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Abstract1

The smaller a population is, the faster it looses genetic variation due to genetic drift. Loss2

of genetic variation can reduce population growth rate, making populations even smaller and3

more vulnerable to loss of genetic variation, and so on. Ultimately, the population can be driven4

to extinction by this ”eco-evolutionary extinction vortex”. So far, extinction vortices due to5

loss of genetic variation have been mainly described verbally. However, quantitative models are6

needed to better understand when such vortices arise and to develop methods for detecting7

them. Here we propose quantitative eco-evolutionary models, both individual-based simulations8

and analytic approximations, that link loss of genetic variation and population decline. Our9

models assume stochastic population dynamics and multi-locus genetics with different forms10

of balancing selection. Using mathematical analysis and simulations, we identify parameter11

combinations that exhibit strong interactions between population size and genetic variation as12

populations decline to extinction and match our definition of an eco-evolutionary vortex, i.e.13

the per-capita population decline rates and per-locus fixation rates increase with decreasing14

population size and number of polymorphic loci. We further highlight cues and early warning15

signals that may be useful in identifying populations undergoing an eco-evolutionary extinction16

vortex.17

Keywords: Extinction vortex, genetic diversity, fluctuating selection, reversal of dominance, het-18

erozygote advantage, early-warning signals.19

1 Introduction20

The fate of small populations is often strongly affected by demographic stochasticity and genetic21

factors. Small populations can rapidly loose genetic variation due to genetic drift. Additionally,22

inbreeding, i.e. mating between relatives, is more likely in small than large populations. In captive23
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and natural populations, inbreeding and reduced heterozygosity are often associated with a reduction24

in population fitness or in a fitness component (Saccheri et al. 1998; Reed and Frankham 2003). For25

instance, reduced heterozygosity is associated with reduced hatching success and increased mortality26

rates of chicks in a metapopulation of southern dunlins (Blomqvist et al. 2010). Inbreeding is also27

associated with higher mortality rates in captive ungulates (Ralls et al. 1979; Ballou and Ralls28

1982), lower breeding recruitment rate in wolves (Bensch et al. 2006), reduced litter size in the29

Iberian Lynx (Palomares et al. 2012), and reduced disease resistance in Drosophila melanogaster30

and the Tasmanian devil (Spielman et al. 2004; Miller et al. 2011).31

In summary, small populations experience genetic problems such as loss of variation and inbreeding32

depression, and these genetic problems can reduce population fitness. The reduction in population33

fitness components can cause a further decline in population size, thereby exposing the population34

to even more severe genetic problems. Shrinking population size and genetic problems can thus form35

an extinction vortex (Gilpin and Soulé 1986), a positive feedback loop that can ultimately drive the36

population to extinction. Gilpin and Soulé (1986) proposed four types of extinction vortices depend-37

ing on the major factors driving the feedback loop. The R vortex is driven by the feedback between38

decreasing population size and increasing variance in growth rate, e.g. because of more variable sex39

ratio and resulting mate-finding problems. For the D vortex, the feedback is mediated by increasing40

fragmentation of the species distribution at small population size. The F and A vortices are mainly41

driven by genetic factors such as genetic drift, loss of heterozygosity and generally loss of genetic42

variation. In particular, the F vortex is driven by inbreeding depression and loss of heterozygosity43

and less dependent on the environment while the A vortex involves reduction of a population’s44

adaptive potential in new environments. Our study is closely related to the F and A vortices and to45

distinguish them from other vortices, e.g. those caused by anthropogenic Allee effect (Courchamp46

et al. 2006), we refer to extinction due to feedback loops between genetic deterioration and declining47

population sizes as an ”eco-evolutionary vortex”.48

Genetic problems in small populations can be divided into three categories: inbreeding depression,49

mutation accumulation and mutational meltdown, and loss of genetic variation and evolutionary50

potential (Frankham 2005). It is possible in principle that each of them alone or any combination51

of them can give rise to an eco-evolutionary vortex. Such extinction vortices are often described52

verbally in the literature. However, to be able to understand the conditions under which populations53

can enter an extinction vortex and develop methods to detect populations in an extinction vortex,54

we need quantitative models. So far, progress on such quantitative models has mostly been made55

for the two of the three types of genetic problem: inbreeding depression and mutation accumulation.56

For example, inbreeding depression can cause an ”inbreeding vortex” (Tanaka 1997, 1998, 2000)57

which occurs when a large population with its relatively high frequency of recessive deleterious58

alleles is suddenly reduced in size, leading to more mating between relatives. Inbreeding depression59
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can also give rise to a genetic Allee effect, with a rapid change in extinction probability around60

some critical population size (Wittmann et al. 2018). Furthermore, inbreeding depression is often61

included in population viability analyses, e.g. in a recent study on mountain lions by Benson et al.62

(2019) and many studies using the software VORTEX (Lacy 1993). For mutation accumulation, eco-63

evolutionary models have been developed to show how time to extinction depends on the population’s64

carrying capacity (Lynch and Gabriel 1990) and to quantify the strength of the mutational meltdown65

compared to a scenario without eco-evolutionary feedbacks (Coron et al. 2013). However, for the third66

type of genetic problem in small populations, loss of genetic variation and evolutionary potential, to67

our knowledge, there is so far no quantitative model for the potentially resulting extinction vortex.68

In this paper, we thus aim to develop a quantitative model for an extinction vortex driven by the69

positive feedback between loss of genetic variation and reduction in population size.70

Because of a lack of appropriate detection methods, the contribution of genetic problems to extinction71

of endangered populations may often be underrated or remain unnoticed. Using our model, we want72

to identify key features and cues that can be used to identify natural populations caught in an73

extinction vortex driven by loss of genetic variation. Regarding the detection of extinction vortices74

in general, a retrospective analysis of demographic data from 10 already extinct wildlife populations75

showed that both year-to-year rates of population decline and variance in size increased as extinction76

was approached (Fagan and Holmes 2006). For extinction vortices due to loss of genetic variation,77

it would be useful to have measures of relevant levels of genetic variation. However, we generally78

do not know which loci contribute to fitness and how many such loci there are. Therefore, we79

also evaluate whether extinction vortices can be detected by some general early-warning signals for80

extinction in changing environments (Drake and Griffen 2010; Dakos and Bascompte 2014; Jarvis81

et al. 2016; Sommer et al. 2017; de Silva and Leimgruber 2019). As the environment gradually82

deteriorates, the commonly used early-warning statistical measures such as autocorrelation, standard83

deviation, coefficient of variation and kurtosis are expected to increase near bifurcation points where84

the population will shift to a new equilibrium, while skewness either increases if the new equilibrium85

point is higher or decreases otherwise (see Dakos et al. (2012) for an overview). In our case, the86

magnitude and stability of equilibria is not affected by a deteriorating external environmental factor,87

but genetic variation as an internal factor.88

Here we develop stochastic individual-based eco-evolutionary models and analytic approximations89

