Kaminker et al. 2002; Bergman and Bensasson           

2007; Kofler et al. 2015), which carries 1.3–1.8 Mbp more LTR bases than the three               

sim-complex species (Fig. 4A–B). Both DNA and non-LTR transposon content in D.            

melanogaster are similar to those of the sim-complex species (Fig. 4A-B). Most TE             

bases (66–72%) in the sim-complex are found in only one species’ genome (Fig 4C),              

implying that these sequences have resulted from recent transposon activity.  
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Figure 4. Euchromatic transposon sequence content in each species and their ancestral            
lineages in the mel-complex. The bars represent the absolute content (A & C) or relative               
proportion within each category (B & D) of TE bases due to DNA, and LTR and                
non-LTR retrotransposon TEs. A and B show total TE content in each species. Panels              
C and D show the TE content confined to specific lineages. In panels C and D the                 
species names indicate TE sequence found only in that genome; the red circles indicate              
TE content found in two sim-complex species; the blue circles indicate TEs found in the               
sim-complex but not D. melanogaster ; and the yellow circles indicate TE sequence            
found in all four mel-complex species.  
 

We also find that TE composition differs across the lineages that gave rise to              

these four species (Fig. 4D; supplemental Fig. S16). Within the syntenic TE content             

shared by all four mel-complex species, non-LTR retrotransposon sequence is the most            

prevalent (52%), followed by DNA transposons (30%) and LTR retrotransposons (18%).           

In contrast, orthologous TE sequences present in all three sim-complex species but not             
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D. melanogaster are enriched in DNA transposons, which make up 71% of this             

orthologous sequence (Fig. 4D) despite being shorter than other TE classes           

(supplemental Fig. S17). The INE-1 element (also called DINE-1 or DNAREP1) is a             

highly abundant DNA transposon in Drosophila (Quesneville et al. 2005; Yang and            

Barbash 2008) that has contributed to an abundance of shared INE-1 elements fixed in              

mel-complex (Sackton et al. 2009). In our assemblies, INE-1 makes up 46% of shared              

TE content in the lineage leading to the sim-complex, and a significant, but smaller              

proportion (13.7%) in the mel-complex lineage. The TE composition of species-specific           

sequences is dominated by LTR elements (48–57%) followed by non-LTR elements           

(27–40%), with a smaller contribution of DNA elements (12–16%) (Fig. 4D).  

Table 1. TE bases in D. melanogaster , D. simulans , the ancestral lineages of the              
sim-complex species (mau-sec-sim) and the mel-complex species (mel-mau-sec-sim) in         
6,984 conserved genes. Verification of transcript expression in the sim-complex is           
based on Iso-Seq from D. simulans (Nouhaud 2018), so species-specific classifications           
are not available for D. mauritiana or D. sechellia . 
 

 
TE sequences can get incorporated into host genes (Lipatov et al. 2005). We find              

0.8–1.6 Mb of TE sequence that overlaps with gene models in D. melanogaster and D.               

simulans. A small minority of young genic TEs (present only in D. melanogaster, only in               

D. simulans, or in the sim-complex but not D. melanogaster ) are exonic (7–18%; Table              

1). In contrast, half of the TE sequence present in all four mel-complex species is exonic                

(52%). This preponderance of exonic TE content in the mel-complex ancestor exceeds            

even the enrichment of non-LTR sequence across the whole genome (Compare           

supplemental Fig. S18 and Fig. 4D). 
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Lineage Genic (bp) Exonic (bp) (% of genic) Intronic (bp)(% of genic) 

D. melanogaster 1,621,900 292,080 (18.0%) 1,329,820 (82%) 

D. simulans 806,226 140,174 (17.3%) 666,052 (82.7%) 

mau-sec-sim 88,202 5,906 (6.7%) 82,296 (93.7%) 

mel-mau-sec-sim 185,217 96,849 (52.3%) 88,368 (47.7%) 
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Intron indel mutation patterns  

We compared 21,860 introns in 6,289 orthologous genes with conserved annotation           

positions in all four mel-complex species. We find that introns containing TE-derived            

sequences or complex satellites (‘complex introns’) range from 530–850bp longer in D.            

melanogaster (paired t-tests, all p-values < 0.001; supplemental Fig. S19), due largely            

to longer intronic TEs (mean TE length = 4,132 bp) compared to the sim-complex              

species (mean TE lengths of D. simulans = 2,429 bp, D. mauritiana = 2,253 bp, D.                

sechellia = 2,287 bp; supplemental Fig. S20). Among sim-complex species, D. sechellia            

has the longest complex introns in heterochromatin (both paired t-tests p-values < 0.05)             

but not in euchromatin (paired t-tests p-value > 0.09; supplemental Table S10 and             

supplemental Fig. S19). Similar to the complex introns, introns without transposons or            

complex satellite sequences (‘simple introns’) are significantly longer in D. melanogaster           

than the sim-complex species (paired t-tests, all p-values < 1e-7, supplemental Fig.            

