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In situ RNA capturing has made it possible to record histology and spatial gene expression from
the same tissue section, but methods to jointly analyze both kinds of data are still missing. Here,
we present XFuse, a scalable deep generative model for spatial data fusion. XFuse can infer high-
resolution, full-transcriptome spatial gene expression from histological image data and be used to
characterize transcriptional heterogeneity in detailed anatomical structures.

Spatial transcriptomics allows researchers to study cell
behavior in the spatial domain and has been used to de-
scribe cellular organization in the hippocampus [1], to
characterize intra-tumor heterogeneity in human breast
[2], pancreatic [3], and prostate cancer [4], to analyze spa-
tial dynamics during embryonic cardiogenesis [5], and in
many other contexts.

Experimental methods for spatial transcriptomics fall
on a spectrum that trades resolution and molecular sensi-
tivity for multiplexing capacity. On one end of the spec-
trum, methods based on in situ sequencing [6, 7] or hy-
bridization [8, 9, 10, 11] typically have high resolution and
high sensitivity but are difficult to multiplex over many
genes, limiting their usefulness in exploring transcriptome-
wide interactions. On the other end, methods based on in
situ RNA capturing (ISC) using poly(dT) probes [2, 12,
13] target all poly-adenylated transcripts simultaneously
but have lower resolution and sensitivity, limiting their
usefulness in studying detailed expression patterns.

To overcome the limitations of current spatial tran-
scriptomics methods, we propose XFuse, a deep generative
model of spatial expression data. XFuse models spatial
gene expression and histological image data as observable
effects of a latent tissue state (Fig. 1a, Methods). By
fusing low-sensitivity, low-resolution ISC expression data
with high-resolution histological image data, XFuse can
infer accurate full-transcriptome spatial gene expression
at the same resolution as the image data.

Inspired by recent work on deep segmentation networks
[14], we define the latent tissue state over multiple spatial
resolutions, allowing XFuse to capture both global and lo-
cal anatomical contexts. Inference of the latent state and

corresponding high-resolution expression data is based on
ideas from the literature on variational autoencoders [15,
16]. Importantly, while optimizing model parameters, we
jointly learn a neural network (typically referred to as a
recognition or inference network) that maps the image
data to the variational parameters of the latent state. As
a result, the inferred posterior of the latent state is not
kept in memory but recomputed for each mini-batch dur-
ing training, allowing XFuse to scale to arbitrarily large
datasets.

To evaluate the performance of XFuse, we study a
dataset [2] consisting of 12 sections from the mouse ol-
factory bulb. First, we test in-sample performance by
dropping 50% of all measurement locations and use XFuse
to impute the missing expression data. We compare the
results to a pixel-wise interpolation scheme that fills in
missing data with the expression of the closest non-missing
location and find that XFuse achieves a 23 % lower median
root-mean-square error (Fig. 1b).

The recognition network allows XFuse to predict ex-
pression on unseen samples using only their histological
image data. To assess this ability, we next test out-of-
sample performance by holding out an entire section from
the training set and use XFuse to predict its expression
data. We find that XFuse faithfully reproduces ground
truth expression patterns (Fig. S1) and that accuracy ap-
proaches in-sample performance as more sections are in-
cluded in the training set (Fig. 1c).

Finally, we compare inferred gene expression to in situ
hybridization data from the Allen Mouse Brain Atlas [17]
and find clear correspondences (Fig. 1d). Crucially, the
inferred expression data appears considerably more infor-
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Figure 1: Conceptual overview and performance evaluation. (a) Histological image and expression data are modeled as effects of
a latent spatial tissue state. The tissue state has multiple resolutions, capturing both global and local anatomical contexts, and is
mapped through a generator network (black solid arrows) to histological image and high-resolution, latent expression data. The latent
expression data is linked to the observed expression data by summation (black dotted arrow). Inference is amortized using a recognition
network (blue dashed arrows) that maps the observed image data to the latent tissue state. (b), (c) Root-mean-square error (RMSE)
of (b) imputation compared to pixel-wise, zero-order interpolation and (c) out-of-sample prediction over different training set sizes.
Count values are normalized to mean one in each measurement location. Asterisks (∗∗∗∗) indicate significance at the p ≤ 0.0001
level using a two-sided Wilcoxon signed-rank test. (d) Comparison of inferred high-resolution expression data to in situ hybridization
reference data from the Allen Mouse Brain Atlas.

mative about the transcriptional anatomy of the tissue
than the raw spatial transcriptomics data (Fig. 1d and
Figs. S2 and S3).

