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SUMMARY 11 
In the analysis of genomic sequence data, so-called “alignment free” approaches are often 12 
selected for their relative speed compared to alignment-based approaches, especially in the 13 
application of distance comparisons and taxonomic classification1,2,3,4. These methods are 14 
typically reliant on excising K-length substrings of the input sequence, called K-mers5. In 15 
the context of machine learning, K-mer based feature vectors have been used in 16 
applications ranging from amplicon sequencing classification to predictive modeling for 17 
antimicrobial resistance genes6,7,8. This can be seen as an analogy of the “bag-of-words” 18 
model successfully employed in natural language processing and computer vision for 19 
document and image classification9,10. Feature extraction techniques from natural language 20 
processing have previously been analogized to genomics data11; however, the “bag-of-21 
words” approach is brittle in the RNA virus space due to the high intersequence variance 22 
and the exact matching requirement of K-mers. To reconcile the simplicity of “bag-of-23 
words” methods with the complications presented by the intrinsic variance of RNA virus 24 
space, a method to resolve the fragility of extracted K-mers in a way that faithfully reflects 25 
an underlying biological phenomenon was devised. Our algorithm, Vorpal, allows the 26 
construction of interpretable linear models with clustered, representative ‘degenerate’ K-27 
mers as the input vector and, through regularization, sparse predictors of binary 28 
phenotypes as the output. Here, we demonstrate the utility of Vorpal by identifying 29 
nucleotide-level genomic motif predictors for binary phenotypes in three separate RNA 30 
virus clades; human pathogen vs. non-human pathogen in Orthocoronavirinae, 31 
hemorrhagic fever causing vs. non-hemorrhagic fever causing in Ebolavirus, and human-32 
host vs. non-human host in Influenza A. The capacity of this approach for in silico 33 
identification of hypotheses which can be validated by direct experimentation, as well as 34 
identification of genomic targets for preemptive biosurveillance of emerging viruses, is 35 
discussed. The code is available for download at https://github.com/mriglobal/vorpal. 36 
 37 
Feature Extraction Algorithm Overview 38 
In the quasispecies model, the virus organism is represented by the “cloud” of genotypes that can 39 
be maintained by the virus within the allowable fitness parameters12. In the method proposed 40 
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here, the frame of reference for the quasispecies “cloud” is reduced to the level of K-length 41 
motifs. In order to estimate the connectedness of these K-mers across the input assemblies, a 42 
distance matrix between all of the unique K-mers observed across the designated virus genome 43 
assemblies is established using hamming distance. Hierarchical clustering is then performed on 44 
the resulting distance matrix using an average linkage function, corresponding to the ultrametric 45 
assumption used in Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 46 
phylogenies, and flat clusters are extracted using a hyperparameter for the distance cutoff of 47 
cluster membership. The constituents of these clusters are then aligned and their positional 48 
variants represented using the International Union of Pure and Applied Chemistry (IUPAC) 49 
nucleic acid notation with degenerate base symbols. These degenerate motifs are mapped back to 50 
their respective assemblies. This approach facilitates interpretation of model features in a 51 
functional profiling and hypothesis generating context. To demonstrate the effectiveness of this 52 
new feature extraction technique, genotype-to-phenotype linear models were trained on various 53 
RNA virus groups. A description of the Python implementation of the algorithm is detailed in 54 
Methods and the code is available for download at https://github.com/mriglobal/vorpal, along 55 
with persistent versions of the models described here-in. A simplified example of the 56 
agglomerative clustering step is depicted in Figure 1.  57 
 58 

 59 
Figure 1. Hierarchical K-mer Clustering. A  simplified example of K-mer clustering to 60 
produce degenerate motifs. After K-mer counting and filtering on frequency, K-mers are 61 
clustered using an average linkage function with hamming distance, or positional 62 
agreement, as the metric. The resulting alignments, after tree-cutting at a user specified 63 
cutoff, are collapsed into their IUPAC character representation.  64 
 65 
By their nature, feature extraction methods make either explicit or implicit hypotheses about 66 
what the learner can discover about the data. For instance, in the Natural Language Processing 67 
(NLP) domain, the famous “distributional hypothesis” is what forms the theoretical framework 68 
for word embedding algorithms such as Word2Vec13,14. The hypothesis central to the Vorpal 69 
algorithm makes the following predictions about the types of phenomena that could be learned 70 
from RNA virus genomics data, if they are relevant to the output label: 71 

1. The predictive motifs are positionally independent 72 
2. The frequency of occurrence of a motif is predictive 73 
3. There are predictive motifs observable only at the nucleic acid level, i.e. in non-coding 74 

regions or not observable in the translated product 75 
 76 
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The strongest predictors for the output phenotypes in the models discussed in this paper 77 
demonstrate each of these phenomena.  78 
Three RNA virus groups were chosen to evaluate the methodology, due to their relevance as 79 
important human pathogens – Orthocoronavirinae at the sub-family level, Ebolavirus at the 80 
genus level, and Influenza A at the species level. The phenotypes for these virus groups were 81 
binary output variables corresponding to human pathogen (vs. non-pathogen), human-82 
hemorrhagic-fever-causing (vs. not human-hemorrhagic-fever-causing), and human-host isolate 83 
(vs. non-human-host isolate), respectively. The procedure for labeling these phenotypes is 84 
detailed in Methods. 85 
This entire algorithm was developed and implemented using Biopython, skbio, and the scipy 86 
computing stack contained in the open-source Anaconda Distribution. 87 
 88 
Results 89 
Logistic regression models were fit, in triplicate, for the binary phenotypes described above, 90 
across different degeneracy cutoffs for the Ebolavirus and Orthocoronavirinae groups. Due to the 91 
training time for the Influenza A models (around 72 hours), instead of exploring different 92 
degeneracy cutoffs to find the sparsest feature vector, all Influenza A segment models, which 93 
were fit independently, were evaluated with a 1.5 degeneracy cutoff for clustering. Model 94 
parameter selection for degeneracy cutoff is visualized in Figure 2. All models were highly 95 
accurate on both the training and test sets. Selected models are summarized in Table 1. 96 
Construction of the training and test sets is described in the Methods section.  97 

 98 
Figure 2. Degeneracy cutoff parameter search. Range of feature vector sizes across 99 
different degeneracy cutoff levels. Ebolavirus and Orthocoronavirinae find the least 100 
number of non-zero coefficients in the weights vector at 2.0 and 4.0 average degeneracy 101 
respectively. They also find very high numerical stability at these cutoffs, with repeated 102 
fitting returning almost identical motif set membership. Error bars correspond to 103 
standard error of the mean. 104 
 105 
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 106 
Organism Training 

Instances 
(n) 

Features 
(p) 