for the feedback between loss of of genetic variation and population decline. We assume multi-locus90

genetics and focus on scenarios where genetic variation can be maintained in large populations91

due to some form of balancing selection, but is at risk of being lost due to genetic drift in small92

populations. First, we partition the parameter space into regions with qualitatively different eco-93

evolutionary behaviour. We then pick exemplary cases from each region to check for the presence of94

an eco-evolutionary vortex, which we define by two key features: (i) the per-capita rate of population95
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decline increases with both decreasing genetic variation and declining population size and (ii) the96

per-locus rate of loss of genetic variation increases with declining population size as well as decreasing97

genetic variation. In addition, we use our model to test for three hypothesized cues of extinction98

vortices: (i) there exists a critical population size and (or) critical level of genetic variation below99

which population decline and (or) loss of genetic variation suddenly increases substantially, (ii) loss100

of genetic variation and population decline and extinction occur on the same time scale and, (iii)101

early-warning signals manifest as population size decreases.102

2 Methods103

In this section, we describe two different approaches to modeling the interplay between loss of genetic104

variation and population decline: an individual-based model (IBM) and an analytic approximation.105

Individuals in our model are diploid, hermaphroditic and have n unlinked loci, each with two alleles,106

a and A.107

2.1 Individual-based Model108

We start with a population size drawn from a Poisson distribution with mean K, the carrying109

capacity. The alleles are initially drawn with equal probability across all loci of each individual.110

For each individual at generation t, the actual number of offspring is independently drawn from a111

Poisson distribution with mean112

Et =


er if Nt < K,

er(1−
Nt
K ) if Nt ≥ K,

(2.1)

where r and Nt are the maximum intrinsic growth rate and population size at generation t respec-113

tively. In this model, the population grows geometrically when below K, but at K and larger sizes114

follows the Ricker model to prevent population explosion. The assumption that small populations do115

not experience any density dependence simplifies the mathematical analysis and should be a good116

approximation for many small endangered populations. However, we also consider a fully density-117

dependent model, where we only use the second part of Equation (2.1), i.e. the Ricker model, at all118

population sizes.119

Each offspring produced by the focal parent randomly chooses the second parent from all the available120

parents in the population, including the focal parent. For each locus, the offspring inherits one121

randomly chosen allele from each parent.122

We consider two selection mechanisms, both of which give rise to balancing selection such that in123

a large population both alleles can be maintained. The first mechanism is heterozygote advantage,124
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where heterozygotes have higher fitness than either homozygote. In this paper, both homozygotes125

have the same fitness (wAA = waa = 1 − s, where 0 < s < 1 is the selection coefficient) while126

heterozygotes have maximum fitness (wAa = 1). The second mechanism is fluctuating selection with127

reversal of dominance (Wittmann et al. 2017; Bertram and Masel 2019; Connallon and Chenoweth128

2019). Recent studies have suggested dominance reversals, e.g. in Drosophila melonagaster (Chen129

et al. 2015) and beetles (Grieshop and Arnqvist 2018). Specifically, we assume that the fitness of130

homozygote genotypes fluctuates temporally. At each generation, the fitness of heterozygotes is131

intermediate between that of the two homozygotes, but closer to the currently fitter homozygote132

(Figure 1), i.e. there is beneficial reversal of dominance (Curtsinger et al. 1994). This causes the het-133

erozygote genotype to have a higher geometric mean fitness than either homozygote, and balancing134

selection emerges. We achieve this by setting: wAA,t = (1−sA,t)/(1+s), waa,t = (1−sa,t)/(1+s) and135

wAa,t = (1−ht ·sA,t−(1−ht) ·sa,t)/(1+s), where sA,t = s ·sin(2π ·t/κ) and sa,t = s ·sin(π+2π ·t/κ)136

are temporally fluctuating selection coefficients and ht = 0.5− c · sin(2π · t/κ) is the temporally fluc-137

tuating dominance coefficient. In this model, s determines the amplitude of fluctuating selection,138

κ is the number of generations in a complete cycle (we use κ = 50 throughout the paper), and139

0 ≤ c ≤ 0.5 determines the magnitude of dominance changes. The division by 1 + s ensures that140

all fitness values are between 0 and 1. We also run a neutral control scenario where all the three141

genotypes have maximum fitness of 1 (i.e. selection coefficient s = sa,t = sA,t = 0 ) at all generations.142

Denoting wg,t as the fitness of genotype g ∈ {AA, Aa, aa} at generation t and assuming multiplica-143

tive fitness across loci, each offspring is viable with probability144

W =
n∏
l=1

wgl,t, (2.2)

where gl is the genotype at locus l. After all individuals have reproduced, all the viable offspring145

then replace the parent generation. In both selection mechanisms, mutation is not considered and146

therefore an allele is not reintroduced once lost at a given locus. The current number of polymorphic147

loci, i.e. loci where both alleles are still present in the population, is denoted Ht.148
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Figure 1: Example of fitness trajectories under fluctuating selection with reversal of dominance. The
solid black, red and blue lines represent the fluctuating fitness for homozygotes AA and aa and
heterozygote Aa genotypes, respectively, while the green-solid line is for mean population fitness.
For the heterozygote advantage mechanism, the dashed blue and brown lines represent fitnesses
of heterozygote and homozygote genotypes, respectively, while the green-dashed line is the mean
population fitness. The parameters are s = 0.005, c = 0.2, κ = 50.

2.2 Parameter space149

Two key model parameters are the intrinsic growth rate, r, which determines the fertility rate and150

therefore population growth rate, and the selection coefficient, s, which determines the offspring151

viability and influences the rate at which genetic variation is lost. To determine regions in the r− s152

plane with qualitatively different behavior, we consider the average number of surviving offspring per153

individual (SOI), which is given by the product of the average number of offspring per individual154

E (see Equation 2.1) and the average viability, i.e. fitness, of offspring at a given level of genetic155

variation (W (H)). To obtain a ”critical number of polymorphic loci”, Hc, below which population156

crash to zero occurs, we set SOI to 1, the boundary point between population growth and decline,157

and solve for H (see Appendix Equation A.26).158

For the heterozygote advantage mechanism where both homozygotes have the same fitness 1−s and159

heterozygotes have fitness 1, the mean fitness for locus l with allele frequency xl is160

w(xl) = 1− s(1− 2xl(1− xl)). (2.3)

We then approximate the fitness in terms of polymorphic loci by assuming an allele frequency of 0.5161

at all polymorphic loci, the expected equilibrium frequency under symmetric heterozygote advantage.162
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The fitness, W (H) is thus given by163

W (H) =
(

1− s

2

)H
(1− s)n−H . (2.4)

Since the assumption of an allele frequency of 0.5 is generally violated, fitness is overestimated and164

the critical number of loci is thus underestimated to some extent by this approach. For fluctuating165

selection with reversal of dominance, the geometric mean fitness of the genotypes is used to calculate166

the mean population fitness for a given locus. Briefly, we obtain the geometric mean fitness for the167

three genotypes (AA, Aa and aa) denoted as GAA, GAa and Gaa respectively. In this study, sA = sa,168

and therefore GAA = Gaa = Gh, where Gh denotes the geometric mean fitness of either homozygote.169