S19; supplemental Table S10), but the mean length difference is less than 3 bp              

(supplemental Table S10). Consistent with a previous report (Presgraves 2006), we           

infer that this difference is partly due to an insertion bias in D. melanogaster (see               

supplementary text).  

Tandem duplication 

We found 97 euchromatic tandem duplications shared by all three sim-complex species            

but absent from D. melanogaster (supplemental Table S11). Among these, at most 11             

overlapped with duplications observed in the outgroup D. yakuba, suggesting that at            

least 86 duplications originated during the ~2.5 million years in the ancestral lineage of 
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Figure 5. The expression divergence of maternal haploid ( mh) duplicates in the            
sim-complex species. A) The sim-complex shares a tandem duplication of mh and alg14             
genes. The expression of both mh copies is supported by Iso-Seq and Illumina             
transcriptome data. B) The proximal copy of mh ( mh-p) is primarily expressed in             
females and the distal copy ( mh-d) shows testis-biased expression in both D. mauritiana             
and D. simulans. 
 
the sim-complex since diverging from D. melanogaster. Of these duplications, 72%           

(62/86) overlap exons, 37% (32/86) overlap complete protein-coding sequence, and          

15% (13/86) overlap one or more full-length D. melanogaster genes. In total, 32             

complete coding sequences were duplicated, or 12.8 new genes / million years. Similar             

to the polymorphic duplicates in D. simulans (Rogers et al. 2014), tandem duplications             

fixed in the sim-complex ancestral lineage are strongly enriched on the X Chromosome             
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relative to the autosomes (43/86; p-value < 1×10 -10, proportion test against X-linked            

genes as a proportion of all genes, or 0.158). As a result, the X Chromosome carries                

both an excess of duplicates spanning full coding sequences (15 X-linked, 17            

autosomal; p-value = 4.7×10 -6, proportion test against the proportion of X-linked genes)            

as well as full transcripts (6 X-linked, 7 autosomal; p-value = 2.8×10 -3, proportion test              

against the the proportion of X-linked genes). 

Several duplication events include genes associated with divergence of important          

phenotypes, including: spermatogenesis ( nsr; (Ding et al. 2010)), meiosis ( cona),          

odorant binding ( obp18a), chromosome organization ( HP1D3csd), and behavior        

( RhoGAP18B) (Rothenfluh et al. 2006). Many are absent in the previous assemblies of            

the sim-complex species. For example, we discovered a new X-linked 3,324-bp           

duplication that copied the genes maternal haploid ( mh) and Alg14. Analysis of D.             

mauritiana and D. simulans RNA-seq reads from our strains and Iso-Seq reads from             

another D. simulans strain (Nouhaud 2018) suggests that the distal copy ( mh-d)            

produces a shortened transcript and protein compared to mh-p and the ancestral mh             

(Fig. 5A and supplemental Fig. S21–22). mh-p has female-biased expression in D.            

simulans, as does mh in D. melanogaster, where it has an essential maternal effect in               

zygotic cell division (Loppin et al. 2001; Delabaere et al. 2014). In contrast, mh-d              

exhibits testis-biased expression (Fig. 5B and supplemental Fig. S21), suggesting that           

mh-d may have acquired a male-specific function in the sim-complex species. 

We also uncovered a 4,654-bp tandem duplication located entirely in an inverted            

segment of the pericentric heterochromatin on the sim-complex X Chromosome that           

partially copied the gene suppressor of forked ( su( f)) (supplemental Fig. S23). This            

duplicate is absent in the previous D. mauritiana assembly (Garrigan et al. 2014) and              

the reference genomes of D. simulans (r2.02) and D. sechellia (r1.3). The proximal su(f)              

copy is missing the first 12 codons but retains the rest of the ORF of the parental su(f)                  

coding sequence, including the stop codon (supplemental Fig. S23). 
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Evolution of tRNA clusters 

Nuclear tRNAs are distributed both individually and in clusters containing identical           

copies coding for the same amino acids (isoacceptor tRNAs) and interspersed with            

those coding for different amino acids (alloacceptor tRNAs). Previous analyses found a            

smaller complement of tRNAs in D. simulans than in D. melanogaster ( Drosophila 12             

Genomes Consortium 2007), though it could have been due to a difference in assembly              

quality ( Drosophila 12 Genomes Consortium 2007; Rogers et al. 2010; Velandia-Huerto           

et al. 2016). We found genome-wide tRNA counts to be similar between the species,              

ranging from 295 in D. melanogaster to 303 copies in D. sechellia (supplemental Fig.              

S24 and supplemental Table S12).    