Model 
degeneracy 
cutoff 

Quantile Training 
Set 
accuracy 

Regularization 
Method 

NNZs Test Set 
accuracy 

Orthocoronavirinae 2278 120444 4.0 .95 1.0 LASSO 48 1.0 
Ebolavirus 542 92109 2.0 0.0 1.0 Elastic Net 33 1.0 
Influenza A – Segment 1 35184 11435 1.5 .95 .9937 LASSO 1304 .9797 
Influenza A – Segment 2 35252 10159 1.5 .95 .9917 LASSO 1330 .9832 
Influenza A – Segment 3 35359 9985 1.5 .95 .9969 LASSO 1693 .9769 
Influenza A – Segment 4 79882 41285 1.5 .95 .9969 LASSO 2858 .9768 
Influenza A – Segment 5 35492 6558 1.5 .95 .9903 LASSO 1104 .9807 
Influenza A – Segment 6 57525 27435 1.5 .95 .9897 LASSO 1749 .9833 
Influenza A – Segment 7 46343 3489 1.5 .95 .9816 LASSO 997 .9759 
Influenza A – Segment 8 36586 5816 1.5 .95 .9836 LASSO 938 .9802 

Table 1.  Models Summary. A summary of the attributes for the models built for each RNA 107 
virus group that are discussed.   NNZs indicate number of non-zero coefficients in the 108 
weights vector after regularization.  109 
 110 
Explanatory Modeling through Feature Selection 111 
Tables containing the motif identity and corresponding coefficients for the selected models, 112 
along with a list of the accession numbers used for training and test sets, are provided as part of 113 
the Supplementary materials. We encourage researchers to explore the contents of these models. 114 
Below, we analyze a handful of properties of the models to explain their utility in interpretation. 115 
 116 
Orthocoronavirinae 117 
The model for the Orthocoronavirinae sub-family was built around the phenotype of human 118 
pathogen. The motif with the highest coefficient for the human pathogen phenotype, 119 
AKRATGKTGTTAATMAA, is an example of the positional independence phenomena that the 120 
Vorpal algorithm could learn if it contains information about the response variable. The motif 121 
also appears across both Alphacoronavirus and Betacoronavirus group species that infect 122 
humans.  Interestingly its pattern of appearance in those groups varies in a way not predicated on 123 
this taxonomic organization. In the Alphacoronavirus examples that it appears in, namely 229E 124 
and NL63, this motif is located in the same reading frame within the spike S2 glycoprotein 125 
protein and encodes a conserved QDVVNQ amino acid sequence. However, when it appears in 126 
Severe Acute Respiratory Syndrome (SARS), it remains in the same reading frame, coding for a 127 
YNVVNK amino acid sequence, but instead occurs in the polyprotein in the N-terminus of non-128 
structural protein (NSP) 15. The other Betacoronavirus member it appears in, OC43, presents 129 
this motif in the same reading frame but it has returned to the spike protein as QDGVNK. This 130 
motif serves as a signal for human pathogenicity whose importance is based at least partially on 131 
its translation, though the domain itself can appear in completely different protein products. It 132 
was also recognized that another positive predictor in the model was a motif related to this one, 133 
KGATGTTGTTARWCAAY, offset by a single nucleotide. This related motif sometimes co-134 
occurred at the same position as the one mentioned above, and other times appears at a different 135 
position in the genome, which suggests this is part of a larger, repetitive motif. 136 
 This is summarized in Table 2. 137 
 138 
 139 
 140 
 141 
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Predictor motif Amino acid 
motif 

COV species Genome 
position 

Protein 
Product 

Model 
Coefficient 

AKRATGKTGTTAATMAA 
 

YNVVNK SARS 19569 nsp15 

4.54 QDGVNK OC43 24096 Spike S2 
QDVVNQQ NL63 23514 Spike S2 
QDVVNQQ 229E 23069 Spike S2 

KGATGTTGTTARWCAAY 
 

FDVVRQC SARS 10865 nsp5 

1.67 

LDVVKQF COV JC34 16559 nsp13 
FDVVRQC Bat SARS-like 10865 nsp5 
SDVVKQP MERS 20064 nsp15 
QDVVNQQ NL63 23515 Spike S2 
QDVVNQQ 229E 23070 Spike S2 
FDVVRQC 2019-nCoV* 10935 nsp5 

Table 2.  Positive Coefficient Coronavirus (COV) motifs of interest. Organism, genome 142 
locations, and corresponding translated products for selected predictors in the 143 
Orthocoronavirinae model. Bolded examples are instances labeled Non-human-pathogens 144 
in the training set, all  others are members of the Human pathogen class. Note: 2019-145 
nCoV was not part of the training set when these models were developed. 146 
 147 
Ebolavirus 148 
The model for the genus Ebolavirus was specified for a phenotype corresponding to human-149 
hemorrhagic-fever causing, i.e. the African Ebolavirus constituents, and non-human-150 
hemorrhagic-fever causing, i.e. Reston ebolavirus (EBOV). The recently discovered Bombali 151 
EBOV, was excluded due to its ambiguity as a human pathogen15.  152 
The Ebola model demonstrates the utility of the assumption in the Vorpal algorithm that the 153 
feature vector contains information about the frequency of genomic motifs. The preservation of 154 
repeated motifs in the 5’ untranslated region (UTR), especially of those in the overlapping UTRs 155 
in the Ebola genome, are the predictors of primary importance in differentiating the phenotypes. 156 
These repeating motifs, or “motif blocks”, and their corresponding coefficients in the model, are 157 
summarized in Table 3 and visualized in Figure 3. These motifs in the 5’ UTRs, specifically in 158 
the leading sequence of the L protein, have been previously established as being functionally 159 
important to growth kinetics in cell culture16. The presence and location of this motif across the 160 
Reston and African constituents of the Ebola genus forms an obvious distinguishing factor. The 161 
contiguous block of overlapping motifs identified in Table 3, appear across all known Ebolavirus 162 
genomes. However, in the Reston version, this block appears only in the 5’ UTR of VP40 and L, 163 
which is one of the several genome locations in Reston containing overlapping 3’ and 5’ UTRs. 164 
When this motif block occurs in the African-derived constituents of the Ebola genus, it appears 165 
in the 5’ UTR of VP40, VP30, and L. The VP40 and VP30 5’ UTRs are characterized by 166 
overlapping transcriptional units in African ebolaviruses. In Zaire ebolavirus, there is an 167 
intergenic region between VP24 and L protein. However, despite the insertion of an intergenic 168 
region at this location in Zaire ebolavirus, this representation of the motif block is still preserved. 169 
Comparison of the transcriptional start and stop signals between Reston and Zaire ebolavirus has 170 
been performed before17, but the conservation of this motif and this pattern of appearance across 171 
the genus has not been established to our knowledge. 172 
 173 
 174 
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Motif Coefficient 