Also, assuming an equilibrium frequency of 0.5 and multiplicative fitness across loci, the population170

fitness becomes171

W (H) = (0.5(Gh +GAa))
H ·G(n−H)

h . (2.5)

2.3 Analysis172

We run a total of 100 replicate populations and each replicate population is iterated until either the173

population goes extinct or appropriate maximum number of generations is reached. The maximum174

simulation time is chosen in such a way that all polymorphic loci are at least lost in the population.175

In this study, maximum simulation time of 3,000 generations was sufficient for all cases involving176

N0 = K = 200 while 30,000 was used for N0 = K = 2000. In our analysis, we define the level of177

genetic variation in terms of the number of polymorphic loci in the population.178

For each replicate independently, the per-capita decline rate is calculated as Nt−Nt+1

Nt
for each gen-179

eration t. The range of population sizes is divided into equally spaced bins of width 10 (population180

sizes 1 to 10, then 11 to 20,...). For each replicate and bin separately, we then calculate the mean181

population size and the corresponding mean per-capita rate. To get overall mean population size and182

mean per-capita rate for each bin, we take the means across all contributing replicates, i.e. replicates183

that have data points in the respective bin. In the same way, we calculate the per-locus rate of loss184

of polymorphic loci, Ht−Ht+1

Ht
, first for each replicate and each generation. Then we averaged, using185

the same binning procedure as for population size above and with a bin width of 10. For the full186

Ricker model where relatively large carrying capacity is used, the bin width for population size is187

50, while that of polymorphic loci is maintained at 10.188

To calculate early-warning signals (auto-correlation at lag 1, coefficient of variation, skewness and189

kurtosis), the population size is first log-transformed due to presence of extreme values and values190

close or equal to zero (Dakos et al. 2012). The NAs produced as a result of population extinction191
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are removed before the indicators are computed. Using an overlapping moving window length of 100192

generations (200 generations for the Ricker model with larger carrying capacity), we calculate each193

indicator for each replicate separately, starting with the 100th generation. Here, the most recent194

available 100 data points are used to estimate each indicator at each generation point until the last195

generation of population existence. Now, following the same binning procedure described above in196

calculating per-capita decline rates, we calculate the indicator from the 100th generation (200th197

generation for Ricker model) to population extinction as a function of population size.198

2.4 Analytic Approximation of Eco-Evolutionary Model199

The individual-based model is approximated using a difference equation (for population size dynam-200

ics) coupled with a classical diffusion approximation equation (for the allele frequencies). The first201

part of the eco-evolutionary model represents the population dynamics as202

Nt+1 = EtWtNt, (2.6)

where Et is the average number of offspring per individual given by Equation (2.1) and Wt is203

the average population fitness determined by the distribution f(x, t), of allele frequencies, x, at204

generation t, as outlined below.205

We approximate f(x, t) using a diffusion equation (e.g in Kimura et al. (1955))206

∂f(x, t)

∂t
= −∂ [a(x, t)f(x, t)]

∂x
+

1

2

∂2 [b(x, t)f(x, t)]

∂x2
, (2.7)

where a(x, t) and b(x, t) refer to the infinitesimal mean and infinitesimal variance of the change in207

x. In the case of heterozygote advantage, a(x, t) = sx(1 − x)(1 − 2x) and b(x, t) = 1
2Nt

x(1 − x)208

(e.g see Durrett (2008)), while in our fluctuating selection scenario, a(x, t) = x(1− x)(x(1− 2ht) +209

ht)(1 + sa,t)(sa − sA,t) (see Appendix A.2) and b(x, t) = 1
2Nt

x(1− x).210

We numerically obtain a complete solution to Equation (2.7) subject to the initial and boundary211

conditions as in Zhao et al. (2013) and Xu et al. (2019) (see Appendix Section A.1 for details). In212

brief, the allele frequency x is discretized using a grid with grid points xi = i·u, where i = 0, 1, . . . ,m213

and u = 1/m. Similarly, time is discretized with spacing τ = 1 corresponding to a full generation214

with grid points tk = v · τ , v = 0, 1, . . . . We assume that all loci have initial allele frequency x0. The215

boundary condition is obtained by imposing the assumption that the system conserves probability216

at every time step (sum of all probabilities = 1, for all t). Thus, no probability flows outside the217

system as loss or fixation of alleles is captured by the outermost bins (x = 0 and x = 1). As a final218

result, we obtain a vector of probabilities f(xi, t) with i ∈ {0, 1, . . . ,m} for each time point.219

For each time t > 0, the probability density f(x, t) is used to estimate220
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(a) the population mean fitness, Wt. With the assumption of multiplicative fitness across all n221

unlinked loci, Wt = e
∑n

l=1 ln(w(xl)), where w(x) is given by Equation 2.3. Because the exact222

allele frequency xl at a given locus is not explicitly known, we approximate Wt using the223

expectation of fitness at a particular locus over the distribution f(x, t). Assuming that n is224

large and all loci independently sample an allele frequency from the current allele-frequency225

distribution,226

Wt = en
∑m

i=0 f(xi,t) lnw(xi), (2.8)

where the sum is over all allele-frequency bins, and227

(b) the probability that both alleles are still present, Pt =
∑m−1
i=1 f(xi, t). This is then used to228

estimate the number of polymorphic loci as,229

Ht = nPt. (2.9)

Note that (2.8) together with (2.6) and the numerical solution for f(x, t) completes the specification230

of the eco-evolutionary model, while Ht is used as a summary measure of genetic variation at that231

time.232

2.5 Data Accessibility233

All simulations and analyses were done in the R programming language (R Core Team 2015) and234

the R scripts are provided in the supplementary material.235
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3 Results236

3.1 Parameter space237

(A) (B)

Figure 2: Parameter space divided into three major regions according to whether the population
declines even with all loci polymorphic (Region I), starts declining at an intermediate number of
polymorphic loci (Region II) or can persist even without polymorphic loci (Region III). (A) is for
heterozygote advantage, and (B) is for fluctuating selection (see Section 2.2 for details). The red
spectrum and blue lines show the critical number of polymorphic loci below which rapid population
decline to extinction occurs. The points numbered 1, 2 and 3 are the cases considered in the main
text while the points prefixed with s are supplementary cases considered in the appendix. The brown
square labelled b is a boundary point in Region III but very close to Region II. The parameters used
are n = 100, c = 0.2, κ = 50,K = 200.