 

Figure 6. A) The subset of all nuclear tRNAs that differ in copy-number, isotype identity,               
or anticodon sequence between four mel-complex species. Each box represents an           
individual tRNA gene copy located within a larger syntenic cluster of tRNAs (grouped             
together as colored columns). Thick black outlines show tRNAs predicted to be            
pseudogenes. The thick white outline shows an arginine tRNA on Chromosome 2R            
predicted to use a different anticodon. B) Secondary structure alignments of orthologous            
nuclear tRNAs that exhibit anticodon shifts. The tRNA anticodon (red box), acceptor            
stem (purple), D arm (red), anticodon arm (green), and T arm (blue) are highlighted in               
the alignments. See Figure S24 for relative position on the chromosomes. 
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Our count of tRNAs in D. simulans (300 tRNAs) is substantially higher than previously              

reported using an older assembly (268 and 255 tRNAs; (Rogers et al. 2010;             

Velandia-Huerto et al. 2016), respectively), suggesting that the high rates of tRNA loss             

reported previously were due to assembly errors. 

We identified putative tRNA orthologs using alignments encompassing tRNAs,         

and identified syntenic blocks of tRNAs that differed in copy-number, identity (isotype),            

anticodon, and pseudogene designations (Fig. 6). To confirm gains or losses, we            

employed a BLAST-based approach, similar to methods used by (Rogers et al. 2010),             

to identify regions flanking orthologous tRNA clusters. We identified four tRNA           

anticodon shifts, including one isoacceptor and three alloacceptor shifts (Fig. 6B),           

consistent with previous reports (Rogers et al. 2010; Rogers and Griffiths-Jones 2014;            

Velandia-Huerto et al. 2016). We did not detect a previously identified alloacceptor shift             

(Met CAT > Thr CGT) (Velandia-Huerto et al. 2016; Rogers and Griffiths-Jones 2014),             

which could be due to allelic variation within D. simulans. In each case, the derived               

tRNA sequence was otherwise similar to and retained the predicted structure of the             

ancestral tRNA, suggesting that the alloacceptor shifts cause the aminoacyl tRNA           

synthetase (aaRS) to charge the affected tRNAs with the amino acid cognate to the              

ancestral tRNA, integrating the wrong amino acid during translation. 

Y Chromosome evolution 

We identified Y-linked contigs in the sim-complex genomes using D. melanogaster           

Y-linked genes as queries. Y-linked contigs were short (<1 Mb) and lacked some             

homologous exons present in raw reads (e.g. exons 8–10 of kl-3 and exons 6–8 of kl-5;                

supplemental Table S13; see also (Krsticevic et al. 2015; Chang and Larracuente            

2019)), highlighting the challenges of assembling Y chromosomes even with long-read           

sequencing. We recovered 66, 58, and 64 of 83 D. melanogaster Y-linked exons             

(70–80%; supplemental Table S13) in D. mauritiana, D. simulans, and D. sechellia,            

respectively. A previous study found a duplication involving the Y-linked kl-2 gene in D.              

simulans (Kopp et al. 2006). We find that all known Y-linked genes, except Ppr-Y, exist               
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in multiple copies in at least one of the sim-complex assemblies, and one exon of Ppr-Y                

appears duplicated in D. mauritiana raw long reads. Most duplication events correspond            

to partial tandem duplications (all but ARY, Pp1-Y1, and Pp1-Y2). We validated one             

duplicated exon from each of 10 Y-linked genes using PCR re-sequencing (except            

Pp1-Y1, which lacked mutations differentiating copies) (supplemental Table S13–14).         

Some duplicated exons (e.g. kl-5 exons 9 and 10) are shared among sim-complex             

species, while other exons vary in copy number among species. For example, ARY is              

single-copy in D. melanogaster and D. simulans, but present in >3 copies in D. sechellia               

and D. mauritiana. 

We identified 41 duplications from other chromosomes to the Y Chromosome           

only in the sim-complex species (supplemental Table S15), including 30 duplications not            

previously identified (Tobler et al. 2017). Among the 41 Y-linked duplications, 22 are             

shared by at least 2 sim-complex species and likely originated in the ancestor of the               

sim-complex. We verified putative Y-linked duplicates with PCR, confirming         

male-specificity for 16 of 17 of tested duplications (supplemental Table S14–15). We            

found that the Y Chromosomes of sim-complex species share an insertion derived from             

mtDNA that is absent in D. melanogaster.  

DISCUSSION  

Here we uncover novel structural variation in both euchromatin and highly repetitive            

pericentromeric regions of the D. simulans species complex. This variation is           

substantial: approximately 15% of sim-complex genomes are not 1:1 orthologous with           

D. melanogaster, more than twice the number of nucleotide substitutions between these            

genomes (Begun et al. 2007). We find most rearrangements in heterochromatic           

genomic regions (Jagannathan et al. 2017; Sproul et al. 2020) likely influenced by both              

the density of repetitive DNA and the scarcity of genes. The former renders DNA repair               

mechanisms mutagenic, creating rearrangements, while the latter reduces selection         

against rearrangements in these regions. Such heterochromatic rearrangements may         

play a role in speciation, as many factors linked to genetic incompatibilities between             
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species are located in pericentromeric heterochromatin (Bayes and Malik 2009; Cattani           

and Presgraves 2009; Ferree and Barbash 2009) 

