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ABSTRACT 

Epigenome-wide association studies of Alzheimer’s disease have highlighted neuropathology-

associated DNA methylation differences, although existing studies have been limited in sample 

size and utilized different brain regions. Here, we combine data from six DNA methylomic 

studies of Alzheimer’s disease (N=1,453 unique individuals) to identify differential 

methylation associated with Braak stage in different brain regions and across cortex. We 

identify 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs in the 

entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-cortex 

meta-analysis (N=1,408 donors) identifies 220 CpGs associated with neuropathology, 

annotated to 121 genes, of which 84 genes have not been previously reported at this 

significance threshold. We have replicated our findings using two further DNA methylomic 

datasets consisting of a further > 600 unique donors. The meta-analysis summary statistics are 

available in our online data resource (www.epigenomicslab.com/ad-meta-analysis/). 
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INTRODUCTION 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that is accompanied by 

memory problems, confusion and changes in mood, behavior and personality. AD accounts for 

~60% of dementia cases, which affected 43.8 million people worldwide in 20161. The disease 

is defined by two key pathological hallmarks in the brain: extracellular plaques comprised of 

amyloid-beta protein and intracellular neurofibrillary tangles of hyperphosphorylated tau 

protein2-4. These neuropathological changes are thought to occur perhaps decades before 

clinical symptoms manifest and the disease is diagnosed4. AD is a multi-factorial and complex 

disease, with the risk of developing disease still largely unknown despite numerous genetic and 

epidemiological studies over recent years.  

 

Several studies have suggested that epigenetic mechanisms may play a role in disease etiology. 

In recent years a number of epigenome-wide association studies (EWAS) have been performed 

in AD brain samples, which have predominantly utilized the Illumina Infinium 

HumanMethylation450K BeadChip (450K array) in conjunction with bisulfite-treated DNA to 

assess levels of DNA methylation in cortical brain tissue from donors with varying degrees of 

AD pathology5-12. Independently these studies have identified a number of loci that show robust 

differential DNA methylation in disease, and many of these overlap between studies, for 

example loci annotated to ANK1, RHBDF2, HOXA3, CDH23 and RPL13 have been 

consistently reported.  

 

Here we have performed a meta-analysis of six independent existing EWAS of AD brain5-

8,10,12, totalling 1,453 independent donors, to identify robust and consistent differentially 

methylated loci associated with Braak stage, used as a measure of neurofibrillary tangle spread 

through the brain, in different brain regions and across the cortex. In our intra-tissue meta-

analysis we identify 236 CpGs in the prefrontal cortex (N = 959 samples), 95 in the temporal 

gyrus (N = 608 samples) and ten in the entorhinal cortex (N = 189 samples) at Bonferroni 

significance, with none in the cerebellum (N = 533 samples). Our cross-cortex meta-analysis 

(N = 1,408 individuals) identified 220 Bonferroni significant CpGs, which were  replicated in 

two further independent DNA methylation datasets. Our meta-analysis approach provides 

additional power to detect DNA methylomic variation associated with AD pathology at novel 

loci, in addition to providing further replication of loci that have been previously identified in 

the smaller independent EWAS. 
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RESULTS 

Pathology-associated DNA methylation signatures in discrete cortical brain regions 

We identified six EWAS of DNA methylation in AD that had been generated using the 450K 

array and had a cohort size of > 50 unique donors. All had data on Braak stage available, which 

we used as a standardized measure of tau pathology spread through the brain (Table 1). We 

were interested in identifying epigenomic profiles associated with Braak stage in specific brain 

regions, leveraging additional power by meta-analysing multiple studies to identify novel loci. 

To this end, we performed an EWAS in each available tissue and cohort separately, looking 

for an association between DNA methylation and Braak stage, whilst controlling for age and 

sex (all tissues) and neuron/glia proportion (cortical bulk tissues only), with surrogate variables 

added as appropriate to reduce inflation. For discovery, we then used the estimated effect size 

(ES) and standard errors (SEs) from these six studies (N = 1,453 unique donors) for a fixed-

effect inverse variance weighted meta-analysis separately for each tissue (prefrontal cortex: 

three cohorts, N = 959; temporal gyrus: four cohorts, N = 608, entorhinal cortex: two cohorts, 

N = 189 cerebellum: four cohorts, N = 533) (Supplementary Figure 1).  

 

The prefrontal cortex represented our largest dataset (N = 959 samples) and we identified 236 

Bonferroni significant differentially methylated positions (DMPs) (P < 1.238 x 10-7 to account 

for 403,763 probes), of which 193 were annotated to 137 genes, with 43 unannotated loci based 

on Illumina UCSC annotation (Figure 1a, Supplementary Figure 2, Supplementary Data 1). 

Previous EWAS of the prefrontal cortex have consistently reported the HOXA gene cluster as 

a region that is hypermethylated in AD6,7, with a cell-type specific EWAS demonstrating this 

is neuronal-derived11. Indeed, the most significant DMP in the prefrontal cortex in our meta-

analysis resided in HOXA3 (cg22962123: ES [defined as the methylation difference between 

Braak 0 and Braak VI] = 0.042, P = 5.97 x 10-15), with a further 16 of the Bonferroni significant 

DMPs also annotated to this gene. This locus appeared to be particularly hypermethylated with 

higher Braak stage in the prefrontal cortex, and to a slightly lesser extent in the temporal gyrus 

(Supplementary Figure 3). There was no significant difference in methylation at this locus in 

the entorhinal cortex (P = 0.864), which is interesting given that the entorhinal cortex may 

succumb to pathology early in the disease process (Braak stage III). Of the 236 prefrontal 

cortex DMPs, 92% (217 probes) were nominally significant (P < 0.05) in the temporal gyrus, 

of which 12% (28 probes) were Bonferroni significant, whilst 9% (22 probes) were nominally 

significant in the entorhinal cortex, with 1% (3 probes) reaching Bonferroni significance 

(Figure 1b). The effect sizes for the 236 Bonferroni significant prefrontal cortex DMPs were 
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correlated with the effect sizes for the same probes in both the temporal gyrus (Pearson’s 

correlation coefficient (r) = 0.94, P = 6.17 x 10-112) and entorhinal cortex (r = 0.58, P = 1.80 x 

10-22) and  were enriched for probes with the same direction of effect (sign test: temporal gyrus 

P = 5.07 x 10-67, entorhinal cortex P = 6.88 x 10-26) (Supplementary Figure 4). For the 236 

Bonferroni significant prefrontal cortex DMPs these had the largest effect sizes in the 

prefrontal cortex, with a smaller effect size in the temporal gyrus and entorhinal cortex (Figure 

1c). Of these 236 DMPs, 29 of these had being previously reported at Bonferroni significance 

in previous publications on the individual cohorts5-7,12, including one probe annotated to ANK1, 

one probe annotated to HOXA3, one probe annotated to PPT2/PRRT1 and two probes annotated 

to RHBDF2, amongst others. However, our approach has identified 207 novel Bonferroni 

significant DMPs (although several had been reported in previous studies at a more relaxed 

significance threshold, or in regional analyses). This included several additional probes 

residing in genes already identified (from another probe) in earlier studies, for example a 

further 16 probes in HOXA3 and two probes in PPT2/PRRT1. Interestingly, we also identified 

a number of novel genes, including some which featured multiple Bonferroni significant DMPs 

including for example seven probes in AGAP2 and five probes in SLC44A2, amongst others. 

One other noteworthy novel Bonferroni significant DMP in the prefrontal cortex was 

cg08898775 (ES = 0.019, P = 4.03 x 10-9), annotated to ADAM10, which encodes for α-

secretase which cleaves APP in the non-amyloidogenic pathway. A differentially methylated 

region (DMR) analysis, which allowed us to identify areas of the genome consisting of  ≥ 2 

DMPs, revealed 262 significant DMRs in the prefrontal cortex (Supplementary Data 2), the 

most significant containing 20 probes and located in HOXA3 (chr7:27,153,212-27,155,234: 

Sidak-corrected p = 8.21 x 10-50, Supplementary Figure 5), as well as several other DMRs in 

the HOXA gene cluster. 