We generally obtain three distinct regions in the intrinsic growth rate - offspring viability selection238

(r − s) plane with qualitatively distinct behavior (Figure 2). Region I consists of populations with239

a critical number of polymorphic loci Hc above the total number of loci n. This implies that the240

number of polymorphic loci is below Hc from the start and populations are expected to decline to241

extinction immediately. In Region III, Hc < 0. This implies that populations in this region can loose242

all their polymorphic loci without rapid population decline. However, in Region II, 0 ≤ Hc ≤ n.243

In this region, populations are expected to start to decline faster at some intermediate number of244

polymorphic loci. For fluctuating selection, we observe the same three regions in parameter space245

(Figure 2B), but Region II is more narrow than for the heterozygote advantage mechanism (Figure246

2A). To look at the detailed features in each region, we simulate exemplary cases from each region.247

In this main text, we present results from Cases 1, 2 and 3 and results from cases labelled s · · are248

given in the appendix.249
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3.2 Heterozygote Advantage250

(A) Case 1 (B) Case 2 (C) Case 3 (D) Control

(E) (F) (G) (H)

Figure 3: Dynamics of population size and genetic variation under the geometric population growth
model with heterozygote advantage. The 1st 3 column panels are for different cases as indicated on
Figure 2A. 1st column (Case 1): r = ln(1.2), 2nd column (Case 2): r = ln(1.5), and 3rd column
(Case 3): r = ln(1.8). Other parameters are s = 0.005, N0 = K = 200, replicates = 100. 4th column
panel is the control case with same parameters as in 2nd column panel but s = 0. The dark blue lines
show the analytic approximation for each case with discretization parameters u = 0.1 and τ = 1.
Note the different scaling of the time-axis on the different plots.

Figure 3 shows population trajectories of Cases 1, 2 and 3 representing Regions I, II and III in Figure251

2A, respectively, and the neutral control case where all genotypes have the maximum fitness of 1.252

The dynamics from the analytic approximations fall within the range of the realisations of the IBM253

in the respective cases (dark blue lines in Figure 3, see Appendix Figure A.1 for the corresponding254

allele-frequency distributions at different times). For Case 1 where fertility is too low to compensate255

for viability selection, populations start their decline to extinction even before losing any genetic256

variation (Figures 3A and 3E). The number of polymorphic loci rapidly decreases to zero at or257

shortly before population extinction. In Case 3 where fertility is high enough to compensate for258

viability selection, even after total loss of polymorphic loci, populations basically fluctuate around259

a population size close to K (Figures 3C and 3G). However, in Case 2, we observe that populations260

start decreasing slowly with fluctuations until a certain point where they rapidly decline to extinction261

(Figure 3B). Similarly, after a constant phase, polymorphic loci are lost one by one at a small262

rate until a certain number of polymorphic loci is reached and then a rapid loss of all remaining263

polymorphic loci is observed (Figure 3F). The critical number of polymorphic loci below which rapid264

loss occurs roughly matches the estimated number from the analytic parameter space analysis (both265

around 40). These turning points agree with the suggested cue about existence of threshold values266

in levels of genetic variation and population size below which populations suddenly decline rapidly267

to extinction. No such turning points are observed in Cases 1, 3, or the neutral Control case. Also,268
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in line with the proposed cue about similar time scales, we observe that population extinction and269

loss of polymorphic loci occur at more or less the same time in Cases 1 and 2. The populations270

survive for longer periods of time after total loss of polymorphic loci in both Case 3 and the Control271

case scenario (leading to different time scales). In the neutral control, populations simply fluctuate272

around K while polymorphic loci are lost one by one due to drift until complete fixation occurs273

(Figures 3D and 3H). Note that the neutral case has the same fertility as Case 2, but although there274

is no balancing selection in the neutral case, polymorphism is lost more slowly.275

Figure 4 shows how the per-capita population decline rates and the per-locus rates of loss of poly-276

morphic loci vary with decreasing number of polymorphic loci and declining population size. When277

population size is below K, the per-capita rate of population decline increases with declining popu-278

lation size and decreasing number of polymorphic loci for Cases 1 and 2 (Figures 4A and 4B). The279

rate is more or less constant (and positive) as population size decreases in Case 1 with a marked280

increase near population extinction. In Case 2, the per-capita decline rate increases gradually from281

negative to positive as population size (below K) and number of polymorphic loci decrease, which282

further supports the existence of suggested threshold values of population size and genetic varia-283

tion. The negative per-capita decline rate implies positive per-capita growth rate. In Case 3, the284

per-capita decline rate is almost constant as both population size and number of polymorphic loci285

decrease. Note that the per-capita decline rate is relatively high and positive whenever population286

size exceeds K (grey-shaded region). This is because our geometric model with a Ricker boundary287

forces populations to decrease whenever Nt > K (see Equation (2.1)).288

Similarly, as population size decreases, the per-locus rate of loss of polymorphic loci first increases289

gradually for Case 2 until a certain size is reached where the rate increases suddenly and substantially290

(Figure 4C). For Cases 1 and 3, the rate is more or less constant near zero, but when the population291

is near extinction, a sudden increase in per-locus rate of loss for Case 1 occurs. Also, as the number292

of polymorphic loci decreases, the per-locus rate of loss increases for Cases 1 and 2 but is roughly293

constant for Case 3 (Figure 4D). In summary, Cases 1 and 2 match our definition of an an eco-294

evolutionary vortex, i.e. per-capita decline rate and per-locus rate of loss increase as both population295

size and number of polymorphic loci decrease. Other cases in Regions I and II exhibit the same296

features as Case 1 and 2 (see Figure A.4). Cases 3 and the Control scenario, by contrast, do not297

match the definition.298
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(A) (B)

(C) (D)

Figure 4: Per-capita rates of population decline and per-locus rates of loss of polymorphic loci under
the geometric population growth model with heterozygote advantage. The gray-shaded part in (A)
and (C) is the region above K. The solid lines are the mean values of the rates as described in the
methods and the shaded regions shows the standard error. The horizontal gray line in (A) and (C)
is for rate 0. The parameters for the 4 cases are as in Figure 3. In (D), the y-axis is on a logarithmic
scale. The arrows indicate the long-term direction of change over time.
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3.3 Early-Warning Signals299

(A) (B)

(C) (D)

Figure 5: Variation of early-warning signals with population size under the geometric population
growth model with heterozygote advantage. The gray-shaded part is the region above K. The solid
lines are the mean values of the rates as described in the methods and the shaded regions shows
the standard error while the gray-shaded rectangle is a region above K. The parameters are as in
Figure 3. We leave out Case 1 because the populations rapidly decreased from the start and our time
window range is above the time of population extinction. The arrows show direction of population
size over time.