We also discovered 62 tandem duplications present only in the sim-complex           

genomes that duplicate one or more protein-coding exons. Such mutations frequently           

contribute to adaptation, functional innovation, and genetic incompatibilities (Lynch and          

Force 2000; Long et al. 2003; Ting et al. 2004; Arguello et al. 2006; Katju and Lynch                 

2006; Tao et al. 2007b; Zhou et al. 2008; Chakraborty and Fry 2015; Helleu et al. 2016;                 

Eickbush et al. 2019). In the branch leading to the sim-complex, the rate of new gene                

acquisition is roughly one new gene every 78,000 years for full duplicates (~12.8             

duplicates per my) or one new gene per 40,000 years for partial gene duplicates (~24.8               

duplicates per my). The lower bound of these rates (1-2×10-9 new genes / gene / year)                

is consistent with previous estimates over a different timescale (Osada and Innan            

2008). These estimates suggest that the rate of new gene acquisition per single copy              

gene is similar to the per nucleotide neutral mutation rate (Keightley et al. 2014). The               

proportion of exonic duplicates fixed in the sim-complex branch is greater than the             

proportion of polymorphic exonic duplicates in D. simulans (0.72 vs 0.408, proportion            

test, p-value = 3.41×10-9) (Rogers et al. 2014), whereas the proportion of intergenic (i.e.             

putatively nonfunctional) duplicates shows the opposite pattern (0.28 vs 0.43, proportion           

test, p-value = 0.0029). This suggests that either the exonic duplicates accumulated            

under positive selection in the sim-complex ancestral lineage or the polymorphism data,            

which is based on short reads, is missing duplicates. Further study with polymorphism             

data from highly contiguous D. simulans genome assemblies will resolve this puzzle. 

These Drosophila genomes differ in TE content and composition, likely due to            

historical and ongoing differences in TE activity, natural selection, and host genome            

repression. Approximately 75–80% of TE content in all four genomes is due to             

species-specific insertions (Fig. 4), which are likely polymorphic within species          

(Chakraborty et al. 2018). This is consistent with most TE content resulting from recent              

activity ( Drosophila 12 Genomes Consortium 2007; Lerat et al. 2011; Kofler et al. 2015;              

Bargues and Lerat 2017). Non-LTR retrotransposons comprise the majority (52%) of the            
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old TEs found in all four mel-complex species, whereas DNA transposons comprise            

most (71%) of the younger fixed TE sequences found only in the sim-complex species.              

The widespread INE-1 DNA element (Quesneville et al. 2005; Yang and Barbash 2008;             

Sackton et al. 2009) is far more prevalent in the sim-complex ancestor than in the               

mel-complex ancestor, suggesting a burst of INE-1 activity in the sim-complex after            

diverging from D. melanogaster. On the other hand, D. melanogaster’ s genome is            

enriched for LTR elements due to recent TE activity in this lineage (Bowen and              

McDonald 2001; Bergman and Bensasson 2007; Kofler et al. 2015). These LTRs have             

increased the size of D. melanogaster’s genome through both intergenic and intragenic            

insertions, so that euchromatic introns containing repetitive DNA are ~10% longer in D.             

melanogaster than sim-complex species (supplementary text). However, while the         

sim-complex does harbor less TE content than D. melanogaster (Fig. 4A) ( Drosophila            

12 Genomes Consortium 2007), we observe only ~17% less total TE sequence in D.              

simulans than in D. melanogaster, which is substantially lower than the consensus            

(Young and Schwartz 1981; Dowsett and Young 1982; Nuzhdin 1995; Vieira et al. 1999;              

Vieira and Biémont 2004; Drosophila  12 Genomes Consortium 2007). 

Intron size evolution may also be modulated by differences in insertion and            

deletion mutations (Petrov et al. 1996; Petrov and Hartl 1998; Blumenstiel et al. 2002),              

recombination rates (True et al. 1996; Brand et al. 2018), effective population sizes             

(Kofler et al. 2012), or variation in constraint mediated by the presence of conserved              

noncoding elements (Manee et al. 2018). Further study is needed to determine which             

factors contribute to the differences between sim-complex genomes; for example,          

among the sim-complex species, D. sechellia has the longest complex introns in            

heterochromatin, but not in euchromatin (Supplemental Table S10), which could be a            

result of both low recombination rates in heterochromatin and the small effective            

population size of this species (Kliman et al. 2000; McBride 2007; Singh et al. 2007). A                

small effective population size in D. sechellia might also lead to the enrichment of tRNA               

anticodon shifts (75% of all observed) and expansion of euchromatic satellites. 
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TE activity is deleterious (Petrov et al. 2011; Cridland et al. 2013; Chakraborty et              

al. 2019): transposition disrupts genes and other functional elements (e.g. supplemental           

Fig. S25) (Cooley et al. 1988), TE sequences can act as ectopic regulatory elements              

(Feschotte 2008), and provide templates for ectopic recombination (Montgomery et al.           