 

A meta-analysis of temporal gyrus EWAS datasets (N = 608 samples) identified 95 Bonferroni 

significant probes, of which 75 were annotated to 53 genes, with 20 unannotated probes using 

Illumina UCSC annotation (Figure 1a, Supplementary Figure 6, Supplementary Data 3). The 

most significant probe was cg11823178 (ES = 0.029, P = 3.97 x 10-16, Supplementary Figure 

7), which is annotated to the ANK1 gene, with the fifth (cg05066959: ES = 0.042, P = 4.58 x 

10-13) and 82nd (cg16140558: ES = 0.013, P = 8.44 x 10-8) most significant probes in the 

temporal gyrus also being annotated to nearby CpGs in that gene. This locus has been widely 

reported to be hypermethylated in AD from prior EWAS5,6,8,12, as well as in other 

neurodegenerative diseases such as Huntington’s disease and Parkinson’s disease13. Another 
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noteworthy gene is RHBDF2, where five Bonferroni significant DMPs in the temporal gyrus 

were annotated to (cg05810363: ES = 0.029, P = 2.25 x 10-11; cg13076843: ES = 0.031, P = 

2.97 x 10-11; cg09123026: ES = 0.012, P = 3.46 x 10-9; cg12163800: ES = 0.025, P = 5.85 x 

10-9; cg12309456: ES = 0.016, P = 1.33 x 10-8); and which has been highlighted in previous 

EWAS in AD in the individual cohorts5,6,12. Of the 95 Bonferroni significant DMPs in the 

temporal gyrus, 88% (84 probes) were nominally significant in the prefrontal cortex, of which 

29% (28 probes) were Bonferroni significant, whilst 54% (51 probes) were nominally 

significant in the entorhinal cortex, of which 6% (6 probes) were Bonferroni significant (Figure 

1b). Given the high degree of overlapping significant loci between the temporal gyrus and other 

cortical regions, it was not surprising that the ES of the 95 Bonferroni significant temporal 

gyrus probes were highly correlated with the ES of the same loci in both the prefrontal cortex 

(r = 0.91, P = 5.09 x 10-38) and entorhinal cortex (r = 0.77, P = 4.02 x 10-20) and were enriched 

for the same direction of effect (sign test: prefrontal cortex P = 5.05 x 10-29, entorhinal cortex 

= 2.30 x 10-25) (Supplementary Figure 8). The majority of the 95 Bonferroni significant DMPs 

in the temporal gyrus were hypermethylated, and the mean ES was greater in the temporal 

gyrus than the prefrontal cortex or entorhinal cortex (Figure 1c). Thirty-two of the 95 

Bonferroni significant DMPs in the temporal gyrus have been previously reported to be 

significantly differentially methylated in published EWAS, including for example three probes 

in ANK1 and the five probes in RHBDF2. Our meta-analysis approach in the temporal gyrus 

has identified 63 novel DMPs (at Bonferroni significance), including some novel genes with 

multiple DMPs, for example four probes in RGMA and two probes in CCND1, amongst others. 

Finally, our regional analysis highlighted 104 DMRs (Supplementary Data 4); the top DMR 

resided in the ANK1 gene (chr8:41,519,308-41,519,399) and contained two probes (Sidak-

corrected P = 1.72 x 10-21) (Supplementary Figure 9). The five DMPs in RHBDF2 that we 

already highlighted also represented a significant DMR (Sidak-corrected P = 8.47 x 10-21), with 

three other genomic regions containing large, significant  DMRs consisting of  ≥ 10 probes, 

such as MCF2L (chr13:113698408-113699016 [10 probes], Sidak-corrected P = 1.16 x 10-19), 

PRRT1/PPT2 (chr6:32120773-32121261 [17 probes],  Sidak-corrected P = 4.90 x 10-15) and 

HOXA5 (chr7:27184264-27184521 [10 probes], Sidak-corrected P = 1.60 x 10-7). 

 

The final cortical region we had available was the entorhinal cortex (N = 189), where we 

identified ten Bonferroni significant probes in our meta-analysis, all of which were 

hypermethylated with higher Braak stage (Figure 1a, Supplementary Figure 10, Supplementary 

Data 5). These ten probes were annotated to eight genes (Illumina UCSC annotation), with two 
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Bonferroni significant probes residing in each of the ANK1 and SLC15A4 genes. As with the 

temporal gyrus, the most significant DMP was cg11823178 (ES = 0.045, P = 5.22 x 10-10, 

Supplementary Figure 7), located within the ANK1 gene, with the fourth most significant DMP 

being located within 100bp of that CpG (cg05066959: ES = 0.062, P = 2.93 x 10-9). In total, 

eight of the ten DMPs in the entorhinal cortex had been reported previously at Bonferroni 

significance, including the two probes in ANK1. Two of the Bonferroni significant DMPs we 

identified in the entorhinal cortex were novel CpGs (cg11563844: STARD13, cg04523589: 

CAMP), having not been reported as Bonferroni significant in previous EWAS. Of the ten 

entorhinal cortex probes, 90% (9 probes) were nominally significant in the temporal gyrus, of 

which 60% (6 probes) were Bonferroni significant, whilst 70% (7 probes) were nominally 

significant in the prefrontal cortex, of which 30% (3 probes) were Bonferroni significant 

(Figure 1b). Of the four DMPs that were Bonferroni significant in only the entorhinal cortex, 

three of these were nominally significant in at least one other tissue, with just one probe unique 

to the entorhinal cortex, annotated to STARD13 (cg11563844, ES = 0.027, P = 1.07 x 10-8). 

The effect sizes of the ten Bonferroni significant DMPs in the entorhinal cortex were 

significantly correlated with the effect size of the same probes in the prefrontal cortex (r = 0.74, 

P = 0.01) and temporal gyrus (r = 0.85, P = 1.52 x 10-3) and were enriched for the same direction 

of effect (sign test: prefrontal cortex P = 0.021, temporal gyrus P = 1.95 x 10-3) (Supplementary 

Figure 11). The ten DMPs were hypermethylated in all three cortical regions, with the greatest 

Braak-associated ES in the entorhinal cortex (Figure 1c). A regional analysis identified seven 

DMRs (Supplementary Data 6); the top three DMRs (RHBDF2: chr17:74,475,240-74,475,402 

[five probes], P = 7.68 x 10-14, Supplementary Figure 12; ANK1: chr8:41519308-41519399 

[two probes], P = 4.89 x 10-13; SLC15A4: chr12:129281444-129281546 [three probes], P = 

5.24 x 10-12) were significant in at least one of the other cortical regions we meta-analyzed.  

 

To date, a few independent EWAS in AD have been undertaken in the cerebellum and none of 

these have reported any Bonferroni significant DMPs. In our meta-analysis we identified no 

Bonferroni significant DMPs, nor any DMRs in the cerebellum (Supplementary Figure 13), 

despite this analysis including 533 independent samples. There was no correlation of the ES 

for the Bonferroni significant DMPs we had identified in the meta-analyses of the three cortical 

regions with the ES of the same probes in the cerebellum (prefrontal cortex: r = 0.11, P = 0.08; 

temporal gyrus: r = 0.14, P = 0.17; entorhinal cortex: r = 0.48, P = 0.16; Supplementary Figure 

14).  