Figure 5 shows variation of early-warning signals with population size for heterozygote advantage.300

As population size decreases, the early-warning signals display three main phases in Case 2. The301

populations start with a phase where coefficient of variation, kurtosis and skewness remain constant.302

This is followed by a gradual change phase and lastly by a rapid change phase. Autocorrelation303

under heterozygote advantage also shows three phases but in different order (gradual increase, rapid304

decrease, constant). In Case 3 and the Control case, the populations exhibit either one phase where305

the indicator remains constant (coefficient of variation) or two phases where the constant phase306

is followed by a rapid change phase but characterised by large standard errors (kurtosis, skewness307
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and autocorrelation). Gaussian smoothing before estimating the indicators gave similar observations308

(see Figure A.6 in the appendix). We deliberately leave out Case 1 because the populations rapidly309

declined from the beginning, making early-warning signals pointless, and most of them went extinct310

before the length of time window used. For fully density-dependent populations, similar observations311

are made (Figure A.11). Note though that compared to these aggregated results for populations in a312

given population-size range, time series of individual replicates are more noisy and may not display313

clearly distinct phases (see Figure A.5). Among the early-warning signals, the coefficient of variation314

seems to produce the most consistent patterns in individual replicates.315

3.4 Fluctuating Selection with Reversal of Dominance316

To check that the above observations are not restricted to the heterozygote advantage selection317

mechanism, we now compare the observations with another form of balancing selection known as318

fluctuating selection with reversal of dominance (see Figure 1). The dynamics of population size and319

number of polymorphic loci as time varies (Figure 6), and per-locus rate of loss and per-capita decline320

rate as population size and number of polymorphic loci decrease (see appendix, Figure A.12), show321

great similarity to those observed in the corresponding cases for heterozygote advantage. However,322

fluctuating patterns in population sizes in Cases 2 and 3 are more pronounced and reflect the patterns323

in the population mean fitness in Figure 1. In summary, only Cases 1 and 2 meet our definition of an324

eco-evolutionary vortex based on variation of per-capita decline rate and per-locus rate of loss. Also,325

in agreement with the proposed cues, this mechanism also shows existence of critical population size326

in Case 2 (since per-capita population decline changes from negative to positive as population size327

decreases). However, as opposed to heterozygote advantage, the number of polymorphic loci at which328

rapid decline to zero occurs varies greatly between trajectories (Figure 6E) with no critical number329

of polymorphic loci observed. The analytic approximation gives almost a linear trend with no sign of330

a critical number of polymorphic loci. The early-warning signals behaved as expected (Figure A.16),331

except that autocorrelation at lag 1 did not show a strong response. Case 3 populations do not meet332

our definition of an eco-evolutionary vortex nor show any of the suggested cues.333

For both selection mechanisms, additional cases in a given region show qualitatively similar results334

as their respective representative Cases 1, 2 and 3 (See Figures in Sections A.4.1 and A.6.1 in the335

appendix).336
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(A) Case 1 (B) Case 2 (C) Case 3

(D) (E) (F)

Figure 6: Dynamics of population size and genetic variation under the geometric population growth
model with fluctuating selection and reversal of dominance. Each column represents one case indi-
cated in Figure 2B. 1st column (Case 1): r = ln(1.4), 2nd column (Case 2): r = ln(1.616) and 3rd
column (Case 3): r = ln(1.8). Other parameters are s = 0.005, N0 = K = 200, replicates = 100. The
blue line is the corresponding analytic approximation with discretization parameters u = 0.1 and
τ = 1. Notice the different scaling of the time-axis in the different columns.

4 Discussion337

We have developed a quantitative model for the feedback between loss of genetic variation and popu-338

lation decline. We identified parameter combinations that match our definition of an eco-evolutionary339

vortex and where populations exhibit the proposed cues of such extinction vortices. Our approach340

involved dividing parameter space into regions displaying qualitatively different behaviours as both341

population size and genetic variation decrease.342

Parameter combinations in Regions I and II (see Figure 2) show clear interdependence between343

population size and genetic variation. They both agree with the proposed two defining features of344

an eco-evolutionary vortex, i.e. the per-capita rates of population decline and the per-locus rates345

of loss of polymorphic loci increase with both decreasing population size and decreasing number346

of polymorphic loci. Region III and the neutral Control did not match the defining features of an347

extinction vortex. Also, among the suggested cues, populations in Region I and II do not survive348

for long once total loss of genetic variation occurs (as seen from the trajectories). Further, only349

populations in Region II exhibits early-warning signals (see Section 4.1 below) and a critical number350

of polymorphic loci and population size below which a rapid population decline to extinction occurs.351

These critical values occur when the average number of offspring that survive per individual (SOI)352
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falls below 1 (see also Section A.3 in the appendix). Note that in our models the threshold number of353

polymorphic loci is higher than the critical number calculated from SOI = 1 due to overestimation354

of fitness by assuming allele frequency of 0.5. Region III populations do well even after total loss355

of genetic variation and generally do not match our definition and suggested cues. However, for356

parameter combinations close to the boundary of Region II, the populations may not survive for357

long after (total) loss of polymorphic loci (see Figure A.8C), and also satisfy both suggested defining358

features of an eco-evolutionary vortex. This is because loss of polymorphic loci lowers the populations359

to very low sizes which exposes them to strong demographic stochasticity (Harmon and Braude 2010).360

Furthermore, in Region II, the increasing per-capita decline rate as population size and polymorphic361

loci decrease can be seen as a genetic Allee effect. That is, we have a positive relationship between362

per-capita growth rate and population size at low population sizes (the hallmark of a demographic363

Allee effect), mediated by faster loss of genetic variation at small population sizes. Our definition364

of a genetic Allee effect roughly matches the two-step definition suggested by Luque et al. (2016),365

although in our case the first step is not a reduction in population size but loss of genetic variation.366

As drift pushes allele frequencies to the extremes, polymorphic loci start to be lost one by one.367

This leads to a decrease in individual fitness (decreased number of surviving offspring) and thereby368

population size. Wittmann et al. (2018) defined genetic Allee effects in terms of thresholds. A strong369

genetic Allee effect produces an inflection point in the persistence probability graph as a function of370

initial population size. In our study, the change in per-capita decline rate from negative to positive371

similarly suggests the existence of an eco-evolutionary Allee effect threshold.372

The analytic approximation agrees with the simulations of the IBM in three ways: (1) The shape of373

individual replicates and analytic approximation is the same. (2) The approximation trajectory lies374

in the region of possible individual-based model trajectories. (3) The critical number of polymorphic375

loci is roughly the same, at least under heterozygote advantage. Thus for many purposes it may be376

possible to use the analytic model, which is computationally less demanding than the individual-377

based model, as a short-cut to derive results on eco-evolutionary extinction vortices.378

4.1 Early-warning signals379

The aim of checking for early-warning signals in this study was to find out whether signals can be380

observed before a population enters an extinction vortex. All the indicators behaved as expected381

for declining populations (Sommer et al. 2017; Dakos et al. 2012). As population size decreases, the382

populations show generally three phases for cases where reduction in genetic variation results into383

population extinction (e.g. Region II). That is, an initial constant phase followed by a gradual (linear)384

change phase and finally a rapid change phase can be observed. Again with regards to our suggested385

cue that decreasing genetic variation produces early-warning signals in population dynamics, the386
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start of the gradual change phase signals the entry into a vortex while the start of the rapid phase387

signals nearby extinction. For Region 3, populations generally show one or two phases. The constant388

phase and either a gradual phase or a rapid phase. But with a rapid change phase, there are relatively389

large standard errors. It should be noted that decisions should not depend on a single early-warning390

signal but a combination of them, as results from indicators may not always agree with each other391