We demonstrate the applicability of our method by
studying detailed anatomical structures in the mouse
olfactory bulb and in human breast cancer. In both
datasets, XFuse finds clear patterns of fine-grained ex-
pression heterogeneity (Figs. 2a and 2b), which can be
quantified in terms of differential expression (Methods).

We first profile the mitral cell layer of the olfactory
bulb (Fig. 2c) and find several strongly up- and down-
regulated genes (Fig. 2d). To verify our results, we sort
the genes by the inverted coefficient of variation of their
posterior log2 fold change and find that 40 out of the 100
most upregulated genes are among 229 markers for the
mitral cell layer identified in a recent single-cell RNA-
sequencing study [18] (one-sided hypergeometric test p-
value: 1.66× 10−47). Meanwhile, the raw data is too
coarse-grained to resolve the mitral cell layer on its own
(Fig. S3). We conclude that XFuse successfully decon-
volves mixed expression signals by integrating expression
patterns across anatomical areas that share similar mor-
phology.

Next, we study spatial dynamics in a ductal carcinoma
in situ (DCIS) lesion from the breast cancer dataset by
profiling transcriptome gradients between the inner area
of the tumor and its outermost edge (Fig. 2e). We find sev-
eral genes related to immune activity and tumor progres-

sion to be upregulated at the border of the tumor (Fig. 2f).
For example, the complement component 1q, composed of
the C1QA, C1QB, and C1QC subcomponents, have been
shown to promote angiogenesis and tumor growth in the
tumor microenvironment [19]. Similarly, CD74 is a known
marker for metastatic tumor growth in breast cancer [20],
and antibody-drug conjugate therapies targeting CD74 ex-
pressing cells are currently being developed for blood can-
cers. The proximity of CD74 expression to the tumor edge
could have important implications for the accessibility of
CD74 expressing cells in similar therapies for malignant
DCIS. However, further studies are needed to validate this
finding.

Consistent with the above results, the pathways that
are enriched for the 100 most upregulated genes at the
tumor border include, for example, extracellular structure
organization (p-value: 2.10× 10−18), immune system pro-
cesses (p-value: 1.37× 10−11), blood vessel development
(p-value: 8.51× 10−6), and cell migration regulation (p-
value: 8.98× 10−6) (Table S1). In contrast, none of these
pathways are enriched for the 100 most downregulated
genes (Table S2).

Critically, while the distance between measurement lo-
cations in the raw expression data is 100 µm, several differ-
entially expressed genes become upregulated first within
50 µm of the tumor border (Fig. 2f). We conclude that it
is only by learning a high resolution state of the underly-
ing transcriptional anatomy of the tissue that it becomes
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Figure 2: Characterization of transcriptional heterogeneity in detailed anatomical structures. (a), (b) Summarized latent gene expres-
sion in (a) the mouse olfactory bulb and (b) a human ductal carcinoma in situ (DCIS) lesion. Colors indicate anatomical areas with
distinct transcriptional phenotypes according to the inferred tissue state (Methods). (c) Annotation of the mitral cell layer profiled
in (d). (d) Differential expression in the mitral cell layer compared to the other parts of the mouse olfactory bulb. (e) Annotation of
the DCIS lesion profiled in (f). Red dashed line: Tumor border. Black dotted line: Baseline boundary, 200 µm from the tumor border.
(f) Differential expression compared to baseline as a function of distance to the tumor border.

possible to fully resolve the detailed expression landscape
describing these genes. Determining its precise topology
is paramount to understanding cellular interactions at the
micro-scale and in developing effective treatments for a
wide range of diseases.

In summary, we have presented XFuse, a deep gen-
erative model for spatial data fusion. XFuse combines
ISC expression data with histological image data to infer
accurate full-transcriptome spatial gene expression at an
unprecedented resolution. We have found that XFuse ex-
poses spatial contingencies that are difficult to discern in
the raw expression data and can characterize differential
expression in detailed anatomical structures. Moreover,
once model parameters have been learned, XFuse can pre-
dict spatial expression from the histological image data of
unseen samples, effectively providing a means for in silico
spatial transcriptomics.