1987; Miyashita and Langley 1988). Like other eukaryotes, Drosophila has evolved host            

defenses against TE proliferation (Aravin et al. 2007; Brennecke et al. 2007; Chung et              

al. 2008; Kelleher et al. 2018). Interspecific differences in these host defenses may             

contribute to the TE abundance differences between the sim-complex and D.           

melanogaster. TE insertions also alter local chromatin state in Drosophila, which can            

spread and suppress the expression of adjacent genes, with potentially deleterious           

consequences (Lee and Karpen 2017). Heterochromatin proteins are expressed at          

higher levels in D. simulans than D. melanogaster, which may cause heterochromatin to             

spread further from TEs into nearby regions in D. simulans (Lee and Karpen 2017).              

Thus, selection to eliminate euchromatic TE insertions may be stronger in D. simulans             

than in D. melanogaster , contributing to the excess of TEs in the latter. We identified a                

recent duplication of su( f)–a suppressor of Gypsy LTR retrotransposon expression–in all           

sim-complex species (Parkhurst and Corces 1986; Mazo et al. 1989). The extra copy             

could contribute to the lower activity and prevalence of LTR elements in the             

sim-complex species compared to D. melanogaster (Fig. 4). 

Sex chromosomes play a special role in the evolution of postzygotic hybrid            

incompatibilities (Coyne and Orr 1989). We find that euchromatic duplications,          

deletions, and inversions are enriched on the X Chromosome (supplemental Table           

S11): 90% of all rearrangements between sim-complex genomes are X-linked          

(supplemental Table S8). We also report an enrichment (~15-to-50-fold) of X-linked           

satellite sequences, exceeding even previous reports (~7.5-fold; (Garrigan et al. 2014)).           

Ectopic exchange between repeats during DNA repair can create genomic          

rearrangements. X-linked euchromatic satellites may contribute to the enrichment of          

rearrangements on this chromosome (Fig. 2A and Supplemental Table S9; (Sproul et al.             

2020)). It remains unclear whether these rearrangements contribute to the enrichment           
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of hybrid incompatibility factors on the X Chromosomes within the sim-complex (Tao            

and Hartl 2003; Masly and Presgraves 2007). The sim-complex genomes also contain a             

duplication of mh, whose protein product interacts with the X-linked heterochromatic           

satellite called 359-bp–a member of the 1.688 gm/cm3 satellites–to maintain genome           

stability during embryogenesis (Loppin et al. 2001; Tang et al. 2017; Delabaere et al.              

2014). The derived copy of mh produces a shorter transcript than the ancestral copy,              

has male-biased expression, and likely binds to 359-bp, given the similarity between the             

ancestral and derived proteins (supplemental Fig. S21). We speculate that the           

duplicated mh may play a role in the male germline regulating 359-bp related satellites              

that have proliferated across the sim-complex species X Chromosomes (Jagannathan          

et al. 2017; Sproul et al. 2020). 

Despite harboring few genes, the Drosophila Y Chromosome contributes to          

hybrid incompatibilities and affects phenotypes including longevity, immunity (Araripe et          

al. 2016; Case et al. 2015; Kutch and Fedorka 2015; Brown et al. 2020), meiotic drive                

(Voelker 1972; Atlan et al. 1997; Unckless et al. 2015), male fitness (Chippindale and              

Rice 2001) and gene expression across the genome (Lemos et al. 2010; Branco et al.               

2013). We discovered extensive divergence between mel-complex species in the genic           

content of Y chromosomes resulting from rampant inter- and intrachromosomal          

duplication. Y-linked gene content in Drosophila is shaped by gene duplication from the             

autosomes (Kopp et al. 2006; Koerich et al. 2008; Carvalho et al. 2015; Ellison and               

Bachtrog 2019). We detect 41 duplications from the other chromosomes to sim-complex            

Y chromosomes. We also discovered that nearly all Y-linked genes are duplicated in at              

least one species. This amplification of Y-linked genes appears to be a common feature              

of Drosophila Y Chromosomes, and may reflect a strategy to compensate for the             

heterochromatic environment or ongoing genetic conflict with the X Chromosome (Kopp           

et al. 2006; Koerich et al. 2008; Carvalho et al. 2015; Ellison and Bachtrog 2019). 

The structural divergence between these species extends to the endosymbionts          

they carry. We uncovered extensive structural evolution in Wolbachia genomes          

between w Mau and the corresponding D. simulans Wolbachia strains (supplementary          
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Fig. S8A–C). Further study is necessary to understand whether such variants affect            

important phenotypes like titer and transmission (Meany et al. 2019, Serbus and            

Sullivan 2007), virulence (Chrostek and Teixeira 2018), fitness (Turelli and Hoffmann           

1995; Kriesner et al. 2013), Wolbachia frequency variation (Cooper et al. 2017, Kriesner             

et al. 2016), or cytoplasmic incompatibility (Hoffmann and Turelli 1997). 