(Gsell et al. 2016). Also, some signals were relatively noisy in individual replicates or only appeared392

when the population was already very low. As population size decreases, we find changes in signals393

from coefficient of variation/standard deviation, skewness and kurtosis consistent with each other394

and also with the changes in per-capita decline rates. However, autocorrelation shows inconsistency395

with other measured indicators.396

4.2 Generality and genetic realism397

Small populations whose persistence is mainly driven by genetic factors are usually thought to be398

far below their environmental carrying capacity and little affected by negative density dependence399

(Lynch and Gabriel 1990; Kim et al. 2016; Wang et al. 2019). Here, we used the geometric model with400

a Ricker boundary to mimic such populations. To check whether our observations are not an artifact401

of this assumption, we also used a Ricker model to study fully density-dependent populations. We402

observe comparable features as shown in Figures A.7 and A.8. However, a higher K is required to403

observe rapid population decline in Region II (Figure A.8). The high K allows for sufficiently weak404

negative density-dependence so that the positive feedback induced by the loss of genetic variation405

can dominate and cause a rapid decline to extinction (see Appendix section A.5 for analogous figures406

and more discussion).407

The variation of per-locus rates of loss of polymorphic loci with population size and polymorphic408

loci agree with observations in extinction vortices driven by accumulation of deleterious mutations.409

Models that consider (deleterious) mutation accumulation show that the rate at which new mutations410

get fixed increases with increasing number of such mutations already fixed (Coron et al. 2013). Also,411

Lynch and Gabriel (1990) observed that an extinction vortex due to mutation accumulation leads412

to a small coefficient of variation in extinction times. In our model, the coefficient of variation413

for population extinction time for regions with extinction vortex is also substantially below 1 (1414

being the expectation with exponentially distributed extinction times). For fluctuating selection,415

the coefficients of variation of extinction times for the two cases 1 and 2 are 0.22 and 0.35 while for416

heterozygote advantage, the coefficients are 0.22 and 0.13 for Cases 1 and 2 respectively.417

Various forms of balancing selection such as negative frequency-dependent selection, heterozygote418

advantage and some types of fluctuating selection contribute to maintaining genetic variation in419

populations. In our study, both mechanisms for the maintenance of genetic variation are based on420
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heterozygote advantage directly or indirectly in the long run. These mechanisms create a positive421

relationship between the number of polymorphic loci and fitness. Other mechanisms that have a422

similar relationship might produce similar eco-evolutionary vortices. Future models with mecha-423

nisms that are not based on heterozygote advantage such as frequency-dependent selection or more424

generally evolutionary potential in a variable environment are necessary to check the generality of425

the above eco-evolutionary vortex.426

The model presented here assumes that polymorphism that is lost is lost forever. This is a good427

approximation if the time scale of extinction is short relative to the time scale at which mutations428

occur. However, to study if there is a critical population size above which populations are safe429

from an eco-evolutionary vortex, future work will need to include back-mutations or compensatory430

mutations.431
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Appendices533

A Supplementary Information534

A.1 Diffusion Approximation of Allele-Frequency Distribution535

The probability density function, f(x, t) of allele frequency x at time t can be approximated using536

a forward Kolmogorov equation537

∂f(x, t)

∂t
= −∂ [a(x, t)f(x, t)]

∂x
+

1

2

∂2 [b(x, t)f(x, t)]

∂x2
, (A.1)

where a(x, t) and b(x, t) are the infinitesimal mean and infinitesimal variance of allele frequency x,538

at time t (Kimura et al. 1955). Subject to the initial and boundary conditions, Equation (A.1) can539

be solved numerically and in some cases analytically.540

In the case of heterozygote advantage with both homozygotes having fitness of 1 − s, where s > 0541

and heterozygotes having fitness 1, then, it can be shown that542

a(x, t) = sx(1− x)(1− 2x) (A.2)

b(x, t) =
1

2Nt
x(1− x). (A.3)

In this study, we solve the diffusion equation numerically adopting the scheme in Zhao et al. (2013)543

and Xu et al. (2019) without rescaling time. The numerical method gives a complete solution of544

the problem, i.e., it keeps the law of total probability at all times. The solution is based on Finite545

Volume Methods (FVM) using a central scheme (function values approximated in the middle of a546

set of grid cells). We briefly describe the main steps followed here.547

The boundary condition stems from conservation of total probability at every time t. We assume548

zero flux density at the boundaries, i.e., no probability flow outside the system as the probability of549

fixation or loss is captured by the outermost bins. To see this, we first rewrite Equation (A.1) in the550

form551

∂f(x, t)

∂t
+
∂J(x, t)

∂x
= 0, (A.4)

where552

J(x, t) = a(x, t)f(x, t)− 1

2

∂ [b(x, t)f(x, t)]

∂x
(A.5)
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represents a probability flow. Thus the boundary condition requires that553

J(0, t) = J(1, t) = 0. (A.6)

The initial condition is obtained by assuming the populations start at a single allele frequency x0.554

Thus f(x, 0) = x0, represented by a Dirac function whose mass is concentrated at x = x0.555

We discretize x into a grid with spacing u = 1/m. That is xi = i · u, i = 0, 1, . . . ,m. Also, time is556

discretized with spacing τ and the grid points are tv = v · τ , v = 0, 1, . . . . The control volume Di,557

for the inner mesh points xi is given by558

Di = {x|xi− 1
2
≤ x ≤ xi+ 1

2
}, 1 ≤ i ≤ m− 1,

where xi+ 1
2

is the grid mid-point between xi and xi+1.559

Equation (A.4) can then be approximated using FVM by560

fv+1
i − fvi

τ
+
Jv+1
i+ 1

2

− Jv+1
i− 1

2

u
= 0, (A.7)

where J• is approximated using a central scheme as561

Jv+1
i+ 1

2

=
ai+1f

v+1
i+1 + aif

v+1
i

2
−
bi+1f

v+1
i+1 − bif

v+1
i

u
and, (A.8)

Jv+1
i− 1

2

=
aif

v+1
i + ai−1f

v+1
i−1

2
−
bif

v+1
i − bi−1fv+1

i−1
u

. (A.9)

Substituting (A.8) and (A.9) for 1 ≤ i ≤ m− 1, into Equation (A.7) and after some algebra, we get562

αfv+1
i+1 + γfv+1

i − βfv+1
i−1 =

1

τ
fvi , (A.10)

where563

α =
ai+1

2u
− bi+1

u2
, γ =

1

τ
+

2bi
u2

and β =
bi−1
u2

+
ai−1
2u

At the boundaries, the mesh points x0 = 0 and xm = 1 have the control volume564

D0 = {x|0 ≤ x ≤ x 1
2
} and Dm = {x|xm− 1

2
≤ x ≤ 1} respectively.
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Now, using the boundary condition given in (A.6),565

fv+1
0 − fv0

τ
+

2Jv+1
1
2

u
= 0, x0 = 0 (A.11)

fv+1
m − fvm

τ
−

2Jv+1
m− 1

2

u
= 0, xm = 1, (A.12)

which after some rearrangement yields566

ρfv+1
1 +

1

τ
fv+1
0 =

1

τ
fv0 , x0 = 0, (A.13)

1

τ
fv+1
m − σfv+1

m−1 =
1

τ
fvm, xm = 1, (A.14)

where567

ρ =
a1
u
− 2b1
u2

and σ =
am−1
u

+
2bm−1
u2

.