NTGAKGAAGATTAAGAA 0.048876 

YGAKGAAGATTAAGAAA 0.061316 

GAKGAAGATTAAGAAAA 0.063464 

AKGAAGATTAAGAAAAA 0.063464 

KGAAGATTAAGAAAAAS 0.061316 

GAAGATTAAGAAAAASN 0.051440 

Table 3.  Ebolavirus overlapping UTR “motif block”. Contiguous motifs that form the 175 
5’UTR overlap conserved at varying frequency across the entire Ebola genus. Identical 176 
coefficients represent completely colinear predictors.  177 
 178 
 179 

 180 

 181 
Figure 3. Ebolavirus UTR overlap mapping. Visual comparison of the UTR overlap motifs  182 
specified in Table 3. A) Mapping of motifs on the Zaire Ebolavirus genome. The motifs 183 
occur three times in the African constituents of Ebolavirus. B) Mapping of motifs on the 184 
Reston Ebolavirus genome. The motifs occur only twice in Reston ebolavirus, with the 185 
UTR overlap between VP30 and VP24 replaced by an intergenic spacer.  186 
 187 

A

B
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Influenza A 188 
The Influenza A model was trained using isolation host as the output variable. As illustrated in 189 
Table 1 above, an independent model was built around each segment of Influenza A’s genome. 190 
Therefore, the model is trying to find signals of host conformational changes on each segment. 191 
However, within the constraints of this paper, only results derived from the segment 4 model will 192 
be discussed in detail. 193 
 194 
Influenza A’s fourth segment contains the HA gene from which Influenza A strains derive their 195 
H subtype designation. In the corresponding model, a pattern was observed in the motif 196 
distributions that was common to all of the Influenza A segment models examined. This pattern 197 
aligns with the third assumption associated with the Vorpal feature extraction method – some 198 
degenerate predictors encode only silent mutations. In other words, the signal for the output label 199 
is observed only at the nucleotide level for many explanatory variables. For example, one of the 200 
highest coefficient predictors for the human-isolate phenotype, GTCTCTACARTGTAGAA, 201 
appeared to be related to one of the motifs amongst the most negative predictors, 202 
GGTCTYTACARTGTAGA. These motifs correspond to a location towards the end of the C 203 
terminus of the HA2 protein, at the location of a conserved, H1-subtype, N-linked glycosylation 204 
site following the transmembrane region18. The pattern of appearance for these motifs is 205 
described in Table 4A. 206 
 207 
Motif Coefficient Amino acid 

sequence 
# Human 
Instances 

# Swine 
Instances 

# Avian 
Instances 

-GTCTCTACARTGTAGAA 5.21 SLQCR 12915 828 12* 
GGTCTYTACARTGTAGA- -5.79 SLQCR 13001 1373 12* 
GGTCWTTGCAATGCAGA- N/A SLQCR 14 759 427 

Table 4A. Influenza A HA2 motifs. Shows three overlapping segments where the addition 208 
of a degeneracy allowing for the TTA codon for leucine is an important predictor for the 209 
non-human conformation for the H1 subtype. The third motif with no coefficient was 210 
identified by looking in avian isolates at the same genomic position.   This motif  was not 211 
used by the model but provides additional interpretation of the phenomenon in effect. 212 
The only avian flu examples in the model predictors that these motifs appear in are North 213 
American Turkey isolates.  No other avian examples of any HA gene subtypes contain 214 
these motifs util izing rare leucine codons.  This serine at the beginning of this amino acid 215 
sequence is  the tail  constituent of a N-x-S/T glycosylation motif.  216 
 217 
 218  

Leucine Codons Cysteine Codons 
Organism CTA TTA TTG TGC TGT 

Human 0.07 0.07 0.13 0.55 0.45 
Avian 0.06 0.06 0.12 0.6 0.4 
Swine 0.13 0.06 0.1 0.61 0.39 

Table 4B. Relative Host Codon Frequencies for HA2 motifs. Shows three overlapping 219 
segments where the addition of a degeneracy allowing for the TTA codon for leucine is an 220 
important predictor for the non-human conformation for the H1 subtype.  The third motif 221 
with no coefficient was identified by looking in avian isolates at the same genomic 222 
position.   223 
 224 
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Examination of the constituent K-mers of these motifs demonstrated that the allowance of the 225 
negative predictor to map to the TTA leucine codon introduced, almost exclusively, swine 226 
isolates.  The conservation of the CTA leucine codon in the human-isolate predictor is 227 
noteworthy because this codon is one of the rare leucine codons in the human genome, with a 228 
relative frequency of 7%. Alternatively, the TTA codon being more predictive for swine isolates 229 
is notable because while TTA also only has a 7% relative abundance in humans, its abundance in 230 
pigs is 6% while the CTA codon is less rare (13% relative abundance)19. This mammalian 231 
adaptation separates it almost entirely from any avian examples and there appears to be a fitness 232 
gradient. When it appears in mammals, there is a higher incidence of the uncommon leucine 233 
codon at this location. As previously mentioned, the SLQCR motif is canonical across all H1 234 
subtype examples, including those of chicken and duck.  A degenerate motif that mapped to the 235 
corresponding position in avian examples was determined to be GGTCWTTGCAATGCAGA. 236 
The underlying nucleotide conformations appear to be strictly enforced where the use of the TTG 237 
codon for leucine, along with the TGC codon for cysteine, produces 427 avian examples and 238 
only 14 human examples. Curiously, the preference for these codons in the avian examples are 239 
not correlated with their rarity in those hosts. The TTG codon for leucine has a relative 240 
frequency of 13% in mallards, while the CTA and TTA codons are both 6%. A table of the 241 
relative codon frequencies by host are noted in Table 4B, and this relationship between motif 242 
mapping frequency following a codon rarity gradient in mammals, and the inverse in birds, is 243 
visualized in Figure 4. 244 
 245 
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 246 
Figure 4. Host Codon Optimizations for H1 subtype. The justification for the coefficients 247 
assigned by the model for the motifs specified in Table4A are demonstrated by the clear role 248 
that the TTA codon for leucine plays in increasing the probability of a Swine isolate classification 249 
for the H1 subtype. Arrows indicating the increase or decrease in total number of motif 250 
mappings point in a direction along the relative host codon frequency gradient where 251 
rightwards movement indicates optimization towards the lower frequency rank for the 252 
corresponding amino acid. Table 4B shows the relative frequencies for these codons across 253 
these animal clades. Magnitude of arrows expressing change in number of reference mappings 254 
are not drawn to scale. 255 
 256 
The predictor variable with the highest coefficient from the segment 4 model is another, more 257 
dramatic example, of the phenomenon described above. The identity of the motif, 258 
AATGTRACAGTAACACA, and its translated product, NVTVTH, again demonstrate a 259 
preference for rare human codons - in this case, valine.  Like the example discussed above, this 260 
motif is present almost exclusively in human (N=15913) and swine (N=3885) examples of the 261 
H1 subtype. The associated NVTVTH amino acid sequence is also completely conserved across 262 
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all the examples, avian included. The valine codons in the human-isolate versions, almost 263 
exclusively GTA, have a relative frequency of only 11% in the human genome. While in the 264 
avian examples of segment 4, those codons are switched to GTG, which are the most common 265 
Valine codons with a 46% relative frequency in mallards. A motif for the avian version of this 266 
was developed using a multiple sequence alignment of the non-human and non-swine isolates of 267 
the H1 subtype assemblies in the training set. This motif was established as 268 
AAYGTRACYGTGACYCA and mapped back to the training set sequences. When mapped, this 269 
new motif was resolved to 480 avian isolates, 33 swine isolates, and nothing else. Unfortunately, 270 
unlike the above-mentioned Influenza A motif, the constituent K-mers for this motif were below 271 
the quantile cutoff for clustering, and thus, were unable to become a directly observed feature of 272 
the model. The use of rare codons, and their tendency to cluster, has been observed across both 273 
eukaryotes and prokaryotes20. This NVTVTH amino acid motif is also, like the SLQCR 274 
sequence described above, an experimentally validated N-linked glycosylation site on the HA 275 
gene in H1N121.  Rare-codon clusters in association with N-linked glycosylation sites in human 276 
pathogens have previously observed in HIV-1 envelope glycoprotein gp120, where the 277 
conservation of the rare-codon RNA sequence conferred increased glycosylation efficiency 278 
compared to gp120 mutants22. Codon optimization efforts for lentivirus envelope protein have 279 
also induced non-functional proteins, hypothesized to be related to glycosylation disruption23. 280 
The fidelity of conformational change in mammalian isolates to these rare codon identities is 281 
extremely high.  The oscillation between these conformational states is suggestive of another 282 
dimension of interpretation that these logistic regression models offer, outside of the examination 283 
of the genomic motifs themselves. 284 
 285 
Other Dimensions of Interpretation 286 
The fragility of the phenotype for the Influenza A model resulted in a model with higher 287 
complexity than the other RNA viruses studied. However, this provides another avenue for 288 
model analysis. Logistic regression classifiers offer not only an output label, but also a 289 
probability assignment to the corresponding label. Thus, additional information can be encoded 290 
in this output.  Figure 5 presents a graphical representation of the distribution of these class 291 
probabilities for the training sets for the segments described.  292 
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293 