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2021. ; https://doi.org/10.1101/2020.02.28.957894doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.957894
http://creativecommons.org/licenses/by/4.0/


 8 

220 CpGs are differentially methylated across the cortex in AD 

We were interested in combining data from across the different cortical tissues to identify 

common differentially methylated loci across the cortex and also to provide more power by 

utilizing data from 1,408 unique individuals with cortical EWAS data available. As multiple 

cortical tissues were available for some cohorts, a mixed-effects model was utilized.  In this 

analysis we controlled for age, sex and neuron/glia proportion, with surrogate variables added 

as appropriate to reduce inflation. Using this approach, we identified 220 Bonferroni significant 

probes, of which 168 were annotated to 121 genes, with 52 DMPs unannotated using Illumina 

UCSC annotation (Figure 2a, Figure 2b, Table 2, Supplementary Data 7, Supplementary Figure 

15). All of the 220 probes were nominally significant (P < 0.05) in ≥ two cohorts, with ten of 

these probes being nominally significant in all six cohorts (Supplementary Figure 16), which 

included single probes annotated to ANK1, ABR, SPG7 and WDR81, two probes in DUSP27, 

three probes in RHBDF2 and one unannotated probe. We observed similar DNA methylation 

patterns across all cortical cohorts and tissues for the 220 probes with 219 of the 220 DMPs 

showing the same direction of effect in at least five cohorts. In total, 154 of the DMPs were 

hypermethylated, with 66 hypomethylated, representing an enrichment for hypermethylation 

(P = 4.85 x 10-10). This pattern of methylation  was evident across all cortical tissues but was 

not seen in the cerebellum (Supplementary Figure 17). Of the 220 DMPs we identified, 46 of 

these have been previously reported at Bonferroni significance in published EWAS, including 

multiple previously identified probes in ANK1 (cg05066959, cg11823178), MCF2L 

(cg07883124, cg09448088), PCNT (cg00621289, cg04147621, cg23449541) and RHBDF2 

(cg05810363, cg12163800, cg12309456, cg13076843). The most significant probe we 

identified in our cross-cortex analysis was cg12307200 (Table 2, ES = -0.015, P = 4.48 x 10-

16), which is intergenic and found at chr3:188664632, located between the TPRG1 and LPP 

genes and had been previously reported at Bonferroni significance by De Jager and colleagues 

with respect to neuritic plaque burden6 and by Brokaw and colleagues with respect to post-

mortem diagnosis12. Our cross-cortex meta-analysis approach has identified 174 novel DMPs 

(at Bonferroni significance), annotated to 102 genes. Although 11 of these genes had 

previously been reported at Bonferroni significance (another probe within that gene), the 

remaining 96 genes represent robust novel loci in AD. Many of these novel differentially 

methylated genes had multiple Bonferroni significant probes, for example five probes in 

AGAP2, three probes in HOXB3 and SLC44A2, and two probes in CDH9, CPEB4, DUSP27, 

GCNT2, MAMSTR, PTK6, RGMA, RHOB, SMURF1, THBS1, ZNF238 and ZNF385A 
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(Supplementary Data 7). Although some of these loci may have been reported in earlier AD 

EWAS, none of these were at Bonferroni significance and so here represent robust novel loci.  

 

We were interested to investigate whether specific functional pathways were differentially 

methylated in AD cortex and so performed a gene ontology pathway analysis of the 121 genes 

annotated to the 220 Bonferroni significant cross-cortex DMPs. We highlighted epigenetic 

dysfunction in numerous pathways (at nominal significance), interestingly including a number 

of developmental pathways, mainly featuring the HOXA and HOXB gene clusters 

(Supplementary Data 8). Given that we identified multiple DMPs in some genes, we were 

interested to investigate the correlation structure between probes in close proximity to each 

other to establish how many independent signals we had identified. Using a method developed 

to identify single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD)14, we 

collapsed the 220 Bonferroni significant loci into 165 independent (non-highly correlated [r < 

0.6 over 1mb]) signals (Supplementary Data 9). We found that the largest reduction in signals 

occurred in the HOXA and HOXB gene clusters, with the 18 DMPs in the HOXA region 

representing only two independent signals, whilst the seven DMPs in the HOXB region 

represented one independent signal.. Next we undertook a formal regional analysis to identify 

genomic regions of multiple adjacent DMPs and identified 221 DMRs, with the top DMR 

containing 11 probes and covering the HOXA region (chr7:27,153,212-27,154,305: P = 3.84 x 

10-35) (Figure 2c, Supplementary Data 10). The HOXA gene cluster further featured a number 

of times in our DMR analysis; four of the ten most significant DMRs fell in this genomic 

region, including DMRs spanning four probes (chr7:27146237-27146445: P = 4.11 x 10-27), 

33 probes (chr7:27183133-27184667: P = 2.22 x 10-20) and ten probes (chr7:27143235-

27143806: P = 1.75 x 10-18).  

 

Replication of pathology associated DMPs in the cortex  

To replicate our findings and to determine the cellular origin of DNA methylomic differences 

we used the estimated coefficients and SEs for these 220 probes generated in a seventh 

independent (Munich) cohort, which consisted of 450K data generated in the prefrontal cortex 

(N = 45) and sorted neuronal and non-neuronal nuclei from the occipital cortex (N = 26) (Table 

1). This cohort had not been used in our discovery analyses as < 50 samples were available. 

Notably, we identified a similar pattern of Braak-associated DNA methylation changes for the 

220 Bonferroni significant cross-cortex probes in this replication cohort, with a significantly 

correlated effect size between the discovery dataset and the replication prefrontal cortex (r = 
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0.64, P = 5.24 x 10-27), neuronal (r = 0.45, P = 1.56 x 10-12) and non-neuronal datasets (r = 0.79, 

P= 1.43 x 10-47) with a similar enrichment for the same direction of effect (sign test: prefrontal 

cortex P = 4.59 x 10-28, neuronal P = 6.13 x 10-15, non-neuronal  P = 1.06 x 10-42) (Figure 3a). 

The most significant probe from the cross-cortex meta-analysis (cg12307200) showed 

consistent hypomethylation in disease in all cohorts in all cortical brain regions, with this 

direction of effect replicated in the prefrontal cortex and non-neuronal nuclei samples, but not 

the neuronal nuclei samples, suggesting that this is primarily driven by non-neuronal cell types, 

which are likely to be glia (Figure 3b). We have developed an online database 

(www.epigenomicslab.com/ad-meta-analysis/), which can generate a forest plot showing the 

ES and SE across any of the discovery cohorts and the Munich sample types for any of the 

403,763 probes that passed our quality control. This allows researchers to determine the 

consistency of effects across cohorts for a given CpG site as well as the likely cellular origin 

of the signature. In addition, our tool can generate mini-Manhattan plots to show DMRs 

utilizing the summary statistics from the cross-cortex meta-analysis. 

 

Finally, we had access to DNA methylation data generated in an eighth independent (Brains 

for Dementia Research [BDR]) cohort. This consisted of Illumina Infinium HumanMethylation 

EPIC BeadChip (EPIC array) data in the prefrontal cortex in 590 individuals15. As this is the 

successor to the 450K array (which had been used for the other seven cohorts), there are some 

differences in genome coverage, and for the 220 Bonferroni significant cross-cortex DMPs we 

had identified in the discovery cohorts, only 208 probes are also present on the EPIC array. For 

these overlapping 208 probes, we observed a significantly correlated effect size between the 

discovery dataset and the BDR dataset (r = 0.53, P = 4.13 x 10-16) (Figure 3c), with all 208 

probes showing the same direction of effect (sign test P = 4.86 x 10-63).  

 

Cross-cortex AD-associated DMPs are enriched in specific genomic features 

To identify if the cross-cortex DMPs reside in specific genomic features, we used a Fisher’s 

exact test to look for an enrichment of the 220 DMPs using Slieker annotations16 

(Supplementary Data 11, Supplementary Figure 18). We observed a significant over 

representation of Bonferroni significant DMPs in CpG islands of gene bodies (odds ratio [OR] 

= 3.199, P = 4.76 x 10-10), and in CpG island shelves and non-CpG island areas of proximal 

promoters (OR = 3.571, P = 9.09 x 10-3 and OR = 1.641, P = 0.03, respectively). However, 

DMPs located in CpG islands in the proximal promoter were under-represented (OR = 0.353, 

P = 2.08 x 10-6). There was a significant over representation of the 220 cross-cortex DMPs in 
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the first exon (OR = 1.80, P = 0.02), with an under enrichment within 1500bp of the 

transcription start site (OR = 0.49, P = 3.82 x 10-3) (Supplementary Data 12, Supplementary 

Figure 19).  