Combining Equations (A.10), (A.13) and (A.14) yields a system of difference equations generally568

expressed in matrix form as569

Mv+1fv+1 = Dfv, (A.15)

where D is a (m + 1) × (m + 1) diagonal matrix whose leading diagonal is filled with 1
τ and M is570

also a (m+ 1)× (m+ 1) tridiagonal matrix filled as follows. For i = 0 and i = m571

M[1, 1] =
1

τ
, M[1, 2] = ρ,M[m,m− 1] = −σ, and M[m,m] =

1

τ
. (A.16)

For 1 ≤ i ≤ m− 1,572

M[i, i] = γ, M[i, i− 1] = −β and M[i, i+ 1] = α. (A.17)

For a detailed discussion of this numerical scheme, see Zhao et al. (2013) and Xu et al. (2019). The573

density of allele frequencies at time-step v + 1 given the density at time-step v is574

fv+1 = (Mv+1)−1 ×D× fv. (A.18)

The densities of allele frequencies for some of the scenarios considered in the main text are shown575

in Figure A.1.576
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(A) Case 1 (B) Case 2 (C) Case 3

(D) (E) (F)

Figure A.1: Probability density of allele frequencies f(x, t) at different times for heterozygous advan-
tage. First row: Geometric model with N0 = K = 200. 2nd row: Ricker model with N0 = K = 2000.
Other parameters are the same for both rows i.e. s = 0.005, x0 = 0.5,m = 1000, τ = 1.

A.2 Infinitesimal Mean for Fluctuating Selection577

Consider the three genotypes AA, Aa and aa with fitness 1 − sA,t, 1 − htsA,t − (1 − ht)sa,t and578

1− sa,t at time t, respectively, where ht, sa,t and sA,t are as described in the main text (Section 2).579

Also, we assume the frequency of allele A is xt at time t. For convenience, we drop subscript t in580

the allele frequency and in the selection and dominance coefficients. After the action of selection,581

the allele frequency in the next generation x′ is582

x′ =
x2(1− sA) + x(1− x)(1− hsA − (1− h)sa)

FM
, (A.19)

where FM is the mean fitness given by583

FM = 1− sa + x(sa − sA)(x(1− 2h) + 2h). (A.20)

After some algebra, the change in allele frequency a(x, t) = x′ − x is584

a(x, t) =
[x(1− x)(sa − sA)(x(1− 2h) + h)]

FM
. (A.21)
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Using a Taylor series expansion585

a(x, t) = x(1− x)(sa − sA)(x(1− 2h) + h){1 + sa − x(sa − sA)(x(1− 2h) + 2h)

+O
(
(sa − x(sa − sA)(x(1− 2h) + 2h))2

)
}

Assuming the coefficients sa and sA are small and ignoring terms with 3rd order and above in the586

expansion yields587

a(x, t) =x(1− x)(sa − sA)(x(1− 2h) + h)(1 + sa)

− x2(1− x)(sa − sA)2(x(1− 2h) + h)(x(1− 2h) + 2h). (A.22)

A.3 Number of Offspring that Survive per Parent (SOI)588

The number of offspring that survive are given by589

SOI(H,N) = W (H)E(N). (A.23)

Differentiating SOI with respect to H,590

dSOI

dH
= ln

(
1− s

2

1− s

)
SOI, (A.24)

shows that the number of offspring that survives increases with H and the second derivative of SOI591

d2SOI

dH2
=

(
ln

(
1− s

2

1− s

))2

SOI, (A.25)

is positive. This implies that SOI increases even faster as H increases.592

Simulations show that the decline in population size and loss of polymorphic loci becomes faster593

when the number surviving offspring per individual is just less than 1. Assuming N << K and594

therefore N
K ≈ 0 so that we can assume that E(N) ≈ er, we obtain Hc, the critical number of595

polymorphic loci for SOI = 1 as596

Hc =
−r − n ln(1− s)

ln
(

1− s
2

1−s

) (A.26)

If the ratio of population size and carrying capacity is not small enough to be negligible, then Et597

follows the pure Ricker model dynamics, making SOI a function of N . Differentiating SOI with598
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respect to N gives599

dSOI

dN
= − r

K
W (H)E(N). (A.27)

Equation (A.27) shows that SOI increases as N decreases at constant H. The second derivative600

with respect to N is positive implying that SOI increases even faster as N decreases. As earlier seen601

in Equations (A.24) and (A.25), SOI decreases faster with decrease in H. So, the net direction of602

SOI depends on how fast SOI decreases with decreasing H and increases with decreasing N . Small603

values of r combined with higher values of s would result into net decrease in SOI and when below604

1, the population accelerates to extinction.605
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A.4 Supplementary figures on the geometric growth model with het-606

erozygote advantage607

A.4.1 Other Randomly Chosen Points in Regions I and II608

(A) Case s11 (B) Case s12

(C) (D)

Figure A.2: Variation of the population size and the number of polymorphic loci with time under
the geometric growth model with heterozygote advantage for Region I supplementary points. The
dark blue lines show the analytic approximation with discretization parameters u = 0.1 and τ = 1.
The parameters used for the 1st column (Case s11) are r = 1.50, s = 0.009 and for the 2nd column
(Case s12) r = 1.05, s = 0.002. Other parameters are N0 = K = 200, replicates = 100
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(A) Case s21 (B) Case s22 (C) Case s23 (D) Case s24

(E) (F) (G) (H)

Figure A.3: Variation of the population size and the number of polymorphic loci with time under the
geometric growth model with heterozygote advantage for Region II supplementary points. The dark
blue lines show the analytic approximation with discretization parameters u = 0.1 and τ = 1. The
parameters used for 1st column (Case s21) r = 1.80, s = 0.009, 2nd column (Case s22) r = 1.15, s =
0.002, 3rd column (Case s23) r = 1.8, s = 0.008 and 4th column (Case s24) r = 2.00, s = 0.008.
Other parameters are N0 = K = 200, replicates = 100
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(A) (B)

(C) (D)

Figure A.4: Variation of the per-capita decline rate and per-locus rate of loss with population size
and the number of polymorphic loci under the geometric growth model with heterozygote advantage
for Region I and II supplementary points. The parameters used are as on Figures A.2 and A.3 for
the respective cases.
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A.4.2 Early-warning signals609