 294 
Figure 5. Influenza A training set class probability histograms. The class probability 295 
distributions for the Influenza A segment 1 and segment 4 models discussed in this 296 
section. The frequency is presented in log scale so it can be observed that the vast 297 
majority of class predictions belong to the highest and lowest probability bins. We 298 
explore the possibility that instances with class probabilities in the middle of the 299 
distribution are in transition between host-isolate states as a results of recent zoonosis 300 
events. 301 
 302 
The highest coefficient predictor in the model for Influenza A segment 1, which codes for the 303 
PB2 polymerase gene, is a motif which represents a mammalian amino acid substitution 304 
experimentally observed in a mouse model24. This mammalian adaptation was identified as 305 
relevant to the temperature sensitivity of the polymerase in H5N1. The reversion of the avian 306 
conformation containing the glutamic acid residue, to the mammalian conformation containing 307 
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lysine, was observed to be approximately six days. By chance, some subset of viral isolates could 308 
have been sampled during this window while “in transit” between host-signature genotypes. 309 
Thus, the misclassified examples from the training set invite further scrutiny. Of the 79892 310 
instances in the training set, 274 were misclassified, and approximately 10 of these 311 
misclassifications were discovered to be mislabeling due to erroneous formatting of the WHO 312 
nomenclature. The remainder are examples where the model has, in some cases with a high 313 
probability, assigned a classification that disagreed with the class labeling. 314 
 315 
One particularly interesting example of this can be seen in a pair of swine isolates (KM289087.1, 316 
KM289089.1) misclassified by the model as human, which were attributed to human-to-pig 317 
H1N1 transmission events in backyard farms in Peru25. A third isolate from this study 318 
(KM289088.1) was classified correctly but also expressed some ambiguity in the class 319 
designation from the perspective of the class probability. Fortunately, this study included in the 320 
publication the sampling dates for the pigs at a central processing facility, allowing the Vorpal 321 
algorithm to detect a trend in the data as demonstrated in Table 5. Transition from the human 322 
conformation of the virus (from the perspective of the model) to the non-human conformation 323 
follows the progression of the calendar date. The original authors had previously speculated 324 
about the simultaneous exposure of two of these swine isolates based on phylogeny. 325 
 326 
Accession Host Human Isolate Class Probability Sample Date 
KM289089.1 Swine .99 10/15/2009 
KM289087.1 Swine .791 10/17/2009 
KM289088.1 Swine .145 10/19/2009 

Table 5.  Notable H1N1 Swine Isolates. Transition from the human conformation of the 327 
H1N1 virus to the swine conformation from samples in Peru. 328 
 329 
 330 
A second case where a training sample was misclassified as a human isolate from the model was 331 
an Influenza A H1N1 instance (KF277197.1) isolated from a giant panda at the Conservation and 332 
Research Center for the Giant Panda in Ya’an City, China.  There are several plausible 333 
hypotheses that could explain the consistent misclassification of this isolate from the model, 334 
including the most obvious, that the Giant Panda conformation of the virus is only represented by 335 
this distinct example, and thus, the model could not learn the features that may distinguish it 336 
from a human-isolated example. However, this assembly was accompanied by a publication 337 
which points to a different explanation for model confusion. The paper’s authors, through 338 
phylogenetic analysis, suggest that this case was an example of pandemic H1N1 transmitted 339 
directly from humans to the pandas26. Similar examples are abundant. A pair of misclassified 340 
swine isolates were identified in a 2009 publication studying triple-reassortment swine Influenza 341 
A infections in people from 2005 – 200928. Both of these human infections were linked to direct 342 
contact with sick pigs presented at a county fair within a 3 to 4 day window of sampling. The 343 
findings regarding these examples are contained in Tables 6A and 6B.  Model prediction 344 
probabilities that disagree with the known host source may be useful as a way to infer spill-over 345 
events. 346 
 347 
If the misclassified Giant Panda isolate is observed in context in a two-dimensional embedded 348 
space, where the motif feature vectors are used as the input space, then its nearest-neighbor in the 349 
lower dimensional representation is a human H1N1 isolate, also from Sichuan, in 2009. In the 350 
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case of the misclassified swine isolates, they are surrounded in the local neighborhood by H1N1 351 
Swine instances from Ohio and Iowa in 2007 and 2008. This proximity in embedded spaces 352 
offers another angle for interpretation, especially in regards to identifying possible spill-over or 353 
re-assortment events and is depicted in Figure 6. Neighbors in the local embedding are often 354 
temporally and geographically proximal, in addition to sharing host isolate membership. 355 
Comingling of class labels in the embedded space potentially offers the opportunity for 356 
identification of zoonosis events. 357 
 358 