 

 

DNA methylomic signatures in the cortex can explain variance in the degree of pathology 

We were interested to investigate whether the Braak-associated DNA methylation patterns we 

had identified across the cortex could accurately predict the pathological load of a brain sample 

and how much variance this explained. To this end we took samples within the discovery 

cohorts with either low pathology (Braak 0-II [controls]: N = 407), or high pathology (Braak 

V-VI [AD]: N = 589) and used these as a training dataset.  We then used elastic net regression 

to identify 110 probes in the 220 cross-cortex Bonferroni significant loci (Supplementary Data 

13) that were able to explain the most variance between post-mortem low pathology [control] 

from high pathology [AD] status in our training dataset (N = 996) (Supplementary Data 14, 

Figure 4). In our training data, we achieved an Area Under the Curve (AUC) of the Receiver 

Operating Characteristic (ROC) of 94.33% (CI = 92.88-95.64%, variance explained = 71.11%). 

We then tested its performance in the Munich replication samples (N = 38) and the BDR 

replication samples (N = 454), where it achieved an AUC of 73.95% (CI = 55.17-88.89%, 

variance explained = 20.18%) and 70.36% (CI = 65.52-75.12%, variance explained = 15.87%), 

respectively (Supplementary Data 14, Figure 4).  

 

DNA methylation signatures in AD cortex are largely independent of genetic effects 

DNA methylomic variation can be driven by genetic variation via methylation quantitative trait 

loci (mQTLs). To explore whether SNPs may be driving the methylation differences we 

observed (in cis) we used the xQTL resource to identify cis-mQTLs associated with the 220 

Bonferroni significant cross-cortex DMPs17. We identified 200 Bonferroni corrected mQTLs, 

which were associated with DNA methylation at 18 of the 220 cross-cortex DMPs 

(Supplementary Data 15). This suggests that the majority of Braak-associated DMPs are not 

the result of genetic variation in cis. None of these mQTLs overlapped with lead SNPs (or 

SNPs in LD) identified in the most recent genome-wide association study (GWAS) of 

diagnosed late-onset AD from Kunkle et al18. Next, we were interested in exploring whether 

DNA methylation is enriched in genes known to harbor AD-associated genomic risk variants. 

Using the AD variants from Kunkle et al18 we examined the enrichment of Braak-associated 

DNA methylation in 24 LD blocks harboring risk variants. Twenty of these LD blocks 
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contained > 1 CpG site on the 450K array and using Brown’s method we combined P values 

within each of these 20 genomic regions. We observed Bonferroni-adjusted significant 

enrichment in the cross-cortex data in the HLADRB1 (Chr6: 32395036-32636434: adjusted P 

= 1.20 x 10-3), SPI1 (Chr11: 47372377- 47466790, adjusted P = 5.76 x 10-3), SORL1 (Chr11: 

121433926- 121461593, adjusted P = 0.019), ABCA7 (Chr19: 1050130- 1075979, adjusted P 

= 0.022) and ADAM10 (Chr15: 58873555- 59120077, adjusted P = 0.022) LD regions 

(Supplementary Data 16).   

 

 

DISCUSSION 

This meta-analysis of AD EWAS utilizes six published independent sample cohorts with a 

range of cortical brain regions and cerebellum available as a discovery dataset. Two further 

independent cortical datasets where then used for replication, including data from sorted nuclei 

populations. Our data can be explored as part of an online searchable database, which can be 

found on our website (https://www.epigenomicslab.com/ad-meta-analysis). By performing a 

meta-analysis within each tissue, we have been able to identify 236, 95 and ten Bonferroni 

significant DMPs in the prefrontal cortex, temporal gyrus and entorhinal cortex, respectively. 

Although far fewer loci were identified in the entorhinal cortex compared to the other cortical 

regions, this is likely due to the reduced sample size in this tissue. In the cerebellum despite 

meta-analyzing > 500 unique samples, we identified no Braak-associated DNA methylation 

changes. Furthermore, there was no correlation of the effect size of Bonferroni significant 

DMPs identified in any of the cortical regions with the effect size of the same probes in the 

cerebellum. Taken together, this suggests that DNA methylomic changes in AD are cortex cell 

type specific. This observation is interesting as the cerebellum is said to be spared from AD 

pathology, with an absence of neurofibrillary tangles, although some diffuse amyloid-beta 

plaques are reported19. Interestingly, a recent spatial proteomics study of AD reported a large 

number of protein changes in the cerebellum in AD; however, the proteins identified were 

distinct from other regions examined and thus the authors suggested a potential protective 

role20. 

 

Although many loci showed similar patterns of Braak-associated DNA methylation across the 

different cortical regions, some loci did show some regional specificity. In order to identify 

CpG sites that showed common DNA methylation changes in disease we performed a cross-

cortex meta-analysis. Using this approach we identified 220 Bonferroni significant probes 
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associated with Braak stage of which 46 probes had been previously reported at Bonferroni 

significance in the individual cohort studies that we had used for our meta-analysis, for example 

two probes in ANK1, four probes in RHBDF2 and one probe in HOXA3, amongst others. 

Interestingly, our approach did identify 174 novel CpGs, corresponding to 102 unique genes, 

of which 84 genes had not been previously reported at Bonferroni significance in any of the 

previously published AD brain EWAS, highlighting the power of our meta-analysis approach 

for nominating new loci. This included 15 novel genes with at least two Bonferroni significant 

DMPs each, including five probes in AGAP2, three probes in SLC44A2 and two probes each 

in CDH9, CPEB4, DUSP27, GCNT2, MAMSTR, PTK6, RGMA, RHOB, SMURF1, THBS1, 

ZNF238 and ZNF385A. These genes had not been identified previously in an AD EWAS at 

this significance threshold, although a number of these genes had been previously identified 

from DMR analyses, which have a less stringent threshold. However, we did identify one novel 

gene (HOXB3) with three Bonferroni significant DMPs, which had not been identified at this 

significance threshold in previous EWAS DMP or DMR analyses in AD brain. The nomination 

of loci in the HOXB gene cluster is interesting; a recent study of human Huntington’s disease 

brain samples also highlighted significantly increased HOXB3 gene expression in the prefrontal 

cortex21, an interesting observation given that both AD and Huntington’s disease are disorders 

that feature dementia. Furthermore, we have recently reported AD-associated 

hypermethylation of the HOXB6 gene in AD blood samples22. Our pathway analysis 

highlighted differential methylation in a number of developmental pathways, mainly featuring 

the HOXA and HOXB gene clusters. Although it is unclear why developmental genes may be 

changed in a disease that primarily affects the elderly, it has been implied that genes such as 

these may be involved in neuroprotection after development23. A number of the other novel 

genes with multiple DMPs are also biologically relevant in the context of AD, for example 

GCNT2 was recently shown to be differentially expressed in the Putamen between males and 

females with AD24. Interestingly, some of the protein products of genes we identified have also 

been previously linked with AD; PTK6 is a protein kinase whose activity has been shown to 

be altered in post-mortem AD brain25. Similarly, RGMA has been shown to be increased in 

AD brain, where it accumulated in amyloid-beta plaques26.  

 

 

Our genomic enrichment analyses identified an over representation of hypermethylated loci in 

AD and methylation in specific genomic features, for example CpG islands in gene bodies, and 

shelves and non-CpG island regions in proximal promoters. We demonstrated that the majority 
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of DMPs we identified (N = 202) were not driven by genetic variation as only 18 of the 220 

CpG sites have reported mQTLs. However, we did observe a significant enrichment of cross-

cortex loci in the LD regions surrounding the AD-associated genetic variants HLADRB1, SPI1, 

SORL1, ABCA7 and ADAM10 after controlling for multiple testing Finally, we have developed 

a classifier that could accurately predict control samples with low pathology, from those with 

a post-mortem AD diagnosis due to high pathology using methylation values for 110 of the 

220 Bonferroni significant probes, further highlighting that distinct genomic loci reproducibly 

show epigenetic dysfunction in AD cortex. Although the clinical utility of such a classifier is 

limited as it is developed in post-mortem cortical brain tissue, it does illustrate that specific 

robust patterns of DNA methylation differences occur as the disease progresses. These 

signatures require further investigation as they could represent novel therapeutic targets, 

particularly given the classifier had an AUC > 70% in all the training and replication datasets. 

However, it is worth noting that the variance explained by the 110 CpG signature was lower in 

the replication datasets than the discovery samples, which could be due to a low sample number 

(Munich) or the different Illumina array platform (BDR). 