(A) Case 2 (B) Case 3 (C) Control

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

(M) (N) (O)

Figure A.5: A random sample of 5 IBM realisations showing population-size trajectories (1st row)
and the corresponding trajectories of early-warning signals (2nd - 5th row) under the geometric
growth model with heterozygote advantage. The indicators start from the the 100th generation
(because the window range is 100 here). The parameters for the cases are the same as those in
Figure 3.
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(A) (B)

(C) (D)

Figure A.6: Variation of early-warning indicators with population size after Gaussian fitting under
the geometric population growth model with heterozygote advantage. The solid lines are the mean
values of the rates as described in the methods and the shaded regions shows the standard error
while the gray-shaded rectangle is a region above carrying capacity. The parameters are as in Figure
3.
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A.5 Supplementary materials for the Ricker model with heterozygote610

advantage611

To produce a rapid decline in population size, there is need for a large carrying capacity. The reason is612

that the overall population growth rate (product of fitness and fertility) increases exponentially with613

decreasing population size. The realized population growth rate is given by SOI = W (H)er(1−
N
K ).614

The equilibrium population size is below K even when we have 100% polymorphic loci because the615

mean fitness W (H) is always below 1.616

As genetic variation decreases, the population fitness decreases, while as population size decreases,617

fertility increases. For a small carrying capacity, fertility may increase faster than the decrease in618

fitness which results into SOI > 1. No rapid population decline to extinction may be observed in this619

case. Nevertheless, both small and large carrying capacity populations still exhibit similar trends620

in the per-capita and per-locus rates as population size decreases (see Figures A.9 and A.10). This621

implies that some small populations may face an extinction vortex unnoticed if the main focus is on622

how rapid the population size declines.623

(A) Case 1 (B) Case 2 (C) Case 3 (D) Control

(E) (F) (G) (H)

Figure A.7: Dynamics of population size and genetic variation under the Ricker population growth
model with heterozygote advantage. Each column represents one case indicated in Figure 2A. 1st
column (Case 1): r = ln(1.2), 2nd column (Case 2): r = ln(1.5) and 3rd column (Case 3): r = ln(2.5).
Other parameters are s = 0.005, N0 = K = 200, replicates = 100. The 4th column represents the
control case with the same parameters as in the 2nd column but s = 0.00. The blue line is the
corresponding analytic approximation with discretization parameters u = 0.1 and τ = 1.
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(A) Case 1 (B) Case 2 (C) Boundary (D) Case 3

(E) (F) (G) (H)

Figure A.8: Dynamics of population size and genetic variation under the Ricker population growth
model with heterozygote advantage and an increased carrying capacity. Each column represents one
case indicated in Figure 2A. 1st column (Case 1): r = ln(1.2), 2nd column (Case 2): r = ln(1.5) and
3rd column (Case 3): r = ln(1.8). Other parameters are s = 0.005, N0 = K = 2000, replicates = 100.
The 4th column represents the boundary case with the same parameters as for the other cases but
r = ln(1.7). The blue line is the corresponding analytic approximation with discretization parameters
u = 0.1 and τ = 1.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 29, 2020. ; https://doi.org/10.1101/2020.02.28.969402doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.969402
http://creativecommons.org/licenses/by-nc-nd/4.0/


36

(A) (B)

(C) (D)

Figure A.9: Per-capita rates of population decline and per-locus rates of loss of polymorphic loci
under the Ricker population growth model with heterozygote advantage. The solid lines are the mean
values of the rates as described in the methods and the shaded regions shows the standard error.
The parameters for the 4 cases are as in Figure A.7. In Figure (d), the y-axis is on a logarithmic
scale.
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(A) (B)

(C) (D)

Figure A.10: Per-capita rates of population decline and per-locus rates of loss of polymorphic loci
under the Ricker population growth model with heterozygote advantage. The solid lines are the
mean values of the rates as described in the methods and the shaded regions shows the standard
error. The parameters for the 4 cases are as in Figure A.8. In (d), the y-axis is on a logarithmic
scale.
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(A) (B)

(C) (D)

Figure A.11: Variation of early-warning indicators with population size under the Ricker population
growth model with heterozygote advantage. The solid lines are the mean values of the rates as
described in the methods and the shaded regions shows the standard error while the gray-shaded
rectangle is a region above carrying capacity. The parameters are as in Figure A.8.
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A.6 Supplementary figures on the geometric growth model with fluctu-624

ating selection and dominance reversal625

(A) (B)

(C) (D)

Figure A.12: Variation of per-capita decline rate and per-locus rate of loss as population size and
number of polymorphic loci decreases under the geometric population growth model and fluctuating
selection with reversal of dominance. The gray-shaded part in (a) is the region above carrying
capacity. The solid lines are the mean values of the rates as described in the methods and the
shaded regions shows the standard error. The horizontal gray line in (a) and (c) is for rate 0. The
parameters for the 4 cases are as in Figure 6 and for the control case,the parameters are the same
as those in Figure 3 column 4.
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A.6.1 Other randomly chosen points in Regions I and II626

(A) Case s11 (B) Case s12

(C) (D)

Figure A.13: Variation of the population size and the number of polymorphic loci with time under
the geometric growth model with fluctuating selection for Region I supplementary points. The dark
blue lines show the analytic approximation with discretization parameters u = 0.1 and τ = 1. The
parameters used for the 1st column (Case s11) are r = 1.30, s = 0.007 and for the 2nd column (Case
s12 r = 1.15, s = 0.003. Other parameters are N0 = K = 200, replicates = 100.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 29, 2020. ; https://doi.org/10.1101/2020.02.28.969402doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.969402
http://creativecommons.org/licenses/by-nc-nd/4.0/


41

(A) Case s22 (B) Case s21 (C) Case s23

(D) (E) (F)

Figure A.14: Variation of the population size and the number of polymorphic loci with time under
the geometric growth model with fluctuating selection for Region II supplementary points. The dark
blue lines show the analytic approximation with discretization parameters u = 0.1 and τ = 1. The
parameters used for the 1st column (Case s11) r = 2.00, s = 0.0075 and for the 2nd column (Case
s12) r = 2.20, s = 0.0082 and 3rd column (Case s13) r = 1.3, s = 0.0027. Other parameters are
N0 = K = 200, replicates = 100.
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(A) (B)

(C) (D)

Figure A.15: Per-capita decline rate and per-locus rate of loss as population size and the number of
polymorphic loci varies under geometric growth model with fluctuating selection for Region I and
II supplementary points. The parameters used are as on Figures A.13 and A.14 for the respective
cases.
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A.6.2 Early-warning signals627

(A) (B)

(C) (D)

Figure A.16: Variation of early-warning indicators with population size under the geometric pop-
ulation growth model and fluctuating selection with reversal of dominance. The solid lines are the
mean values of the rates as described in the methods and the shaded regions show the standard
error while the gray-shaded rectangle is the region above carrying capacity. The parameters for the
3 cases are as in Figure 6.
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