Previous assemblies were biased towards unique sequences, neglecting        

repetitive regions ( Drosophila 12 Genomes Consortium 2007; Bhutkar et al. 2008;           

Garrigan et al. 2012; Hu et al. 2013). However, these regions harbor extensive hidden              

genetic variation relevant to genome evolution and organismal phenotypes (Khost et al.            

2017; Chakraborty et al. 2018; Stein et al. 2018; Chaisson et al. 2019; Chang and               

Larracuente 2019; Stitzer et al. 2019; Chakraborty et al. 2020; Miga et al. 2020).              

Understanding the evolution of these rapidly diverging repetitive, complex genomic          

regions and their effects on adaptation and species differentiation requires a direct            

comparison between closely related species. Here we show that the genomes of these             

four Drosophila species have diverged substantially in the regions that have been            

previously recalcitrant to assembly. Future studies of interspecific variation in genome           

structure will shed light on the dynamics of genome evolution underlying speciation and             

species diversification. 

METHODS 

Data collection 

Unless otherwise stated, we use the following strains: D. mauritiana ( w12), D. simulans             

( wXD1), and D. sechellia (Rob3c / Tucson 14021-0248.25) (Garrigan et al. 2012;            

Meiklejohn et al. 2018). We extracted gDNA following Chakraborty et al. (2016). The             

standard 20-kb library protocol was carried out at the UCI genomics core using the              

P6-C4 chemistry on PacBio RS II. 
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To collect RNA sequencing, flies from the sim-complex species were reared at            

room temperature on standard cornmeal-molasses medium. We collected 20-30 3-5          

days old virgin males and females, and dissected testes from at least 100 males. For D.                

simulans and D. mauritiana , total RNA was extracted using TRIzol (Invitrogen) and            

phase-lock gel tubes (Fisher Scientific). Sequencing libraries generated by Illumina          

TruSeq Stranded mRNA kit were sequenced at the University of Minnesota Genomics            

Center. For D. sechellia , we isolated total RNA using the RNeasy Plus Kit (Qiagen), and               

constructed libraries using TruSeq RNA Sample Preparation Kit V2 (Illumina) with           

oligo-dT selection (data available in PRJNA541548). 

Genome assembly 

Nuclear genome assembly 
We assembled the nuclear genomes of the sim-complex species de novo  following the 

previously described approaches for assembly and polishing (Supplemental Fig. 

S26) (Chakraborty et al. 2016). To detect possible misassemblies, we identified 

orthologs of all D. melanogaster heterochromatic genes using BLAST and examined 

their gene structure. Because there are no detectable interchromosomal 

rearrangements in the mel-complex species (Bhutkar et al. 2008), we flagged contigs 

with genes that translocated between chromosome arms or that appeared on more than 

two contigs, as potential misassemblies. We then manually fixed 10 misassemblies 

based on these results (supplemental Table S16; supplemental Fig. S27). 

Mitochondrial genome assembly 

We extracted raw reads mapping to an existing partial mitochondrial genome using            

BLASR (Chaisson and Tesler 2012). ( https://github.com/mahulchak/mito-finder ). We       

selected the longest read exceeding a length cutoff of 18 kb (the mitochondrial genome              

is approximately 19 kb) and trimmed the redundant sequences resulting from multiple            
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polymerase passes through the SMRTbell template. Trimmed reads were polished          

twice with Quiver (Chin et al. 2013) to generate a consensus of all mitochondrial reads. 

Wolbachia genome assembly 
We took advantage of the fact that endosymbionts are co-sequenced with their hosts in              

shotgun sequencing data to assemble complete Wolbachia genomes from our PacBio           

data (Faddeeva-Vakhrusheva et al. 2017; Basting and Bergman 2019; Kampfraath et al.            

2019). We identified a complete Wolbachia genome in D. mauritiana from the Canu             

assembly. For D. sechellia , we collected all reads mapping to two reference Wolbachia             

genomes (CP003884.1 and CP003883) using BLASR v5.1 (Chaisson and Tesler 2012)           

with parameters (--clipping soft --bestn 1 --minPctIdentity 0.70). We assembled these           

reads using Canu v1.3 with the parameters (genomeSize=3m; (Koren et al. 2017)). No             

D. simulans reads were mapped to the Wolbachia genomes. 

Assembly validation and quality control 

We evaluated long read coverage to identify assembly errors and validate copy number             

variants. We mapped raw long reads to assemblies using BLASR (version           

1.3.1.142244; parameters: -bestn 1 -sam; (Chaisson and Tesler 2012)) or minimap2           

(2-2.8 parameters: -ax map-pb; (Li 2016)). We calculated long read coverage across the             

contigs using the SAMtools mpileup and depth ( -Q 10 -aa) commands. To validate             

CNVs, we chose 20 random CNVs for each species and inspected long read coverage              

across the regions containing CNVs following (Chakraborty et al. 2018). The presence            

of at least 3 long reads spanning the entire CNV was classified as evidence supporting               

the variant. 

