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 14 

Abstract  15 

x Background and aims Intraspecific variation in functional traits is essential for the 16 

evolutionary success of organisms. The co-variation between trait variation and 17 

environment, as well as between different traits, can help us to understand which 18 

ecological factors drive habitat adaptation, and to what extent adaptation may be 19 

constrained by trait correlations and trade-offs. In managed grasslands, plants experience 20 

a combination of competition, recurrent biomass removal and nutrient pulses. Each of 21 

these ecological challenges requires specific plant tolerances, and populations should 22 

locally adapt if intraspecific variation exists in these traits. 23 

x Methods We studied variation in land use-related traits in the common grassland plant 24 

Plantago lanceolata. In a common environment, we quantified the competitive ability 25 

(R*), clipping tolerance and responses to a nitrogen pulse of plants from 54 populations 26 

with different land use intensities across Germany. 27 

x Key results We found significant population differentiation in competitive ability but 28 

there was little evidence that trait variation was related to land use intensity. There was a 29 

positive relationship between competitive ability and clipping tolerance at the population 30 

level, indicating a genetic, and possibly functional, link between these two traits. In 31 

contrast, clipping tolerance and nitrogen responses were negatively correlated at the 32 

levels of plant individuals, indicating a physiological trade-off between plant responses to 33 

these two land-use processes. 34 

x Conclusions Our results show that there is substantial intraspecific variation in some of 35 

the key functional traits for plant success in managed grasslands, and that rapid evolution 36 

and adaptation is therefore possible in these traits. 37 

38 
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Introduction 39 

Understanding evolution in response to land use in grassland plants is of great interest 40 

because of the wide distribution and economic importance of these ecosystems, and because 41 

land use change is the strongest driver of global change (Foley et al., 2005, Díaz et al., 2019). 42 

Already from the early 20th century, grassland researchers showed that different management 43 

regimes resulted in rapid evolutionary changes in a range of grassland species. For instance, 44 

in a common-garden collection of over 400 Dactylis glomerata ecotypes, Stapledon (1928) 45 

found that there were persistent growth form differences between plants from different kinds 46 

of pastures and meadows. Later, Warwick and Briggs, in their classic studies on the 47 

“genecology of lawn weeds”, found similar results for several grassland species, e.g. dwarf, 48 

prostrate morphotypes originating from frequently mown lawns, and more erect ones in 49 

neighbouring populations that lacked the frequent mowing (Warwick & Briggs 1978, 1979). 50 

Evolution in response to land use was also found in the famous long-term Park Grass 51 

Experiment where Snaydon and Davies (1976) demonstrated local adaptation of Antoxanthum 52 

odoratum to different fertilisation and liming treatments (see also Davies & Snaydon 1973, 53 

1976). In all of these classic studies, however, researchers compared simple categories of land 54 

use such as pastures versus meadows, or different types of fertilisation regimes, whereas 55 

finer-resolution analyses of land use processes are still rare. Moreover, previous studies 56 

usually focused on traits relevant for agriculture, such as yield, growth form and phenology, 57 

whereas other ecologically relevant functional traits received less attention.  58 

From a plant eye's view, three of the key processes in grasslands are (1) competition 59 

with neighbouring plants, (2) the temporary nutrient pulses created by animal droppings or 60 

fertilisation, and (3) the regular disturbance and biomass removal imposed by mowing or 61 

grazing. The abilities of plants to compete with neighbours, exploit nutrient pulses, and 62 

tolerate biomass removal are thus important functional traits in grassland plants.  63 
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Competition ultimately reduces the survival, growth or reproduction of an individual 64 

plant (Aarsen & Keogh, 2002), and plant species differ in the degree to which they they are 65 

impacted by neighbours (e.g. Keddy, 1990; Aarssen, 1992; Tokeshi, 2009). Plant competitive 66 

ability can be quantified in different ways (Aarssen & Keogh, 2002), and at the species level 67 

it appears to be particularly the ability to persist at low nutrient levels that makes some plant 68 

species outcompete others (resource ratio hypothesis; Tilman 1985). The significance of the 69 

so-called R* value of species – the lowest resource level that allows persistence – has been 70 

proven by many species-level experimental studies (Wilson et al., 2007). At the intraspecific 71 

level, a number of previous studies demonstrated genetically-based variation in competitive 72 

ability and the selective agency of neighbouring plants (Cheplick, 2015), but intraspecific 73 

variation in R* has so far not been examined.  74 

The second key process are nutrient pulses. Many ecosystems experience fluctuating 75 

resource availability, e.g. because of snowmelt, seasonal weather events or fires (Ostfeld & 76 