We envision future work to enable in silico spatial tran-
scriptomics on a larger scale. By learning accurate recog-
nition and generator networks across diverse tissues, it
may be possible to accurately predict spatial expression
without sequencing. In silico spatial transcriptomics could
provide tremendous cost savings for large spatial tran-
scriptomics projects or act as a way to verify the integrity
of sequencing data from experimental methods.
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Methods

Statistical model
XFuse models the spatial expression data, Xn, and histo-
logical image data, In, of each sample n as effects of an
underlying spatial tissue state, Zn. We assume the con-
ditional distribution of the image data I to be Gaussian,
and, following previous work [1] on RNA bulk sequencing
data, we assume the conditional distribution of the ex-
pression data X to be negative binomial. The rate of the
latter is factorized into M metagenes, parameterized by a
gene loading matrix L. The parameters of the conditional
distributions are mapped from the latent tissue state Z
through a convolutional generator network G with learn-
able parameters θ.

Formally, for all samples n, pixel coordinates (x, y),
genes g, and image channels c, we model the data gener-
ating process as follows:

Zn ∼ N (0, I) (1)

Lg ∼ N (0, σ2
Lg I) (2)

Eg ∼ N (0, σ2
Eg I) (3)

Fg ∼ N (0, σ2
Fg I) (4)

(sn, an, µn, σn) ≡ Gθ(Zn) (5)

rngxy ≡ snxyetg+βnEgΣmanmxye
Lmg (6)

png ≡ S (ug + βnFg) (7)
Xngxy |Zn, Lg, Eg, Fg ∼ NB (rngxy, png) (8)

X̃ngl ≡ Σ(x,y)∈An(l)Xngxy (9)

Incxy |Zn ∼ N
(
µncxy, σ

2
ncxy

)
, (10)

where S is the logistic function, βn is a row vector of in-
dicator variables specifying group membership, and X̃ is
the observed expression data at location l covering the area
An(l). The fixed effects E and F can be used to control
for batch effects or to characterize differential expression
between sample groups.

During inference, we collapse the model by integrat-
ing out the latent expression X, which replaces Eqs. (8)
and (9) with

X̃ngl |Zn, Lg, Eg, Fg ∼ NB
(
Σ(x,y)∈An(l)rngxy, png

)
. (11)

Inference
We use variational inference to approximate the posterior
of the latent variables p(Z,L,E, F |X̃, I) with a tractable
distribution qφ(Z,L,E, F ). The variational parameters φ
and the parameters θ of the generator network are found
by minimizing the Kullback-Leibler divergence from qφ to
the posterior, which is equivalent to maximizing the evi-
dence lower bound (ELBO),

L(φ, θ, t, u, σ2
L, σ

2
E , σ

2
F ) = Eqφ

[
log pθ(X̃, I, Z, L,E, F )

− log qφ(Z,L,E, F )
]
.

(12)

We use a mean-field diagonal Gaussian variational dis-
tribution

qφ(Z,L,E, F ) = qφL(L)qφE (E)qφF (F )
∏
n

qφZn (Zn),

(13)

where the parameters φZn are encoded by a convolutional
recognition network R with weights φZ applied to the im-
age data: φZn ≡ RφZ (In).

We update the parameters φ, θ, t, u, σ2
L, σ

2
E , and σ

2
F by

gradient ascent on the objective (12) using the Adam op-
timizer [2]. Following [3], gradient estimates are obtained
by reparameterizing the latent variables as a function of
parameter-free noise. Briefly, letting

ε ∼ N (0, I) (14)
(Z,L,E, F ) ≡ hφ(ε), (15)

where hφ is a shift-and-scale transformation such that
Eqs. (1) to (4) are satisfied, we can reformulate Eq. (12)
as an expectation with respect to ε by relying on the law
of the unconscious statistician. This makes it straightfor-
ward to rewrite the gradient of Eq. (12) as an expectation,

(16)

∇L(φ, θ, t, u, σ2
L, σ

2
E , σ

2
F )

= Ep(ε)
[
∇ log pθ(X̃, I, Z, L,E, F )

−∇ log qφ(Z,L,E, F )
]
.

We approximate (16) using a single Monte Carlo sample
for each update step and train on patches extracted from
the dataset.

The dataset is augmented with random rotations, scal-
ing, and shearing. The image data is further augmented
with random color jitter.

Architecture

To efficiently capture both global and local anatomical
contexts, we model the latent tissue state Z over multi-
ple resolutions. The recognition and generator networks
G and R together form an architecture similar to U-Net
[4] with the variational distribution of the latent state for
each resolution inserted at the corresponding skip connec-
tion (Fig. S4).