 359 
Figure 6. Embedding of Influenza A segment four train set data. Two-dimensional t-SNE 360 
embedding of the feature vector for the Influenza A segment four (HA gene). Many 361 
clusters can be observed to segregate with respect to the human isolate class label (blue) 362 
vs. non-human isolates (red). Close inspection of region (A) identifies l inkage of H1N1 363 
isolates from swine and humans likely infected from the same swine population, with the 364 
swine-conformation shifting towards a human-conformation. Region A corresponds with 365 
data in Table 6A. Close inspection of region (B) identifies l inkage of human-conformation 366 
H1N1 isolates from humans in Sichuan, China with those from pandas believed to have 367 
been infected by direct human contact at a conservation center in the same locale. 368 
Region B corresponds with data in Table 6B. Note: Axes in t-SNE plots have no intrinsic 369 
meaning except to represent pair-wise distances between points.  370 
 371 
Accession Year Location Human-Isolate Class 

Probability 
Host Subtype 

FJ986620.1 2007 Ohio .420 Human H1N1 
FJ986621.1 2007 Ohio .420 Human H1N1 
EU604589.1 2007 Ohio .310 Swine H1N1 
HQ833582.1 2007 Ohio .069 Swine H1N1 
HM461778.1 2008 Ohio .016 Swine H1N1 
HQ378729.1 2007 Iowa .010 Swine H1N1 

Table 6A. Midwest, US Influenza A segment four isolates. The local neighbors of 372 
A/Ohio/01/2007 (H1N1) and A/Ohio/02/2007 (H1N1) identified in Shinde et. al. 20092 7 as 373 
swine influenza virus infections of human hosts at a county fair  in 2007. The estimated 374 
incubation period for these misclassified training examples was 3-4 days.  375 
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 376 
Accession Year Location Human-Isolate Class 

Probability 
Host Subtype 

JF277197.1 2009 Sichuan, China .980 Giant Panda H1N1 
GQ166223.1 2009 Sichuan, China .991 Human H1N1 

Table 6B. Sichuan, CN Influenza A segment four isolates.  The Giant Panda isolate 377 
misclassified in the training set and its nearest neighbor in the embedding space. 378 
 379 
Inspection of the embedded space makes it possible to identify candidate events, even if the 380 
model has not made a classification error.  Examples of these are summarized in Figure 7 and 381 
Table 7A and 7B where Influenza A segment 1 (PB2) sequences are embedded into a two-382 
dimensional field. Further experimentation may also help develop models that incorporate a 383 
velocity to the conformational changes of host-predictor motifs and estimate temporal distance 384 
from a prospective zoonotic event, in a segment-specific manner. 385 

 386 
Figure 7. Embedding of Influenza A segment one train set data. Two-dimensional t-SNE 387 
embedding of the feature vector for the Influenza A segment one (PB2 gene). Many 388 
clusters can be observed to segregate with respect to the human isolate class label (blue) 389 
vs. non-human isolates (red). Close inspection of region (A) identifies l inkage of H7N2 390 
isolates from birds and a human likely infected from the same avian population at a l ive 391 
bird market within the same locality. Region A corresponds with data in Table 7A. Close 392 
inspection of region (B) identifies co-mingling of human-isolated and swine-isolated H1N1 393 
and H3N2 strains from Saskatchewan, Canada. Region B corresponds with data in Table 394 
7B. Note: Axes in t-SNE plots have no intrinsic meaning except to represent pair-wise 395 
distances between points.  396 
 397 
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Accession Location Subtype Host Class Probability Sample Date 
EU783920.1 New York H7N2 Human 0.620 2003 
GU186492.2 New York H7N2 Avian 0.006 2003 
CY036487.1 New York H7N2 Avian 0.013 2003 

Table 7A. New York Influenza A segment one isolates.  A human isolate collocated 405 
amongst avian isolates in a cluster of H7N2 subtype Influenza examples from New York in 406 
2003.  The nearest-neighbor for the human isolate (GU186492.2) is an environmental 407 
sample from a live-bird market.  The model also encodes the ambiguity of the 408 
classification in class probability for the human-isolate phenotype.  409 
 410 
Accession Location Subtype Host Class 