Keesing, 2000). Human activity is especially associated with such pulses, either indirectly 77 

through causing extreme climatic events (Coumou & Rahmstorf, 2012), or more directly 78 

through intentional nutrient deposition in agricultural landscapes. Resource pulses can impact 79 

population dynamics across communities and trophic networks (Gratton & Denno, 2003; 80 

Yang et al., 2008) as well as across generations (Miao et al., 1991), and they tend to promote 81 

particular plant species over others (Bilbrough & Caldwell, 1997), or even the spread of plant 82 

invaders (Parepa et al., 2013). However, to our knowledge no previous study has investigated 83 

plant responses to nutrient pulses at the intraspecific level.  84 

The third key process in grasslands is recurrent biomass removal. While strong mowing 85 

or grazing generally reduce fitness, plants possess the ability to regrow and to some extent 86 

compensate for such damage. Because of this, some species are able to maintain their fitness 87 

or even overcompensate and increase it in response to moderate levels of herbivory 88 

(McNaughton, 1983; Strauss & Agrawal, 1999). Plant tolerance to biomass damage has been 89 
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extensively researched, and previous studies have repeatedly demonstrated not only species 90 

differences but also heritable variation within and among natural populations (e.g. Bergelson 91 

& Crawley, 1992; Agrawal, 1998; Strauss & Agrawal, 1999; Johnson, 2011), although rarely 92 

in relation to land use (but see Lennartsson et al., 1997, 1998). 93 

While all of the three described functional traits are expected to be important for 94 

success in managed grasslands, it seems unlikely that plants can evolutionarily improve all of 95 

them simultaneously. Increased competitive ability (= lower R*) requires greater resource-96 

efficiency, while stronger responses to nutrient pulses are only possible if plants are on the 97 

faster (= less resource-efficient) side of the fast-slow plant economy spectrum (Reich, 2014). 98 

Tolerance to biomass removal is usually based on belowground storage of resources, which 99 

means that some resources are not available for other purposes anymore. In general, we 100 

should expect evolutionary trade-offs (Agrawal et al., 2010) between the three functional 101 

traits, and that the specific phenotypes evolving in different grasslands depend on the local 102 

intensities of fertilisation versus mowing and grazing damage.  103 

We addressed these questions in the framework of the Biodiversity Exploratories 104 

project (www.biodiversity-exploratories.de), a large-scale and long-term network of 105 

ecological study sites for understanding relationships between land use, biodiversity and 106 

ecosystem functioning. The project includes 150 grassland plots across Germany (Fischer et 107 

al., 2010), with 50 plots in each of the three regions Schorfheide-Chorin (northern Germany), 108 

Hainich-Dün (central Germany) and Schwäbische Alb (southwest Germany). Within each 109 

region, the plots cover a broad range of land use types and intensities. The detailed land use 110 

information available for these plots, with precise data on mowing frequencies, livestock 111 

densities and amounts of fertilisation, obtained from annual surveys (Blüthgen et al., 2012), is 112 

a unique feature of the Biodiversity Exploratories project and, together with the large number 113 

of plots, makes it a powerful system for studying evolution in managed grasslands. 114 
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There is already evidence from the Biodiversity Exploratories that the phenotypes of 115 

several grassland species evolve in response to land use (Kloss et al., 2011; Völler et al., 116 

2013, 2017). We built on these studies and examined 54 populations of the common perennial 117 

Plantago lanceolata. Unlike the previous studies, which only conducted simple phenotyping 118 

in a common environment, we carried out a greenhouse experiment with a series of treatments 119 