 

There are some limitations with our study. First, as we have largely utilized methylation data 

generated in bulk tissue, this will contain a mixture of different cell types. Furthermore, it is 

known that the proportions of the major brain cell types are altered in AD, with reduced 

numbers of neurons and increased glia. As such, it is possible that the identified DNA 

methylation changes represent a change in cell proportions. To address this, we have included 

neuron/glia proportions as a co-variate in our models to minimize bias and used data from 

sorted cell populations as part of our replication. Although this is the optimal strategy for the 

current study given the EWAS data had already been generated, future EWAS should be 

undertaken on sorted cell populations with larger sample numbers than the Munich replication 

cohort, or ideally at the level of the single cell. It is important to note that the data from the 

sorted nuclei populations in the Munich replication cohort were generated in the occipital 

cortex, which was not a bulk tissue used for any of the discovery cohorts. In the future it would 

be interesting to explore whether different disease-associated DNA methylation signatures 

were observed in neurons and glia isolated from different cortical brain regions. Second, our 

study has utilized previously generated EWAS data generated on the 450K array or EPIC array. 

Although the Illumina array platform has been the most widely used platform for EWAS to 

date, it is limited to only analyzing a relatively small proportion of the potential methylation 

sites in the genome (~400,000 on the 450K array) and given the falling cost of sequencing, 
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future studies could exploit this by performing reduced representation bisulfite sequencing to 

substantially increase the coverage. In our study we have primarily used the UCSC annotation 

provided by Illumina to identify the gene relating to each DMP. However, this can lead to the 

annotation of overlapping genes, or no gene annotation, which can make it difficult to establish 

the gene of interest in the absence of functional studies. Our study has primarily focused on the 

results of a fixed-effects meta-analysis, as the majority of Bonferroni-significant DMPs do not 

display a high degree of heterogeneity. However, ~15% of the cross-cortex DMPs did have a 

significant heterogeneity P value and in this instance, it is worthwhile also considering the 

results of the random-effects meta-analysis. Although this heterogeneity could be driven by 

differences between cohorts, it is also plausible that it may be driven by tissue-specific effects 

as we used different cortical brain regions in the model. For example cg22962123 annotated to 

the HOXA3 gene has a significant heterogeneity P value in the cross-cortex meta-analysis, but 

we had already shown this loci to be differentially methylated in the prefrontal cortex and 

temporal gyrus, but not the entorhinal cortex in our intra-tissue meta-analysis.  

 

Another limitation of our study is that we have focused our analyses on Braak (neurofibrillary 

tangle)-associated methylation changes, as this measure was available in all cohorts. Given that 

amyloid-beta is another neuropathological hallmark of AD, it would also be of interest to 

identify neuritic plaque-associated DMPs. Unfortunately, this was not feasible in the current 

study as this measure was not available in all samples. In a similar vein, we did not exclude 

individuals with mixed pathology, or protein hallmarks of other neurodegenerative diseases, 

such as the presence of lewy bodies, or TDP-43 pathology. In the future, larger meta-analyses 

should stratify by the presence of these protein aggregates, particularly given that very few 

EWAS have been undertaken in other dementias. Indeed, only three DNA methylomic studies 

have been undertaken in cortical samples of individuals with other dementias to date27-30, with 

none of these studies utilizing > 15 individuals for EWAS. Further studies exploring common 

and unique DNA methylation signatures and our classifier in other diseases characterized by 

dementia will be vital for identifying disease-specific epigenetic signatures that could represent 

novel therapeutic targets. Finally, one key issue for epigenetic studies in post-mortem tissue is 

the issue of causality, where it is not possible to determine whether disease-associated 

epigenetic loci are driving disease pathogenesis, or are a consequence of the disease, or even 

the medication used for treatment. One method that can be used to address this is Mendelian 

Randomization31 however, this does require the CpG site to have a strong association with a 

SNP. Given that we only identified mQTLs at 18 of the 220 Bonferroni significant cross-cortex 
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DMPs, this approach is not suitable for most of the loci we identified. At an experimental level 

establishing causality is difficult to address in post-mortem human studies, and therefore 

longitudinal studies in animal models, or modelling methylomic dysfunction through 

epigenetic editing in vitro will be useful approaches to address these issues.  In addition, 

examining DNA methylation signatures in brain samples in pre-clinical individuals (i.e. during 

midlife) will be important for establishing the temporal pattern of epigenetic changes relative 

to the pathology.  

 

In summary we present intra-tissue and cross-cortex meta-analyses of AD EWAS, highlighting 

numerous Bonferroni significant DMPs in the individual cortical regions and across the cortex, 

but not in the cerebellum, which were replicated in two independent cohorts. A number of these 

loci are novel and warrant further study to explore their role in disease etiology. We highlight 

that the nominated epigenetic changes are largely independent of genetic effects, with only 18 

of the 220 Bonferroni significant DMPs showing a mQTL. We provide evidence that robust 

epigenomic changes in the cortex can predict the level of pathology in a sample. Looking to 

the future it will be important to explore the relationship between DNA methylation and gene 

expression in AD brain. 

 

 

METHODS 

Cohorts 

Six sample cohorts were used for discovery in this study as they all had DNA methylation data 

generated on the 450K array for > 50 donors, enabling us to take a powerful meta-analysis 

approach to identify DNA methylation differences in AD. As our analyses focused specifically 

on neuropathology (tau)-associated differential methylation, inclusion criteria for all samples 

used in the discovery or replication cohorts was having post-mortem neurofibrillary tangle 

Braak stage available. For each discovery sample cohort DNA methylation was quantified 

using the 450K array. The London 1 cohort comprised of prefrontal cortex, superior temporal 

gyrus, entorhinal cortex, and cerebellum tissue obtained from 113 individuals archived in the 

MRC London Neurodegenerative Disease Brain Bank and published by Lunnon et al.5. The 

London 2 cohort comprised entorhinal cortex and cerebellum  samples obtained from an 

additional 95 individuals from the MRC London Neurodegenerative Disease Brain Bank 

published by Smith and colleagues8. The Mount Sinai cohort comprised of prefrontal cortex 

and superior temporal gyrus tissue obtained from 146 individuals archived in the Mount Sinai 
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Alzheimer's Disease and Schizophrenia Brain Bank published by Smith and colleagues7. The 

Arizona 1 cohort consisted of 302 middle temporal gyrus and cerebellum samples from The 

Sun Health Research Institute Brain Donation Program32 published by Brokaw et al.12. The 

Arizona 2 cohort consisted of an additional 88 temporal gyrus and cerebellum samples from 

Lardonije et al.10. The ROSMAP cohort consisted of 709 samples from the Rush University 

Medical Center: Religious Order Study (ROS) and the Memory and Aging Project (MAP), 

which were previously published by De Jager and colleagues6. For replication purposes we 

used two further replication datasets. The Munich cohort from Neurobiobank Munich (NBM), 

which had bulk prefrontal cortex  450K array data from 45 donors, and 450K array data from 

fluorescence-activated cell sorted  neuronal and non-neuronal (glial) populations from the 

occipital cortex from 26 donors as described by Gasparoni et al.11. The Brains for Dementia 

Research (BDR) cohort consisted of bulk prefrontal cortex Illumina Infinium EPIC array data 

from 590 donors, as described by Shireby et al15. Demographic information for all eight cohorts 

is available in Table 1. Ethical approval for the study was granted from the University of Exeter 

Medical School Research Ethics Committee (13/02/009). 

 

Data quality control and harmonization 

All computations and statistical analyses were performed using R 3.5.233 and Bioconductor 

3.834. A MethylumiSet object was created from iDATs using the methylumi package35 and 

RGChannelSet object was created using the minfi package36. Samples were excluded from 

further steps if (a) the mean background intensity of negative probes < 1,000, (b) the mean 

detection P values > 0.005, (c) the mean intensity of methylated or unmethylated signals were 

three standard deviations above or below the mean, (d) the bisulfite conversion efficiency < 

80%, (e) there was a mismatch between reported and predicted sex, or (f) the 65 SNP probes 

on the array show a modest level of correlation (using a cut-off of 0.65) between two samples 

(whereby the sample with the higher Braak score was retained). Sample and probe exclusion 

was performed using the pfilter function within the wateRmelon package37, with the following 

criteria used for exclusion: samples with a detection  P > 0.05 in more than 5% of probes, 

probes with < three beadcount in 5% of samples and  probes having 1% of samples with a 

detection P value > 0.05. Finally, probes with common (minor allele frequency > 5%) SNPs in 

the single base extension position or probes that are nonspecific or mis-mapped were 

excluded38,39, leaving 403,763 probes for analysis. Samples numbers after quality control are 

those shown in Table 1. 
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Quantile normalization was applied using the dasen function in the wateRmelon package37. 