Model selection

To select the number of metagenesM in the model, we im-
plement a drop-and-split strategy that runs in parallel to
inference. Briefly, we start out withM = 1 metagenes. At
fixed intervals, we estimate the ELBO (12) with and with-
out each of the M metagenes. Metagenes that contribute
to the ELBO are split into two new metagenes that in-
herit parameters from their parent while non-contributing
metagenes are dropped.
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High-resolution gene expression
We infer denoised latent gene expression by estimating the
posterior distribution of

ν ≡ E[X |Z,L,E, F ] =
rp

1− p
(17)

with N Monte Carlo samples drawn from the variational
distribution:

p(ν | X̃, I) =

∫
p(ν |Z,L,E, F )dP (Z,L,E, F | X̃, I)

≈
∫
p(ν |Z,L,E, F )dQφ(Z,L,E, F )

≈ 1

N

N∑
i=1

δν(i)(ν), (18)

where P and Qφ denote the cumulative distribution func-
tions of the corresponding lower-case densities and δν(i) is
the Dirac delta function centered at the i:th sample of ν.

We compute gene expression maps as the mean of the
point-mass mixture (18),

E[ν | X̃, I] ≈ 1

N

N∑
i=1

ν(i). (19)

To predict latent gene expression in an unseen sample
n′, we approximate

p(Zn′ , L,E, F | X̃, I, In′) = p(Zn′ | In′)p(L,E, F | X̃, I)

≈ qRφ(In′ )(Zn′)qφ(L,E, F )

(20)

and estimate E[νn′ | X̃, I, In′ ] similar to Eq. (19).

Differential expression analysis
We consider the log2 conditional mean expression of an
area Ai,

εi ≡ log2 E
[∑

(n,x,y)∈Ai
Xnxy |Z,L,E, F

]
= log2

∑
(n,x,y)∈Ai

νnxy. (21)

The posterior distribution of the normalized log2 fold
change of a gene g between the areas A1 and A2,

ηg ≡ ε1g − ε2g − log2

∑
g′

2ε1g′ + log2

∑
g′

2ε2g′ , (22)

is estimated analogous to Eq. (18). Mean and variance
estimates are computed on the resultant point-mass mix-
ture:

E[ηg | X̃, I] ≈ 1

N

N∑
i=1

η(i)g (23)

Var(ηg | X̃, I) ≈ 1

N

N∑
i=1

(
η(i)g

)2
−

(
1

N

N∑
i=1

η(i)g

)2

. (24)

Summarized expression maps

To visualize transcriptional anatomy, we estimate the pos-
terior mean metagene activity a and pixel-wise scale s sim-
ilar to Eq. (19). We project a onto its first three principal
components and append −s along the channel axis. We
then apply a channel-wise affine transformation to map
all values into [0, 1]. The resulting coordinates are used as
CMYK-encoded color values.

Pathway analysis

Pathway analyses are conducted using g:Profiler [5] with
the GO:BP database [6, 7]. Reported p-values are ad-
justed with the g:SCS procedure provided by g:Profiler.

Relationship to prior work

Our work extends previous research on spatial models of
transcriptomics data. Notably, SpatialDE [8] and SPARK
[9] model spatial transcriptomics data using Gaussian pro-
cesses to detect spatially variable genes. However, neither
method makes use of histological information or can be
used to infer high-resolution expression data. NovoSpaRc
[10] reconstructs the spatial organization of single cells by
solving an optimal transport problem. While novoSpaRc
can identify zonated genes from single-cell data, accurate
inference of spatial expression patterns requires informa-
tion about the spatial configuration of marker genes. Sev-
eral other methods [11, 12, 13, 14] exist for fusing single
cell with in situ sequencing or hybridization data.

The contribution of our work is threefold: First, we
have shown that histological image data is highly infor-
mative of spatial expression patterns in tissues. Second,
we provide an integrative model of in situ capturing spa-
tial transcriptomics. Our model fuses spatial gene expres-
sion data with high-resolution image data, thereby making
it possible to study full-transcriptome expression hetero-
geneity in detailed anatomical structures. Third, we have
demonstrated the feasibility of predicting expression in un-
squenced samples using only their histological image data.
We believe image-based in silico spatial transcriptomics to
be a promising future research topic.

Data availability

The mouse olfactory bulb dataset was ob-
tained from the spatial research group’s web-
site: https://www.spatialresearch.org. The
breast cancer dataset was obtained from 10X
Genomics: https://support.10xgenomics.com/
spatial-gene-expression/datasets/.

Code availability

We have implemented XFuse in the Pyro probabilistic pro-
gramming language [15]. The code is available under the
MIT license at https://github.com/ludvb/xfuse.
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