Probability 
Onset Date Sample Date 

GQ457546.1 Saskatchewan, 
CA 

H1N1 Human 0.742 6/16/09 6/18/09 

GQ457544.1 Saskatchewan, 
CA 

H1N1 Human 0.922 6/17/09 6/19/09 

GQ457545.1 Saskatchewan, 
CA 

H1N1 Human 0.769 6/15/09 6/18/09 

JF714006.1 Saskatchewan, 
CA 

H1N1 Swine 0.396 Unknown 7/20/09 

MF768496.1 Saskatchewan, 
CA 

H3N2 Swine 0.001 Unknown 1/15/15 

Table 7B. Saskatchewan, CA Influenza A segment one isolates. A  Saskatchewan specific 411 
sub-cluster that belongs to a larger cluster of PB2 genes isolated from Swine and co-412 
assorted with H1N1, and H3N2 subtypes in circulation in North America. The human 413 
isolates represented in this group belong to pig farm workers who all contracted swine 414 
influenza virus, it is presumed, through their place of work2 7. Interestingly, this 415 
distinctive genotype of PB2 seems to be preserved across long time frames (2009 to 416 
2015) and is free to re-assort with different Influenza A subtypes (H1N1 and H3N2). In 417 
addition, these same isolates had corresponding HA gene sequences published, but the 418 
ambiguities seen in the class probabilities for PB2 segment were not observed in the HA 419 
gene (i.e. they were all  99% probability human-isolate). 420 
 421 
Discussion 422 
The observations presented in this paper represent a fraction of the information potentially 423 
contained in the developed models using the Vorpal feature extraction algorithm. Efforts to build 424 
robust metanalysis tools based on the model outputs is a focus of further development. While we 425 
also think the discoveries mentioned herein make a compelling argument for the power of these 426 
models in automatically generating hypotheses to direct experiments, we acknowledge the 427 
inherent difficulty in leveraging these models for predictive analytics, where, due to the role of 428 
evolution, extrapolation to data unsupported at training time is inevitable.  429 
 430 
To emphasize the hazard of using these models to predict on new data, the emerging Wuhan 431 
pneumonia coronavirus and Bombali ebolavirus provide illustrative examples. The Wuhan COV 432 
(MN908947.1) and Bombali ebolavirus (NC_039245.1) assemblies were predicted on using the 433 
models denoted in Table 1. The model classified Wuhan COV as 0.004% probable for the 434 
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Human pathogen phenotype and Bombali ebolavirus as 90.2% probable for the Human-435 
hemorrhagic-fever phenotype. Both of these classifications, especially the Wuhan COV 436 
designation, are out-of-step with what is known, or in the case of Bombali, suspected, about 437 
these viruses. However, it is possible to imagine these functional profiles leading to a more 438 
deterministic understanding of function with which to build a predictive frame work. 439 
Nonetheless, improvements in data structure and metadata association may yield better abilities 440 
to estimate the probability of future events. Certain observations seen in the models thus far may 441 
themselves be predictive of the respective phenotype before it is observed, rather than an effect 442 
of it already having occurred. The primary example of this is the predictor identified in the 443 
Orthocoronavirinae model. As described in the Methods section, certain assumptions were built 444 
into labeling for the human-pathogen phenotype that incorporated theories about the zoonotic 445 
provenance of SARS and Middle East Respiratory Syndrome-related (MERS) from civets and 446 
camels respectively. Observing human-pathogen predictors occurring in SARS and MERS 447 
viruses from non-human hosts could suggest the ability to predict the potential of a virus as a 448 
human pathogen in advance of a spill-over event. This is observed in the data. The 449 
AKRATGKTGTTAATMAA motif appears in all five of the civet SARS assemblies in the 450 
dataset. In the case of the camel isolates, the motif KGATGTTGTTARWCAAY, which is also 451 
related to the one mentioned above, is another high coefficient predictor for human pathogenicity 452 
and it appears in 231 of the 232 Camel-MERS instances in the training set. This motif also 453 
appears in the emerging 2019-nCoV as noted in Table 2. 454 
 455 
As for the obstacles for predictive efforts, there are many opportunities for improvements in the 456 
collection and annotation of viral genomic data. In Table 1, a slight drift can be observed in the 457 
Influenza A model accuracies between the training and test sets. Because the test set represented 458 
the most recently isolated viruses, it is attractive to explain this drift as real, i.e. due to evolution. 459 
However, there are other factors to control for since the underlying process generating the data 460 
has changed over the time period of data collection. The use of cell lines and PCR based 461 
amplification of signal for genome assembly, as well as the use of different sequencing 462 
technologies suggest other variables to account for. To demonstrated this, a search through the 463 
Genbank records for the Influenza A training set members for “passage” annotations revealed 464 
that 42.3% of the instances in that set contained such annotations for cell passage. In contrast, the 465 
Influenza A test set members, which represents more recently generated data, only contained 466 
“passage” annotations in 29.0% of those records. 467 
 468 
Lastly, we hope that this analysis demonstrates that the utility of a Global Virome Project is not 469 
ambiguous. Controversy about the value of such a project has been described29 and this thinking 470 
has been reflected in policymakers’ decision to end funding to USAID Predict. If recent 471 
estimates of mammalian viral diversity hold true30, then marginal increases in monitoring 472 
infrastructure combined with new and developing analysis methods, such as Vorpal, might 473 
finally deliver the long sought preemptive strategies for emergent diseases, and enable us to 474 
more effectively battle those from which we are already suffering. 475 
 476 
Conclusion 477 
The use of this algorithm for genotype-to-phenotype models is just one of the potential 478 
applications. Automated molecular assay design and degenerate-motif based phylogenetics are 479 
examples of the downstream uses already being investigated. The ability to make use of the 480 
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latent data that is accumulating in databases, as well as novel surveillance data, is made more 481 
tangible with this algorithm. Well-curated and richly annotated metadata promises to allow 482 
machine learning and other data science techniques to unleash a torrent of discovery in genomics 483 
at large.  The mantra we are positing for the infectious and emergent diseases surveillance 484 
community is “More data, Better data, Metadata.” The techniques to unlock the potential of 485 
data-driven genomic science are gathering momentum. 486 
 487 
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 557 
Methods 558 
Algorithm 559 
The Vorpal algorithm for feature extraction was developed using the libraries and versions 560 
delineated in the requirements.txt document located on the Github.  The Vorpal feature 561 
extraction algorithm has 3 steps, each corresponding to a script that becomes the Vorpal 562 
workflow. 563 

1. kmercountouter_sparse.py  564 
a. Input:  565 

i. a reference genome in FASTA format 566 
ii. a folder containing complete assemblies for the viral group of interest 567 

iii. a parameter for K-mer size 568 
iv. a percent variance argument for filtering out assemblies that are divergent 569 

from the reference genome in terms of length 570 
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b. Output:  571 
i. a pickled sparse dataframe object containing K-mer counts across every 572 

input instance 573 
2. hammingclusters_fast.py 574 

a. Input: 575 
i. A pickled sparse dataframe produced by kmercountouter_sparse.py 576 

ii. The average number of allowed degenerate bases for clustering. This is 577 
converted to the equivalent hamming distance cutoff by 578 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑐𝑢𝑡𝑜𝑓𝑓 =
𝐴𝑣𝑒. 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑖𝑒𝑠

𝐾	𝑙𝑒𝑛𝑔𝑡ℎ  579 

iii. The quantile cutoff for high frequency K-mer filtering 580 
iv. The number of chunks to split the count data into when calculating K-mer 581 

frequency. This allows for processing of the K-mer counts table in a 582 
memory constrained environment (optional) 583 

v. A temp folder directory to memory map the distance matrix to, again to 584 
allow for more memory overhead to be available at the linkage step. 585 
(optional) 586 

vi. A memory allocation argument for the development of the distance matrix 587 
in chunks. This can be used in conjunction with memory mapping or 588 
without it. Uses the sci-kit learn pairwise_distances_chunked 589 
function instead of the scipy pdist function (optional) 590 

b. Output: 591 
i. A multi-FASTA file with degenerate motifs of K length. 592 

3. referencemapping_mp.py 593 
a. Input: 594 

i. A multi-FASTA with all of the assemblies to map to 595 
ii. The multi-FASTA file of degenerate motifs produced by 596 

hammingclusters_fast.py 597 
iii. A threads argument for parallel processing 598 

b. Output: 599 
i. A series of BED files with the following column specifications: 600 

 601 
Chr Start End Name Score 
Accession 
Number 

Start 
Index 

End 
Index 

Motif 
Identity 

𝑆 =
𝑀	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠	𝑡ℎ𝑎𝑡	𝑚𝑜𝑡𝑖𝑓	𝑖	𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑡𝑜

𝑇𝑜𝑡𝑎𝑙	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠	𝑁 	× 	1000 

 602 
Wrapper scripts for reproducing the models with the parameters described below are also 603 
provided as binary_vorpal_model.py and binary_vorpal_model_ElasticNet.py. 604 
 605 
Model Parameters 606 
All models were built around binary output variables using a logistic regression classifier.  The 607 
models were regularized using either ℓ1 or ElasticNet methods, using the liblinear31 solver or 608 
Stochastic Gradient Descent estimators32,33,34 in scikit-learn, respectively. The parameters 609 
evaluated for optimization for both approaches were kept uniform for every model fit, with the 610 
parameter values searched over listed in the Table 8. 611 
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 612 
Regularization Term Search values Cross 

Validation Folds 

LASSO lambda 1.0e-4, 7.742e-4, 5.995e-3, 4.642e-2, 3.594e-1, 2.783, 2.154e1, 
1.668e2, 1.292e3, 1.0e4 5 

ElasticNet (.15 
𝓵𝟏 ratio) alpha 1.0e-1, 1.0e-2, 1.0e-3, 1.0e-4, 1.0e-5, 1.0e-6 5 

 613 
Table 8. Grid Search Parameters. Optimization search parameters for regularization 614 
methods. Lambda in the LASSO method corresponds to the constraint on the 𝓵𝟏 norm of 615 
the feature vector while alpha in ElasticNet corresponds to the constraint on the vector 616 
magnitude as well as the learning rate for Stochastic Gradient Descent.   617 
 618 
All of the input parameters for feature extraction and the rationale behind the use and tuning of 619 
each parameter, and their relation to the corresponding model discussed above is provided here. 620 
 621 
Feature Extraction Parameters 622 
The first parameter, K length, can be a variable input, but in the development of these methods 623 
was fixed at 17. The decision to set the k-length at 17 had many facets. The first is that the 624 
feature space should be large enough, that the introduction of degenerate positions does not 625 
cause a complete collapse of feature structures. Evaluation of optimal K length for specific tasks 626 
has been performed in many contexts. For phylogenetic representations of viruses, an optimal 627 
range of 9 to 13 has been proposed35, for the optimal uniqueness ratio in plant genomes a K 628 
length of 20 has been identified36, and in phenetic analysis of bacteria a K length of 31 has been 629 
demonstrated to yield the best balance between sensitivity and specificity in intra- and 630 
interspecies distance analysis4. However, defining a subspace that lends itself to genotype-to-631 
phenotype model interpretability should have the following desiderata: 632 

1. K-size motifs should map to mostly unique genomic loci. In other words, sparsity in the 633 
weights vector is influenced by sparsity in the input vector. 634 

2. K-size should be small enough, that the feature space inflation is not catastrophic to 635 
memory constraints. 636 
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 637 
Figure 8. Post-quantile filtering K-mer distribution. K-mer rank-frequency distribution 638 
plots for Influenza segments 1 and 4, Ebolavirus, and Orthocoronavirinae at the quantile 639 
used in the models discussed.  Frequency is calculated as number of instances the ranked 640 
K-mer appears in.  641 
 642 
This method implements canonical K-mer counting, where the reverse complement of a K-mer is 643 
counted as the same time as the forward oriented K-mer, because of uncertainty about strand 644 
orientation in the input data. It was known that there were example assemblies in GenBank for 645 
Lassa virus where different instances had inconsistent strand reporting.  This assumption seems 646 
to be unwarranted for the viruses selected for this study and could be removed for future 647 
implementations. It should be pointed out that, while maintaining this assumption seems wasteful 648 
from a memory overhead perspective, certain features could only be revealed through this 649 
canonical approach, such as hair-pin complements in RNA secondary structures, where the 650 
resolution of this structural motif is only possible when compared to the K-mer produced by the 651 
complementary region.  Other dimensionality reduction techniques, namely high-frequency K-652 
mer filtering, allowing the feature extraction to remain tractable, given the computing resources 653 
available for this study. The effect of this canonical approach, and the information it potentially 654 
encodes in the feature space, is demonstrated in Table 9A and 9B. 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
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 664 
Degeneracy 
Cutoff 

# Motifs Average 
degenerate 
positions 

Average 
degenerate bases 
represented 

Feature 
space 

Motif/Feature 
ratio 

Reverse 
Complement 
Motif Ratio 

0.0 380726 0 0 190363 0.5 0.00177 

1.0 354138 0.074744873 0.14982295 177375 0.50086407 0.00339 

2.0 331512 0.20877374 0.419245759 167825 0.506241101 0.02309 

3.0 266349 0.939684399 1.894649501 146501 0.550033978 0.13751 

4.0 183004 2.855790037 5.835227645 120444 0.658149549 0.26588 

5.0 150418 3.787837892 7.956893457 106462 0.707774336 0.24210 

Table 9A. Orthocoronavirinae Feature Extraction Summary (0.95 quantile). Summary 665 
statistics for feature extraction for Orthocoronavirinae from 0.0 to 5.0 degeneracy cutoff  666 
for clustering.  Feature space tracks the dimensionality reduction introduced by 667 
degeneracy to motifs that map back to training set. Initially, since no odd-length K-mer 668 
can be a reverse complement of itself,  canonical K-mers counted compared to those 669 
mapped should be half. As degeneracy is introduced, the Motif/Feature ratio is expected 670 
to converge to 1.0, which describes a single motif of all  “N” symbols. This ratio tracks the 671 
amount of previously distinct motifs now represented as a single feature.  The final 672 
column, shows the phenomena of motifs  that are now reverse complements of 673 
themselves as a result of degeneracy, contributing to the inflation of the Motif/Feature 674 
ratio. Of note in the Orthocoronavirinae features, is while dimensionality reduction 675 
continues with the allowance of more degeneracy, the fraction of those resulting 676 
features that have corresponding reverse complements in the feature set does not 677 
increase past 4.0 degeneracy. 678 
 679 

 680 
 681 
Figure 9A. Line plot for three of the selected columns from Table 10A.  The plateau 682 
reached at 4.0 degeneracy for the ratio of reverse complement motifs is  clearly evident.  683 
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 684 
Degeneracy 
Cutoff 