For the discovery cohorts, DNA methylation data was corrected by regressing out the effects 

of age and sex in all samples in each cohort and tissue separately, with neuron/glia proportions 

included as an additional covariate in cortical regions. The neuron/glia proportions were 

calculated using the CETS package40, and were not included as a co-variate for the cerebellum 

as the neuronal nuclear protein (NeuN) that was used to generate the neuron/glia algorithm is 

not expressed by some cerebellar neurons41. These three variables (age, sex, neuron/glia 

proportions) were regressed out of the data as we found that they strongly correlated with either 

of the first two principal components of the DNA methylation data in most of the datasets. 

Other potential sources of technical and biological variation (post-mortem interval, ancestry, 

plate, chip, study and bisulfite treatment batch) did not correlate as strongly with methylation 

in most datasets. We opted to use surrogate variables as a consistent method to control for 

variation derived from these measured and other unknown variables across all datasets. 

Surrogate variables were calculated using the sva function in the SVA package42. Linear 

regression analyses were then performed with respect to Braak stage (modelled as a continuous 

variable) using residuals and a variable number of surrogate variables for each study until the 

inflation index (lambda) fell below 1.2 (see Supplementary Data 17). The surrogate variables 

included for each cohort correlated with the technical and biological variables that we had not 

regressed out earlier, demonstrating that this method appropriately controlled for variation not 

driven by Braak stage. Quantile-quantile plots for the four intra-tissue and the cross-cortex 

meta-analyses are shown in Supplementary Figure 20. Although it appears from these plots 

that there is P value inflation, it is worth noting that (a) lambda for all meta-analyses < 1.2 and 

(b) P value inflation is commonly observed in many DNA methylation studies and standard 

methods to control for this in GWAS are not suitable for EWAS data43.  

 

Intra-tissue meta-analysis  

We used the estimated coefficients and SEs from the six discovery cohorts to undertake an 

inverse variance intra-tissue meta-analysis independently in each available tissue using the 

metagen function within the Meta package44, which applies inverse variance weighting. The 

estimates and SEs from individual cohort Braak linear regression analyses were added to the 

model for each tissue. The prefrontal cortex analyses included three cohorts (N = 959: London 

1, Mount Sinai, ROSMAP), the temporal gyrus analyses included four cohorts (N = 608: 

London 1, Mount Sinai, Arizona 1, Arizona 2) and the entorhinal cortex analyses included two 

cohorts (N = 189: London 1, London 2). The cerebellum analyses included data from four 
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cohorts (N = 533: London 1, London 2, Arizona 1 and Arizona 2) although the cerebellum data 

for the Arizona 1 and 2 cohorts was generated in the same experiment, and so these were 

combined together as a single dataset. The ESs and corresponding SEs reported in this study 

correspond to the corrected DNA methylation (beta) difference between Braak 0 and Braak VI 

individuals. Bonferroni significance was defined as P < 1.238 x 10-7 to account for 403,763 

tests. A fixed effects meta-analysis are the results primarily reported as it is the most 

appropriate model for our study as it can more reliably estimate the pooled effect and therefore 

the standard error and P value. However, in the Supplementary Data we do also report the 

results of the random effects meta-analysis as ~10% of Bonferroni significant DMPs in the 

intra-tissue meta-analysis had high heterogeneity and in which case the results from the 

random-effects model should also be considered. 

 

Cross-cortex meta-analysis 

As multiple cortical brain regions were available for the London 1 and Mount Sinai cohorts, a 

mixed model was performed using the lme function within the nlme package45. Estimate 

coefficients and SEs from each EWAS were extracted and were subjected to bacon43 to control 

for bias and inflation, after which a fixed-effect inverse variance meta-analysis was performed 

across all discovery cohorts using the metagen function. A fixed effects model was selected in 

this instance for consistency with the intra-tissue meta-analysis, although the random effects 

meta-analysis results also shown in Supplementary Data 7. 

 

Replication analyses 

For the Munich replication cohort, we extracted the beta values for the 220 cross-cortex 

Bonferroni significant DMPs. This DNA methylation data was then corrected for age, sex and 

neuron/glia proportions (bulk tissue only) prior to performing a linear regression analysis with 

respect to Braak stage. For the BDR replication cohort, we were provided with beta values for 

the 208 cross-cortex Bonferroni significant DMPs that were present on the EPIC array. This 

data had been corrected for age, sex, neuron/glia proportions, batch and principal component 

1, before the linear regression analysis was performed with respect to Braak stage, with Bacon 

used to control for inflation. Additional information on the BDR dataset can be found in 

Shireby et al15. 

 

Annotations, pathway and regional analyses  
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Probes were annotated for tables using both the Illumina (UCSC) gene annotation (which is 

derived from the genomic overlap of probes with RefSeq genes or up to 1500bp from the 

transcription start site of a gene) and Genomic Regions Enrichment of Annotations Tool 

(GREAT)46 annotation version 4.0.4 (which annotates a DMP to genes with a transcription 

start site within 5kb upstream, or 1kb downstream). Pathway analyses were performed on the 

Illumina (UCSC) annotated genes corresponding to the 220 Bonferroni significant cross-cortex 

DMPs (N = 121 genes). We used the ‘gometh’ function within the missMethyl package 

(version 1.20.0)47, which performs one-sided hypergeometric tests and adjusts the test for the 

uneven number of probes per gene and pathway redundancy. The identified GO terms were 

subjected to the online tool REViGO (available at http://revigo.irb.hr/)48, to reduce the number 

of redundant functional terms based on semantic similarity between ontology terms. Resnik's 

measure was used to compute the similarity of terms and a medium between terms similarity 

of 0.7 was allowed. As methylation at neighboring CpG sites can be highly correlated we used 

a method developed to identify SNPs in LD to identify independent signals14. For the 220 

Bonferroni significant cross-cortex DMPs we used a threshold of r < 0.6 over 1mb to identify 

165 independent (non-highly correlated) methylation signals. To identify DMRs consisting of 

multiple DMPs we used the Python package comb-p49 with a distance of 500bp and a seeded 

P value of 1.0 x 10-4. Comb-p was selected for DMR identification over alternative methods as 

it uses P values as input and so was the most suitable method for calling DMRs in the cross-

cortex meta-analysis where multiple brain regions were available for some of the individuals. 

We have used comb-p to call DMRs in a number of our previous EWAS in AD, including 

studies where we have validated the top DMRs using an alternative technology such as 

pyrosequencing5,8,22. 

 

Genomic enrichment analyses 

To test for an enrichment of DMPs in specific genomic features (i.e. CpG islands, shelves, 

shores, non-CpG island regions) in certain genomic regions (i.e. intergenic, distal promoter, 

proximal promoter, gene body, downstream) we annotated all DMPs with Slieker annotation16 

and performed a two-sided Fisher's exact test comparing to all probes analyzed (N = 403,763). 

We also used a Fisher’s exact test to test for an enrichment of DMPs in genomic regions related 

to transcription based on the Illumina annotation (TSS1500, TSS200, 5’ UTR, 1st exon, gene 

body, 3’ UTR). To investigate whether any of the 220 Bonferroni significant cross-cortex 

DMPs were driven by genetic variation we used the xQTL resource to identify which of these 

DMPs are established cis-mQTLs17. To explore whether Braak-associated methylation was 
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enriched in known AD GWAS variants we used Brown’s method to combine together P values 

from our meta-analyses for probes residing in the LD blocks around the genome-wide 

significant (P  < 5.0 × 10-8) GWAS variants identified by the stage one meta-analysis of Kunkle 

et al.18 Of the 24 LD blocks reported by Kunkle and colleagues, 20 contained  > 1 CpG site on 

the 450K array and the P values for each CpG in a given block were combined using Brown’s 

method, which accounts for the correlation structure between probes, with the regional P values 

adjusted to correct for multiple testing. 