(Fig. 1) which allowed us to quantify the R* values of plants, as well as their nutrient pulse 120 

responses and clipping tolerances. Specifically, we asked the following questions: (1) Is there 121 

intraspecific variation in the three functional traits in P. lanceolata? (2) What is the 122 

relationship between land use and the variation in these traits? (3) Are there trade-offs 123 

between the three traits, and are these trade-offs influenced by land use intensity? 124 

 125 

Materials and Methods 126 

Study species and experimental design  127 

To test the questions outlined above, we worked with Plantago lanceolata L. 128 

(Plantaginaceae), a short-lived perennial rosette herb that is very common in European 129 

grasslands and grows under a wide range of environmental conditions. P. lanceolata is also 130 

one of the most common plant species in the Biodiversity Exploratories, occurring on over 131 

100 of the 150 grassland plots. In September 2015, we collected ripe seeds of P. lanceolata in 132 

each of the three regions, and from the broadest possible land-use gradient in each 133 

(Supplementary Table S2). Altogether, we sampled seeds from 54 plots, with 5–12 individual 134 

plants per plot.  135 

We stratified the seeds at 5°C under moist and dark conditions for three weeks (Pons, 136 

1992) and transplanted the germinated seedlings to 1-L pots filled with a 7:1.5:1 mixture of 137 

nutrient-poor soil, vermiculite and sand, with 5–12 individuals per population and a total of 138 

540 plants (Supplementary Table S2). The pots were placed in a climate-controlled 139 

greenhouse with temperature set to 21°C/15°C at a 16h/8h day/night cycle. After six weeks, 140 
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we rearranged all pots into a randomised block design, and we let the plants grow for another 141 

seven weeks to ensure strong nutrient depletion in all pots (Fig. 1). At this point, we took a 5 142 

cm3 soil sample from each pot that was later analysed for total nitrogen content with a 143 

EuroEA Elemental Analyser (HEKAtech, Wegberg , Germany) at the Soil Biogeochemistry 144 

Lab at Karlsruhe Institute of Technology, and we measured the chlorophyll content of two 145 

leaves on each plant with a SPAD 502 chlorophyll meter (Konica-Minolta, Tokyo, Japan). 146 

After that, we fertilised each plant with 10 ml of liquid NPK fertiliser (Wuxal 147 

Universaldünger; Hauert MANNA Düngerwerke GmbH, Nürnberg, Germany) at a 148 

concentration equivalent to 50 kg N/ha. Ten days later, we measured chlorophyll content 149 

again on two newly grown leaves of each plant. Two weeks after adding the fertiliser, we 150 

clipped all plants one centimetre above ground. After another three weeks, we harvested the 151 

aboveground biomass of all plants, dried it at 70°C for three days, and weighed it. 152 

 153 

Data Analysis 154 

Our data analyses generally focused on three variables: (1) the competitive ability of each 155 

plant, estimated as 1-R* (Tilman, 1985) where R* was the fraction of total nitrogen in the 156 

potting soil left after 11 weeks of growth, (2) the pulse response as the ratio between the leaf 157 

chlorophyll contents after and before the fertilisation, with higher values indicating more 158 

successful utilisation of the added nitrogen, and (3) the clipping tolerance of plants, calculated 159 

as the ratio between their aboveground biomass from the second and first harvest, again with 160 

higher values indicating faster recovery from clipping damage. 161 

Prior to the main analyses, we simplified our data by removing sources of variation that 162 

were not relevant to our study questions. We fitted linear models with the three regions of the 163 

Biodiversity Exploratories and the blocks in the greenhouse as fixed factors to each dependent 164 

variable, and we used the residuals from these models for all subsequent analyses (Manning et 165 
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al., 2015; Soliveres et al., 2016). To improve the normality of error distributions, the data for 166 

pulse response and clipping tolerance were additionally log-transformed. 167 

First, we tested for intraspecific variation in the three focus traits with mixed-effect 168 

models that included populations as fixed factors and maternal seed families nested within 169 

populations as random factors (Zuur et al., 2009; see Supplementary Information Table S1 for 170 

model formulas). Second, we tested for relationships between land use and the three traits by 171 

fitting separate mixed models for each combination of land use intensities (mowing, 172 

fertilisation, grazing) and trait (competitive ability, pulse response, clipping tolerance), with 173 

each model including one of the land use intensities as explanatory variable plus population 174 

and maternal seed families nested within populations as random factors (Table S1). Next, we 175 

tested for trade-offs between the three focus traits by examining their statistical relationships 176 

at the level of individuals, seed families and populations. At the individual-level, we fitted 177 

mixed models with random intercept and slope that included the respective other trait as 178 

explanatory variable, plus population and family nested within population as random factors. 179 