# Motifs Average 
degenerate 
positions 

Average 
degenerate bases 
represented 

Feature 
space 

Motif/Feature 
ratio 

Reverse 
Complement 
Motif Ratio 

0.0 300196 0 0 150098 0.5 0.00052 

1.0 227131 0.316856792 0.638543396 113622 0.500248755 0.00114 

2.0 183592 0.692203364 1.401003312 92109 0.501704867 0.00620 

3.0 151326 1.265717722 2.599824221 77855 0.514485283 0.04837 

4.0 108073 2.715136991 5.716635978 61648 0.570429247 0.18857 

5.0 86031 3.884692727 8.358347572 53537 0.622298939 0.27256 

Table 9B. Ebolavirus Feature Extraction Summary (0.0 quantile). Summary statistics for 685 
feature extraction for Ebolavirus from 0.0 to 5.0 degeneracy cutoff  for clustering.  A 686 
larger fraction of the features at the highest degeneracy allowance produced contain 687 
corresponding reverse complement motifs in the feature set in the Ebolavirus data than 688 
in the Orthocoronavirinae data. This could be attributable to the high frequency K-mer 689 
quantile cutoff util ized in the Coronavirus group, or it could allude to generally higher 690 
fraction of the Ebolavirus genomes having self-complementation than Coronavirus 691 
genomes. 692 

 693 
 694 
Figure 9B. Line plot for three of the selected columns from Table 9b.  The relationship 695 
between mean number of degenerate positions in the motifs and the mean number of 696 
degenerate bases represented is very similar between Ebolavirus and Coronavirus.  697 
 698 
Applying a filter to the K-mers that are allowed to proceed to the clustering step has two 699 
purposes. The first is to denoise the data by removing low abundance features that could be the 700 
result of error or other transient sources of variance. The removal of these K-mers is achieved 701 
through a parameter specified at the clustering stage, the K-mer quantile. Singletons, or K-mer 702 
that are unique to a single instance, are always removed no matter the quantile specified. It was 703 
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discovered that allowing the singletons to form motifs through agglomerative clustering 704 
introduced instability into the model parameter estimation (data not shown).  Contribution to 705 
frequency is determined not by cumulative sum of count across every instance but rather 706 
frequency of presence across the sample instances.  This is identical to the way the “TopN” score 707 
is calculated for K-mers in PriMux primer design software37.  Using a K-mer frequency filter 708 
selects for a conserved variance signal.  This is a reasonable heuristic to introduce, especially for 709 
predictive models, where these high-frequency K-mer derived motifs are the those with the 710 
presumed highest probability of appearing in a novel example of a related organism in nature. 711 
The second function of this feature extraction parameter, made reference to above, is as a 712 
dimensionality reduction technique to make K-mer clustering more tractable in the current 713 
algorithm implementation, given limitations in computational resources.  Memory constraints 714 
during the tree building step represents the primary bottleneck with the scipy implementation of 715 
the nearest-neighbors chain algorithm for average linkage using 𝒪(𝑛F) memory38,39. 716 
The user specifies an average number of degenerate bases to apply when flat clustering. This 717 
number is then divided by the K length specified to estimate the corresponding hamming 718 
distance to provide as the max distance for flat clustering. After flat clusters are grouped into 719 
alignments and a degenerate motif of the alignment is generated by collapsing each position in 720 
the K length alignment into the IUPAC symbol matching the bases seen at that position. 721 
This clustering of K-mers, and subsequent representation as degenerate motifs, is another layer 722 
of dimensionality reduction similar to lemmatization of words in a Natural Language Processing 723 
(NLP) feature extraction technique40. Much of this approach could be described as modifications 724 
of equivalent NLP feature extraction and modeling strategies. It should be noted however, that 725 
data preparation techniques such as term frequency-inverse document frequency (tf-idv), were 726 
considered inappropriate to apply in this circumstance for multiple reasons. First, “document” 727 
length was invariant in the sense that complete assemblies were the only instances allowed in the 728 
training data, and differences in genome sizes within the taxonomies considered were considered 729 
irrelevant. Second, document terms, in this case K-mer motifs, that follow a frequency pattern 730 
similar to the word “the” in the English language are not present. Additionally, for this reason, 731 
the data was not normalized, however to improve convergence speed this could be a future 732 
improvement. 733 
 734 
Phenotype Labeling 735 
Phenotype labels for the different organisms modeled were applied using a variety of strategies 736 
with some specific assumptions introduced for labeling of the Orthocoronavirinae group. In the 737 
cases of Ebolavirus and Coronavirus, taxonomy was used as a guide for phenotype labels, where 738 
knowledge about the phenotype of interest was usually easily delineated along taxonomic 739 
boundaries. For Influenza A, the World Health Organization nomenclature for Influenza strain 740 
identification, which is encoded in the FASTA header, was parsed for labeling of human 741 
isolate41. For those FASTA headers which contained malformed strain identifiers, an ambiguous 742 
labeling was applied and removed from the training set. 743 
 744 
The following explicit assumptions were applied when labeling viral instances for the human 745 
pathogen phenotype in the Orthocoronavirinae model. First, since most transmissions of Middle 746 
East Respiratory Syndrome-related (MERS) betacoronavirus to humans have been zoonic events 747 
traced to dromedary camels, all camel isolates for MERS coronavirus were labeled in the 748 
positive class corresponding to human pathogen. Likewise, in the cases for Severe Acute 749 
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Respiratory Syndrome-related betacoronavirus, since the initial outbreak had been theorized to 750 
begin from a zoonic event from infected palm civets at a market in Guangdong, China, along 751 
with a specific civet spill over event documented in a waitress and a customer in a restaurant in 752 
Guangzhou42, all civet SARS-like isolates were also labeled as belonging to the positive class. 753 
However, since there is no clear evidence of bat-Coronavirus-to-human transmissions, the 754 
assumption was built-in that bat isolates of both MERS-like and SARS-like betacoronaviruses 755 
were not part of the human pathogen class. In the instance of MERS-like bat isolates, examples 756 
have been found across wide geographic ranges, such as South Africa, while human cases appear 757 
to restricted to areas where Saudi Arabian dromedary camels are present43 or hospital acquired 758 
infections. The same is true of SARS-like bat isolates discovered in caves in China, where 759 
assemblies from these isolates show varying similarities to the strain from the 2003-2004 760 
outbreak but not the sum of them44.  761 
 762 
Training sets were developed from the un-clustered Reference Viral Database45 (RVDB) version 763 
14 published October 1st, 2018. Accessions for designated taxonomic groups were derived from 764 
National Center for Biotechnology Virus46 and then used to extract the associated assemblies 765 
from RVDB. Test sets were developed from RVDB version 15 published February 6th, 2019 766 
using the references for the modeled organisms that had been added between version releases. 767 
 768 
Embedding Visualization 769 
The same feature vectors used to produce the logistic regression models were topic modeled 770 
similarly to Latent Semantic Analysis47 (LSA) using a truncated Singular Value Decomposition 771 
(SVD) to a 500 component subspace, which was then subjected to a t-distributed Stochastic 772 
Neighbor Embedding48,49 (t-SNE) to a two-dimensional space to observe the local structure of 773 
the Influenza A viral assemblies. Both of these methods were employed using the associated 774 
classes in Scikit-learn. Visualization and exploration of the embedded space was facilitated by 775 
Plotly50. 776 
 777 
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