 

Quantifying variance in Braak pathology explained by DNA methylation signatures 

For this analysis control samples (Braak low [0-II]: N = 407) and AD cases (Braak high [V-

VI]: N = 589) from the cross cortex discovery dataset were used for training a classifier. A 

penalized regression model was used to select the optimum (N = 110) CpG probes from the 

220 cross-cortex Bonferroni significant  DMPs that determined case-control status in the 

training dataset using the R package GLMnet50. Elastic net uses a combination of ridge and 

lasso regression, in which alpha (α) = 0 corresponds to ridge, whilst α = 1 corresponds to lasso, 

the elastic net α parameter used was 0.5. The lambda value was derived when using 10-fold 

cross validation on the training dataset. The model was then tested for AUC ROC value, 

confidence intervals (CI) and variance explained in the testing dataset as well as the 

independent replication Munich (Braak 0-II: N = 9, Braak V-VI: N = 29) and BDR (Braak 0-

II: N = 196, Braak V-VI: N = 258) prefrontal cortex datasets. 

 

Data availability 

The data supporting the findings of this study are available within the article, Supplementary 

Information or from the authors upon request. Some of the datasets are also available on GEO 

including London 1 data (GSE59685 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59685]), London 2 data 

(GSE105109 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE105109]), Mount 

Sinai data (GSE80970 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80970]), 

Arizona 1 data (GSE134379 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134379]), Arizona 2 data 

(GSE109627 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109627]) and 

Munich data (GSE66351 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66351]). 

The BDR data is available from the authors upon reasonable request. We have developed an 

online database, which can present summary statistics, which is available from our website: 
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www.epigenomicslab.com/ad-meta-analysis/. All scripts for data analyses performed in this 

manuscript can be found at: https://github.com/rgs212/Meta-analysis-Smith51. 
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FIGURE LEGENDS 

Figure 1: Intra-tissue meta-analyses of AD methylomic studies highlights Bonferroni 

significant differentially methylated positions (DMPs) in all cortical tissues. (a) A 

Manhattan plot for the prefrontal cortex (red, N = 959), temporal gyrus (green, N = 608) and 

entorhinal cortex (blue, N = 189) meta-analyses, with the ten most significant DMPs circled 

on the plot and Illumina UCSC gene name shown if annotated, or CpG ID if unannotated. The 

X-axis shows chromosomes 1-22 and the Y-axis shows -log10(p), with the horizontal red line 

denoting Bonferroni significance (P < 1.238 x 10-7).  (b) A Venn diagram highlighting 

overlapping DMPs at Bonferroni significance across the cortical tissues. (c) In each cortical 

brain region the Bonferroni significant DMPs identified in that region usually had a greater 

effect size (ES) there, than in any of the other cortical regions. The X-axis represents the 

methylation (beta) ES between individuals that are Braak stage 0 and VI. Data is separated on 

the Y-axis by tissue analysis (large text) with the corresponding data at these probes in other 

tissues (small text). The white dot in the centre represents the median, the dark box represents 

the interquartile range (IQR), whilst the whisker lines represent the “minimum” (quartile 1 – 

1.5 x IQR) and the “maximum” (quartile 3 + 1.5 x IQR). The coloured violin represents all 

samples including outliers, meaning that the “minimum” and “maximum” may not extend to 

the end of the violin.  

Figure 2: A cross-cortex meta-analysis identifies 220 Bonferroni significant differentially 

methylated positions (DMPs) associated with Braak stage. (a) A Miami plot of the cross-

cortex meta-analyses (N = 1,408). Probes shown above the X-axis indicate hypermethylation 

with higher Braak stage, whilst probes shown below the X-axis indicate hypomethylation with 

higher Braak stage. The chromosome and genomic position are shown on the X-axis. The Y-

axis shows –log10(p). The red horizontal lines indicate the Bonferroni significance level of P 

< 1.238 x 10-7. Probes with a methylation (beta) effect size (ES: difference between Braak 0- 

Braak VI) ≥ 0.01 and P < 1.238 x 10-7 are shown in blue. The 20 most significant DMPs are 

circled on the plot and Illumina UCSC gene name is shown if annotated, or CpG ID if 

unannotated. Exact p-values can be found in Table 2 and Supplementary Data 7. (b) A volcano 

plot showing the ES (X-axis) and –log10(p) (Y-axis) for the cross-cortical meta-analysis 

results. Gray probes indicate an ES between ≥ 0.01, whilst blue probes indicate an ES ≥ 0.01 
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and P < 1.238 x 10-7. (c) The most significant cross-cortex differentially methylated region 

(DMR) (chr7:27153212-27154305) contained 11 probes and resided in the HOXA region. The 

horizontal red line denotes the Bonferroni significance level of P < 1.238 x 10-7. Red probes 

represent a positive ES ≥ 0.01, blue probes represent a negative ES ≥ 0.01. Underneath the 

gene tracks are shown in black with CpG islands in green.  

Figure 3: Independent replication of the Bonferroni significant cross-cortex differentially 

methylated loci. (a) The methylation (beta) effect size (ES) of the 220 cross-cortex 

differentially methylated positions (DMPs) identified in the discovery (N = 1,408) cohorts (X-

axis) were significantly correlated with the ES in the Munich replication cohort in the prefrontal 

cortex (red; N = 45, r = 0.64, P = 5.24 x 10-27), sorted neuronal cells (light blue; N = 26, r = 

0.45, P = 1.56 x 10-12) and non-neuronal cells (purple; r = 0.79, N = 26, P = 1.43 x 10-47) (Y-

axis). (b) A forest plot of the most significant cross-cortex DMP (cg12307200, 

chr3:188664632, P = 4.48 x 10-16). The effect size is shown in the prefrontal cortex (red; N = 

959), temporal gyrus (green; N = 608) and entorhinal cortex (blue; N = 189) for the different 

discovery cohorts. The X-axis shows the beta ES, with dots representing ES and arms 

indicating standard error (SE). ES from the intra-tissue meta-analysis using all available 

individual cohorts are represented by polygons in the corresponding tissue color. The black 

polygon represents the cross-cortex data. Shown in purple on the plot is the ES in the Munich 

replication cohort in the prefrontal cortex and sorted neuronal cells and non-neuronal cells, 

with the direction of effect suggesting the hypomethylation seen in the discovery cohorts is 

driven by changes in non-neuronal cells. (c) In the BDR replication cohort (N = 590) DNA 

methylation data was available in the prefrontal cortex for 208 of the 220 Bonferroni significant 

cross-cortex DMPs. The ES of these 208 cross-cortex DMPs in the discovery cohorts (X-axis) 

were significantly correlated with the ES in the BDR replication cohort (r = 0.53, P = 4.13 x 

10-16) (Y-axis).  

Figure 4: Receiver Operating Characteristic (ROC) graphs highlighting the Area Under 

the Curve (AUC) for the 110 cross-cortex probes that can best explain the variance in 

Braak pathology. An elastic net penalized regression model was used to identify a subset of 

110 of the Bonferroni significant cross-cortex probes that could best predict whether a sample 

has low pathology (Braak 0-II: control) compared to high pathology (Braak V-VI: AD) in a 

training dataset comprised of 996 discovery samples (Braak 0-II: N = 407, Braak V-VI: N = 

589). This model had an Area Under the ROC Curve (AUC) of 94.33% (confidence interval 
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[CI] = 92.88-95.64%) and explained 71.11% of the pathological variance (black line). The 110 

probe signature was then tested in two independent replication cohorts. In the Munich 

prefrontal cortex samples (Braak 0-II: N = 9, Braak V-VI: N = 29) the model had an AUC of 

73.95% (CI = 55.17-88.89%), explaining 20.18% of the variance (blue line). In the BDR 

prefrontal cortex samples (Braak 0-II: N = 196, Braak V-VI: N = 258) the model had an AUC 

= 70.36% (CI = 65.52-75.12%), explaining 15.87% of the variance (green line). A list of the 

110 probes and their performance characteristics can be found in Supplementary Data 13 and 

14, respectively. 
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Table 1: Demographic information for cohorts included in the meta-analyses. Sample numbers, split of males (M)/females (F) and mean age at death in years (± standard deviation [SD]) 

are shown for individuals with low pathology (Braak 0-II), mid-stage pathology (Braak III-IV) and severe pathology (Braak V-VI) in each cohort. Shown are the bulk tissues available from each 

cohort, which included the cerebellum, entorhinal cortex, middle temporal gyrus, prefrontal cortex and superior temporal gyrus. In the discovery meta-analyses, we used data from six EWAS 

using the 450K array, which all had > 50 unique donors. For replication we used two cohorts. The Munich cohort had 450K data from bulk prefrontal cortex tissue, as well as data available from 

sorted neuronal and non-neuronal cell populations from the occipital cortex. The BDR cohort had EPIC array data available from bulk prefrontal cortex samples. For the meta-analyses, superior 

temporal gyrus and middle temporal gyrus samples were both classed as temporal gyrus samples. Shown are final numbers for all cohorts after data quality control. Ancestry is reported for the 

discovery cohorts and is the number of unique individuals that had the following inferred ethnicities from the 1000 genomes reference panel: European (Eu), African (Af), American (Am), East 

Asian (As). 