At the family level, we analysed family means and included only population as random factor, 180 

and at the population level, we used simple linear models regressing the population means of 181 

two traits against each other. In the cases where we found significant relationships between 182 

the traits, we proceeded to the final step in our analyses where we tested the effects of land 183 

use on trait relationships. We did this through a series of mixed models with random 184 

intercepts and slopes that included the respective other trait, one of the three land use 185 

intensities, and their interactions, as fixed factors, plus populations and families nested within 186 

populations as random factors. All statistical analyses were done in R (R Development Core 187 

Team, 2008). We corrected all P-values for false discovery rates (FDR).  188 

189 
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Results 190 

We found significant heritable variation, both at the population and seed family level, for 191 

competitive ability, but only marginally significant family-level variation in clipping 192 

tolerance, and no significant variation at all in pulse response (Table 1 and Figure 2). There 193 

were no significant relationships between land use intensity and the three studied functional 194 

traits (Table 2). When we tested for relationships between competitive ability, pulse response 195 

and clipping tolerance, we found significant negative relationships between pulse response 196 

and clipping tolerance at the level of individuals and seed families, and a significant positive 197 

relationship between competitive ability and clipping tolerance at the population level (Table 198 

3 and Fig 3). Furthermore, we found a significant effect of mowing on the individual-level 199 

relationship between pulse response and clipping tolerance (F = 9.08, P = 0.025 for mowing x 200 

pulse response interaction), with the negative relationship between the two traits disappearing 201 

at higher mowing intensities (Fig 4). There were no other significant land use effects on trait 202 

relationships. 203 

 204 

Discussion 205 

To understand plant intraspecific variation in relation to land use, we studied 54 grassland 206 

populations of Plantago lanceolata that strongly differed in their intensities of mowing, 207 

grazing and fertilisation. We specifically examined three functional traits that we expected to 208 

be important for plant survival in grasslands: competitive ability, clipping tolerance and the 209 

ability of plants to quickly respond to nutrient pulses. We found substantial intraspecific 210 

variation in competitive ability (R*) but not in the other two traits, and there was no evidence 211 

for population-level relationships between traits and land-use intensity. However, there were 212 

several positive or negative relationships between functional traits at the levels of individuals, 213 

families or populations, indicating physiological or evolutionary links between these traits. 214 

Below, we discuss the results in detail, and attempt to place them into a broader context. 215 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.967521doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.967521


 10 

 216 

Intraspecific variation  217 

A necessary prerequisite for genetic differentiation and local adaptation in the examined traits 218 

is that our study system harbours significant intraspecific variation. We did not find any 219 

significant family- or population-level variation in clipping tolerance and plant responses to a 220 

nutrient pulse, but there was substantial intraspecific variation in R* competitive ability, both 221 

at the level of seed families and populations. To our knowledge, this is the first time that 222 

intraspecific variation, and thus microevolution, in this aspect of competitive ability has been 223 

studied and demonstrated in plants. 224 

We were surprised to not find population differentiation in clipping tolerance because 225 

intraspecific variation has been repeatedly shown in other plant species (e.g. Agrawal et al., 226 