We used the script in Masurca v3.2.1 (Zimin et al. 2013) to identify redundant              

sequences in our assemblies. We designated contigs as residual heterozygosity          

candidates (those greater than 40 kb require >90% identity and those between 10 and              

40 kb require >95% identity to the longest contigs). To detect microbial contamination in              

our assemblies (supplemental Table S7), we used BLAST+ v2.6.0 (Altschul et al. 1990)             
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with blobtools (0.9.19.4; (Laetsch and Blaxter 2017)) to search the NCBI nt database             

(parameters “-task megablast -max_target_seqs 1 -max_hsps 1 -evalue 1e-25”) and          

calculated the Illumina coverage of all contigs for D. mauritiana , D. simulans and D.              

sechellia, respectively (supplemental Table S17; supplemental Fig. S28).  

We applied the method of Koren et al. (Koren et al. 2018) to the polished,               

pre-scaffolded assemblies to estimate base level error rates from the concordance           

between Illumina reads and an assembly of the same strain (i.e. QV). We calculated              

BUSCOs in our assemblies with BUSCO v3.0.2 against the Diptera database           

(Waterhouse et al. 2017). Some duplicated BUSCOs in D. simulans remained due to             

persistent alternate haplotigs. We inspected these 71 duplicate BUSCOs, identifying 58           

with one member on Muller element contigs and the others on smaller, putative             

alternate haplotigs. BUSCO metrics were re-calculated without these unplaced contigs          

(Table S5). We also applied QUAST v5.0.2 (Mikheenko et al. 2018) to evaluate the              

quality of assemblies based on the mapping status of Illumina data. For D. simulans and               

D. sechellia, we used independently-generated male and female reads (Wei et al. 2018)             

to avoid the ascertainment bias due to the Illumina reads used in polishing our              

assemblies (supplemental Table S17). For D. mauritiana, we used the female Illumina            

reads for both our assembly and the previous assemblies (Garrigan et al. 2014). 

Scaffolding 

We scaffolded the assemblies with mscaffolder      

( https://github.com/mahulchak/mscaffolder) following (Chakraborty et al. 2018) using D.        

melanogaster as the reference. Scaffolded contigs were joined with 100 Ns and            

unscaffolded contigs were prefixed with ‘U’. 
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 Annotation 

Transcript annotation 

We mapped transcripts and translated sequences from D. melanogaster (r6.14) to each            

assembly using MAKER2 (v2.31.9; (Holt and Yandell 2011). We also generated           

RNA-seq from whole females, whole males, and testes from the sim-complex species.            

We mapped this data (see details in supplemental Table S18) using HISAT2.1.0 with             

the MAKER2 annotation, and then used StringTie 1.3.4d to generate consensus           

annotations (Pertea et al. 2016). We further annotated putative duplicated genes in D.             

simulans using Iso-Seq data from (Nouhaud 2018). We applied the IsoSeq3 pipeline            

(v3.1.2) to correct and polish the raw reads, then generated full length cDNA sequences              

(Gordon et al. 2015). Polished cDNA sequences were mapped to the assembly using             

minimap2 (r2.16, (Li 2016)) with parameters “-t 24 -ax splice -uf --secondary=no -C5”.             

We then used cdna-cupcake (v10.0.1 with the parameter “--dun-merge-5-shorter”;         

https://github.com/Magdoll/cDNA_Cupcake) to cluster the isoforms in the cDNA        

alignment and transfer it to the annotation. We used BLAST (-evalue 1e-10; (Altschul et              

al. 1990) homology to assign the predicted transcripts to D. melanogaster transcript            

sequences. To identify conserved introns, we kept isoforms with the same numbers of             

exons and only used introns flanked by exons of similar size (within 10% length              

difference) in each species. To compare intron sizes between species, we used the             

longest isoform from each gene. We also annotated 61 introns from 6 genes with large               

introns (> 8 kb) based on BLAST results. 

 

Large structural variant detection  

To identify large scale synteny , we created whole-genome alignments with the Mauve            

aligner (build 2015-2-13) using the progressiveMauve algorithm (Darling et al. 2010)           

with the default parameters: default seed weight, determine LCBs (minimum weight =            
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default), full alignment with iterative refinement. We plotted gene density based on Dm6             

annotations in D. melanogaster  was plotted using Karyoploter (Gel and Serra 2017)). 

Annotation of repetitive elements 

We annotated new complex satellites using Tandem Repeat Finder and annotated           

novel TEs using the REPET TE annotation package (Flutre et al. 2011) (supplemental             

Fig. 29A, B). We removed complex satellite annotations from the Drosophila Repbase            

release (20150807), and combined the rest of the library with our newly annotated             

satellites and TEs. We then updated repeat classifications (supplemental Fig 29C) and            

used the resulting library (Supplemental File S1) to annotate the three sim-complex            

species and the D. melanogaster reference with RepeatMasker v4.0.5 (Smit et al.            

2013)(supplemental Fig. 29). 