Stage Cohort Unique 

individuals 

Ancestry 

(Eu/Af/Am/As) 

Braak Number Sex 

(M/F) 

Age at 

death in 

(± SD) 

Tissues analysed 

 

D
IS

C
O

V
E

R
Y

 
 

London 1 113 

 

112/0/1/0 

0-II 29 13/16 77.6 (12.8) Prefrontal cortex, entorhinal 

cortex, superior temporal 

gyrus, cerebellum (Bulk) 
III-IV 18 7/11 88.5 (5.2) 

V-VI 66 26/40 85.4 (8.1) 

 

London 2 95 

 

92/1/2/0 

0-II 23 12/11 76.1 (10.0)  

Entorhinal cortex, 

cerebellum (Bulk) 
III-IV 16 3/13 87.6 (6.4) 

V-VI 56 26/30 81.5 (8.6) 

 

Mount 

Sinai 
146 

 

113/20/11/2 

0-II 60 32/28 82 (7.6)  

Prefrontal cortex, superior 

temporal gyrus (Bulk) 
III-IV 42 12/30 88.8 (6.6) 

V-VI 44 12/32 88.0 (7.5) 

 

Arizona 1 302 

 

302/0/0/0 

0-II 61 40/21 80.3 (8.2)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 97 50/47 86.9 (6.9) 

V-VI 144 63/81 82.3 (8.5) 

 

Arizona 2 88 

 

88/0/0/0 

0-II 16 10/6 82.5 ( 5.0)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 45 21/24 86.7 (5.1) 

V-VI 27 12/15 84.6 (7.1) 

 

ROS/MAP 709 

 

709/0/0/0 

0-II 143 70/73 83.2 (6.0)  

Prefrontal cortex (Bulk) III-IV 409 144/266 86.9 (4.1) 

V-VI 157 45/113 87.8 (3.5) 

 

R
E

P
L

IC
A

T
IO

N
 

 

 

 

Munich 

45 

 

- 

0-II 9 5/4 76.7 (10.9)  

Prefrontal cortex 

(Bulk)  
III-IV 7 1/6 82.1 (5.2) 

V-VI 29 12/17 79.2 (8.5) 

26 

 

- 

0-II 11 7/4 75.9 (8.5)  

Occipital cortex 

(Sorted cells) 
III-IV 5 1/4 85.0 (6.5) 

V-VI 10 4/6 77.9 (6.6) 

 

BDR 

 

590 

 

- 

0-II 196 100/96 83.6 (10.6)  

Prefrontal cortex (Bulk) III-IV 136 91/65 85.1 (7.45) 

V-VI 258 128/130 82.5 (8.5) 
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Table 2: The 25 most significant differentially methylated positions (DMPs) associated with Braak stage from the cross-cortex inverse variance fixed effects meta-analysis. Probe 

information is provided corresponding to chromosomal location (hg19/GRCh37 genomic annotation), Illumina gene annotation, closest genes with a transcription start site upstream or 

downstream (from GREAT annotation). Shown for each DMP is the methylation (beta) effect size (ES), standard error (SE) and corresponding unadjusted P value from the inverse variance 

fixed effects meta-analysis model in the cross-cortex data (N = 1,408). All ES and SE have been multiplied by six to demonstrate the difference between Braak stage 0 and Braak stage VI 

samples. A more comprehensive table is provided in Supplementary Data 7. 

 

Probe Position 
Illumina Gene 

Annotation 

GREAT annotation - closest genes with 

transcription start site upstream (distance to site) 

GREAT annotation - closest genes 

with transcription start site 

downstream (distance to site) 

ES SE P 

cg12307200 chr3:188664632   TPRG1 (-225131) LPP (+733912) -0.015 0.002 4.48E-16 

cg01419713 chr8:42038135 PLAT   PLAT (+27107), AP3M2 (+27672) 0.022 0.003 2.20E-14 

cg04874795 chr16:86477638   FOXF1 (-66495) IRF8 (+545230) -0.022 0.003 3.95E-14 

cg11823178 chr8:41519399 ANK1;MIR486 NKX6-3 (-14522) ANK1 (+234881) 0.016 0.002 3.24E-13 

cg07061298 chr7:27153847 HOXA3 HOXA2 (-11418) HOXA3 (+5367) 0.018 0.002 4.57E-13 

cg13076843 chr17:74475294 RHBDF2   RHBDF2 (+22195), AANAT (+25862) 0.021 0.003 7.57E-13 

cg25018458 chr17:980014 ABR   TIMM22 (+79658), ABR (+103154) 0.008 0.001 7.87E-13 

cg07883124 chr13:113634042 MCF2L F7 (-126079) MCF2L (+10508) 0.017 0.002 9.10E-13 

cg03223072 chr10:116398913 ABLIM1 AFAP1L2 (-234670) ABLIM1 (+19144) -0.014 0.002 1.10E-12 

cg05066959 chr8:41519308 ANK1;MIR486 NKX6-3 (-14431) ANK1 (+234972) 0.024 0.003 1.45E-12 

cg17881200 chr7:27138850   HOXA1 (-3258)   0.017 0.002 1.83E-12 

cg19240213 chr7:27163095 HOXA3 HOXA3 (-3882)   0.020 0.003 2.29E-12 

cg10045881 chr1:111770291 CHI3L2 CHIA (-63247) CHI3L2 (+26899) -0.015 0.002 2.38E-12 

cg02674693 chr11:45109122   TP53I11 (-137412), PRDM11 (-59772)   0.018 0.003 3.57E-12 

cg06800235 chr1:7692367 CAMTA1 VAMP3 (-138962) CAMTA1 (+846984) -0.017 0.002 3.71E-12 

cg18264562 chr1:26253412   STMN1 (-20456) PAFAH2 (+71236) 0.014 0.002 5.46E-12 

cg01964852 chr7:27146262 HOXA3 HOXA2 (-3833)   0.016 0.002 5.96E-12 

cg01111041 chr6:32121055 PPT2;PRRT1 PRRT1 (-1327), PPT2-EGFL8 (-944), PPT2 (-245)   0.009 0.001 6.83E-12 

cg15974867 chr11:69464012 CCND1   CCND1 (+8158), ORAOV1 (+26103) 0.018 0.003 7.46E-12 

cg17907520 chr15:31680189     KLF13 (+61132), OTUD7A (+267353) 0.011 0.002 9.65E-12 

cg16988611 chr10:82224946 TSPAN14   TSPAN14 (+11025) 0.011 0.002 9.98E-12 

cg13579486 chr20:39314091     MAFB (+3789) -0.012 0.002 1.01E-11 

cg01681367 chr16:29676071 SPN QPRT (-14287) SPN (+1492) -0.015 0.002 1.25E-11 

cg01301319 chr7:27153580 HOXA3 HOXA2 (-11151) HOXA3 (+5634) 0.017 0.003 1.54E-11 

cg02317313 chr12:122235206 LOC338799 RHOF (-3039)   0.017 0.003 1.69E-11 
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