1999; Johnson, 2011; Juenger & Bergelson, 2000; Strauss & Agrawal, 1999; Deng et al. 227 

unpublished). We also found no population differentiation in pulse response, and there are no 228 

previous studies on intraspecific variation in this trait. With 54 populations and 199 seed 229 

families, a lack of statistical power is an unlikely explanation in our case. Instead, we think 230 

that it may have been a combination of weak true patterns and high signal-to-noise ratio. First, 231 

since Plantago lanceolata is wind-pollinated and self-incompatible (Kuiper & Bos, 1992), 232 

there is generally strong gene flow and relatively weak population differentiation in this 233 

species (Gáspár et al. 2019). Second, we worked with an F1 generation that had random 234 

fathers (from the field) but that, unlike under field conditions, was not experiencing strong 235 

natural selection. This likely further increased variation among individuals and therefore 236 

lowered the signal-to-noise ratio in our system. Finally, clipping tolerance and pulse response 237 

are both derived traits based on several, error-prone measurements, and thus error propagation 238 

could have further added to this problem. However, in spite of all this, we did find significant 239 

family- and population-level variation in R*, which underlines the ecological and 240 

evolutionary significance of this result. 241 
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 242 

No relationships with land use 243 

We found no relationships between the land-use intensities recorded in the Biodiversity 244 

Exploratories and the three studied functional traits. This contrasts with previous studies in 245 

the Biodiversity Exploratories (Völler et al., 2013, 2017) as well as in other systems that 246 

demonstrated land use-related phenotypic changes in plants (e.g. Aarssen & Turkington, 247 

1985a, b, c, 1987; Lennartsson et al., 1997; Briggs, 2009). In principle, there are three 248 

possible explanations: (1) a true pattern could not be detected because of statistical or 249 

methodological shortcomings, (2) there was no pattern yet because the land use has not been 250 

acting long enough yet in our system, or (3) there is no pattern. As already explained above, 251 

our study did not lack statistical power, and it covered a broad range of land use intensities, 252 

also compared to previous studies. Moreover, although there is some interannual variation in 253 

land use in the Biodiversity Exploratories (Blüthgen et al., 2012; Allan et al., 2014), which 254 

could potentially impede the impacts of natural selection, previous studies already found land 255 

use-related differentiation of plant phenotypes in our system (Völler et al., 2013, 2017). It is 256 

also known from other studies that that a couple of years can be enough for stable shifts in 257 

plant phenotypes between differential management (Briggs, 2009). Therefore, explanations 258 

(1) and (2) both appear unlikely, and we need to consider the third option that there might 259 

simply be no relationships between land use and the three studied functional traits; possibly 260 

because of the derived nature of the traits, or evolutionary constraints particular to these traits 261 

and land use in this system. 262 

 263 

Correlations between three functional traits 264 

Besides quantifying intraspecific variation in the three functional traits and their relationships 265 

with land use, we also tested for interrelationships between traits, and we did this at three 266 

levels: plant individuals, maternal seed families and populations. Each of these levels 267 
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provides us with different answers: at the level of individuals, trait correlations are most likely 268 

related to functional-physiological constraints or necessities, whereas at the level of seed 269 

families they reflect underlying genetic correlations, and at the level of populations they 270 

rather indicate trait syndromes associated with habitat adaptation. 271 

We found no relationships between competitive ability and pulse response at any of 272 

these levels. This was surprising as lower R* values (i.e. better competitive ability) should be 273 

coupled to a resource-conservative plant economy, whereas strong responses to nutrient 274 

pulses require a large metabolic capacity. We therefore expected a trade-off between the two 275 

traits. However, our results suggest that competitive ability evolves independently. The only 276 

observed trait correlation involving competitive ability was a positive population-level 277 

correlation between competitive ability and clipping tolerance, indicating both traits might be 278 

beneficial in the same environments. Resprouting in Plantago lanceolata is based on 279 

belowground resource storage (Latzel & Klimesová, 2009; Latzel et al., 2014). Thus, in 280 

contrast to pulse response, both clipping tolerance and R* competitive ability are resource-281 

conservative, and therefore both traits should be beneficial in the less nutrient-rich pastures or 282 

meadows which make up part of the grassland plots in the Biodiversity Exploratories. 283 