We calculated the proportion of each repeat family and the proportion of TEs that              

are DNA transposons, non-LTR, and LTR retrotransposons in 100-kb windows across           

the scaffolds containing major chromosome arms. We determined approximate         

euchromatin/heterochromatin boundaries in the major scaffolds based on boundaries         

from D. melanogaster (Hoskins et al 2015) in each sim-complex assembly. We            

considered Chromosome 4 and all unassigned contigs to be heterochromatin. TE           

sequence annotations in our D. simulans assembly were called exonic when they fell             

inside the alignment between the Iso-Seq transcript and the genome. 

tRNA annotation and analysis 

We used tRNAscan-SE v1.4 (options: -H; (Lowe and Eddy 1997) to annotate tRNAs             

and predict secondary structures in the D. melanogaster reference (r6.09) and in            

sim-complex assemblies. We sorted tRNAs by position and represented them as           

peptide sequences based on the predicted tRNA isotype that we aligned using            

MUSCLE v3.8.31 (Edgar 2004). We inspected these coarse alignments of tRNA           

positions for each chromosome (X, 2L, 2R, 3L, 3R) using conservation of gene order,              

strand orientation, inter-tRNAs distances, anticodon sequence, and intron positions to          
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identify positional tRNA orthologs within syntenic clusters (see supplementary text). We           

also used a BLAST-based orthology discovery method—similar to methods described in           

Rogers et al (2010)—to map tRNAs from D. mauritiana, D. sechellia , or D. simulans that               

did not share positional orthologs with tRNAs in D. melanogaster (see supplementary            

text). 

Genomewide SV annotation 

We aligned each member of the sim-complex to D. melanogaster (Hoskins et al. 2015)              

using MUMmer 4.0 (NUCmer -maxmatch) (Marçais et al. 2018) and LASTZ (Harris            

2007). MUMmer alignments were processed using SVMU v0.3 (Structural Variants from           

MUMmer; https://github.com/mahulchak/svmu commit 9a20a2d; (Chakraborty et al.       

2018, 2019) to annotate the SVs as duplicates originating in either the sim-complex or              

in D. melanogaster. We added duplications that MUMmer failed to recover using an             

approach based on LASTZ alignments (Schwartz et al. 2003) and UCSC Genome            

Browser alignment chaining. The LASTZ/axtChain workflow is available at         

https://github.com/yiliao1022/LASTZ_SV_pipeline (Kent et al. 2003). Additional details       

are provided in the supplement (see supplementary section “SV Validation and           

analysis”).  

Shared TE analysis 

We limited the shared TE analysis to euchromatic regions. To identify TEs shared             

between species, we performed all pairwise alignments of the sim-complex species to            

each other and to D. melanogaster using NUCmer -maxmatch -g 1000 in MUMmer v4.              

We extracted syntenic regions from alignment with svmu 0.3 and validated these            

regions by inspecting the dotplots (supplemental Fig. S30). To identify TE sequences            

completely contained with syntenic regions between species pairs, we used BEDTools           

(BEDtools -u -f 1.0 -a te.bed -b cm.eu.txt) (Quinlan and Hall 2010). We identified TEs               

shared among all four mel-complex species using the D. mauritiana genome as the             

reference. TEs shared between D. mauritiana–D. sechellia (A) and D. mauritiana– D.           
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simulans species pairs (B) were inferred to be derived from either the sim-complex or              

mel-complex ancestral lineages (Fig. 4), whereas TEs shared between A, B, and D.             

mauritiana– D. melanogaster pair were inferred to be derived from the TEs fixed only in              

the mel-complex ancestral lineage (BEDtools intersect -u -a te.simclade.bed -b          

te.dmau-dmel.bed). We report differences in the abundance of existing TE families           

within these genomes and make no inferences that TEs are restricted to or missing from               

any subset of these four species. 

Y Chromosome analyses 

We used BLAST to identify the orthologs of all known D. melanogaster Y-linked genes              

in the sim-complex assemblies (Altschul et al. 1990). The sequences of new Y-linked             

genes were extracted based on BLAST results. We inspected all alignments of            

duplicates to ensure that Y-linked duplicates are distinct from the parental copies.  

Cytological validation 

We conducted FISH following the protocol from (Larracuente and Ferree 2015). Briefly, 

brains from third instar larva were dissected and collected in 1X PBS, followed by an 

8-min treat of hypotonic solution (0.5% sodium citrate), fixed in 1.8% paraformaldehyde, 

45% acetic acid, and dehydrated in ethanol. The 193XP probe was made by IDT with 

5’-/56-FAM/ACATTGGTCAAATGTCAATATGTGGTTATGAATCC-3’ (supplemental 

Table S14). Slides are mounted in Diamond Antifade Mountant with DAPI (Invitrogen) 

and visualized on a Leica DM5500 upright fluorescence microscope, imaged with a 

Hamamatsu Orca R2 CCD camera and analyzed using Leica’s LAX software. 

DATA ACCESS  

All raw genomic data and RNA-seq have been deposited to NCBI. The accession             

numbers of the assemblies, Illumina and Pacific Biosciences raw reads are provided in             

supplemental Table S17. 
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