However, the two traits were not significantly correlated at the level of individuals or seed 284 

families, indicating that they are not physiologically or genetically linked. Another potential 285 

explanation for the lack of a family-level relationship could be the inflated genetic variation in 286 

the F1 generation already explained above (see also Gáspár et al., 2019). However, while F1 287 

plants from the same mother may have many different fathers, these most likely come from 288 

the same population (Kuiper & Bos, 1992, p. 226), so that population-level differences may 289 

have been maintained, and could thus be detected, in our study. 290 

Surprisingly, plant responses to nutrient pulses were negatively correlated to clipping 291 

tolerance at the levels of individuals and maternal seed families. Together with the lack of a 292 

population differentiation in these traits, this indicates physiological and/or genetic links 293 
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between them. Again, resource economy appears to be the best explanation. Clipping 294 

tolerance is generally thought to be more prevalent in species or genotypes with a more 295 

conservative metabolism and more root-, non-structural carbohydrate reserves, whereas a 296 

stronger response to a nutrient pulse should requires higher metabolic rate and less storage 297 

(Strauss & Agrawal, 1999; Reich, 2014). Thus, there could be a classic resource allocation 298 

trade-off between the two traits. The explanation is further supported by the fact that we 299 

found the negative correlation mainly in plants from plots with less than one mowing event 300 

per year, whereas the relationship tended to disappear at higher mowing frequencies. In the 301 

Biodiversity Exploratories, frequent mowing is usually associated with strong fertilisation 302 

(Blüthgen et al., 2012). Thus, the resource trade-off disappears when resources become less 303 

limiting (Agrawal et al., 2010). 304 

305 
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Table 1. Results of mixed models testing for heritable variation in three functional traits in 456 

Plantago lanceolata, with populations and seed families as fixed and random factors, 457 

respectively. LRT = likelihood-ratio test. All P-values are FDR-corrected. 458 

 Population  Seed family 

 F P  LRT P 

Competitive ability 1.60 0.049  16.82 0.000 

Pulse response 1.01 0.463  0.04 0.835 

Clipping tolerance 1.30 0.169  4.05 0.066 
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Table 2. Results of mixed models testing for the effects of mowing, fertilisation and grazing 460 

on three functional traits in Plantago lanceolata, with populations and seed families included 461 

as random factors. Est. = slope estimate of the models. All P-values are FDR-corrected. 462 

 Mowing  Fertilisation  Grazing 

 Est. F P  Est. F P  Est. F P 

Competitive ability 0.142 4.31 0.387  0.050 1.51 0.504  -0.071 1.68 0.504 

Pulse response 0.014 0.08 0.838  0.001 0.04 0.838  0.009 0.06 0.838 

Clipping tolerance 0.007 1.85 0.838  0.011 1.60 0.504  0.007 0.39 0.838 
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Table 3. Results of random slope and intercept mixed effects models testing for relationships 464 

between competitive ability (CA), pulse response (PR) and clipping tolerance (CT) in 465 

Plantago lanceolata, with populations and seed families included as random factors. Est. = 466 

slope estimate of the models. All P-values are FDR-corrected, and P<0.05 are in bold. 467 

  Individuals  Families  Populations 

  Est. F P  Est. F P  Est. F P 

CA ~ PR  0.07 3.26 0.162  0.12 1.31 0.336  0.01 0.00 0.967 

CA ~ CT  -0.01 0.01 0.967  0.11 1.33 0.336  0.44 6.21 0.048 

PR ~ CT  -0.05 11.47 0.009  -0.05 8.81 0.018  -0.05 2.52 0.212 
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Figure 1. Schematic of the sequence and duration of experimental treatments used to estimate 470 

competitive ability (R*), pulse response and clipping tolerance in Plantago lanceolata plants 471 

from 54 grasslands of different land-use intensities. 472 

 473 

Figure 2. Variation among populations (boxplots) and seed families (black dots within 474 

boxplots) in three functional traits in Plantago lanceolata. The boxplots are based on all 475 

individuals per population and indicate medians, 25th/75th percentiles, and the 1.5 x 476 

interquartile ranges. For each trait, populations are ordered by their median values. 477 

 478 

 Figure 3. Relationships between the three studied functional traits of Plantago lanceolata at 479 

the levels of individuals, seed families and populations. Solid and dashed line plots indicate 480 

the fitted models for significant and non-significant relationships, respectively, with their 95% 481 

confidence intervals. 482 

 483 

Figure 4. The mowing intensity of their grasslands of origin affects functional trait 484 

correlations in Plantago lanceolata. Each dot represents a plant individual grown in a 485 

common environment. 486 
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