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Abstract1

Microbial ecology research is currently driven by the continuously decreasing cost of DNA sequencing2

and the improving accuracy of data analysis methods. One such analysis method is phylogenetic3

placement, which establishes the phylogenetic identity of the anonymous environmental sequences in a4

sample by means of a given phylogenetic reference tree. However, assessing the diversity of a sample5

remains challenging, as traditional methods do not scale well with the increasing data volumes and/or6

do not leverage the phylogenetic placement information.7

Here, we present SCRAPP, a highly parallel and scalable tool that uses a molecular species delimitation8

algorithm to quantify the diversity distribution over the reference phylogeny for a given phylogenetic9

placement of the sample. SCRAPP employs a novel approach to cluster phylogenetic placements, called10

placement space clustering, to efficiently perform dimensionality reduction, so as to scale on large data11

volumes. Furthermore, it utilizes the phylogeny-aware molecular species delimitation method mPTP to12

quantify diversity.13

We evaluated SCRAPP using both, simulated and empirical datasets. We use simulated data to verify14

our approach. Tests on an empirical dataset show that SCRAPP-derived metrics can classify samples15

by their diversity-correlated features equally well or better than existing, commonly used approaches.16

SCRAPP is available at https: / / github .com/ pbdas/ scrapp17

Keywords— phylogenetic placement, species delimitation, microbiome, diversity18

1 INTRODUCTION19

Environmental microbial DNA sampling is increasingly becoming a standard practice, not least due20

to continuously decreasing sequencing costs. One, by now, established way to analyze such data is21

Phylogenetic Placement (Berger et al., 2011; Matsen et al., 2010; Barbera et al., 2018). In phylogenetic22

placement (hereafter called placement), sequences from environmental samples (query sequences, QS) are23

placed on a phylogenetic tree comprising the biome under study (henceforth denoted as reference tree),24

resulting in a set of QS placements on this reference tree (hereafter called placements). Placement has, for25
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instance, been successfully applied to describe the composition of a soil protist environment (Mahé et al.,26

2017) or to identify the relationships between bacterial community composition and disease (Srinivasan et27

al., 2012).28

Another key goal of molecular microbial studies is to assess microbial diversity. A plethora of29

distinct metrics already exist to quantify the diversity of a sample, or parts thereof (Tucker et al., 2017).30

Of these metrics, perhaps the most widely used ones rely on phylogenetic information (e.g., the UniFrac31

distance (Lozupone & Knight, 2005) or the Phylogenetic Diversity (PD) measure (Faith, 1992)). A32

relatively recent approach to quantifying diversity using sequence data is phylogeny-aware molecular33

species delimitation (Fujisawa & Barraclough, 2013; Yang, 2015; Zhang et al., 2013; Kapli et al., 2017).34

These methods rely on a given phylogenetic tree to identify species boundaries, essentially resulting in a35

clustering of the tips into distinct species.36

Here, we combine previous work on phylogenetic placement (Barbera et al., 2018) and species37

delimitation (Zhang et al., 2013; Kapli et al., 2017) to devise a measure of phylogeny-aware relative38

within-sample diversity. Our SCRAPP (Species Counting on Reference trees viA Phylogenetic Placement)39

tool, quantifies diversity by initially grouping placements (QS) by the branch on the reference tree40

(reference branch) to which they most likely belong with respect to their phylogenetic likelihood score.41

Subsequently, for each such group of QS placed onto the same reference branch, we infer a separate42

phylogenetic tree comprising the QS of that group, optionally including an outgroup sequence from the43

reference tree. We call such a tree a branch query phylogeny (BQP). Finally, we apply mPTP (Kapli et al.,44

2017) to the BQP to obtain a species count for the corresponding reference branch. The output of SCRAPP45

is a branch-annotated reference tree that depicts how species diversity is distributed over the reference46

tree. SCRAPP is implemented in Python and relies on mpi4py (Dalćın et al., 2005, 2008; Dalcin et al., 2011)47

for the respective parallel implementation targeting both, shared, and distributed memory systems.48

Some concepts are based on our admittedly difficult to use EPA-PTP tool, an early attempt to49

integrate placement with species delimitation (Zhang et al., 2013). The goal of SCRAPP is thus to quantify50

diversity for each branch of the reference tree individually and to improve usability. In contrast to SCRAPP,51

EPA-PTP used placement to calculate a single, overall species delimitation over the entire reference tree52

extended by all BQPs simultaneously.53

2 DESCRIPTION54

In the following, we initially provide a detailed description of the SCRAPP tool. An overview is provided in55

Figure 1. SCRAPP takes as input a jplace (Matsen et al., 2012) file containing the placements and the56

associated reference tree, as well as the corresponding multiple sequence alignment (MSA) of the QS.57
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From this, we generate per-branch QS MSAs. These include all QS whose most likely placement was58

on the given branch. However, we remove those placements from this set, whose best likelihood weight59

ratio (LWR) (von Mering et al., 2007) is below a given threshold (--min-weight, default 0.5).60

If desired, an outgroup from a user specified reference MSA is included in each branch QS MSA61

such that the corresponding BQP that is produced in the subsequent step can be rooted at this outgroup.62

We automatically choose the outgroup sequence for a given BQP as the leaf sequence in the reference63

tree that is most distant from the given branch. Note that, mPTP species delimitation operates on rooted64

phylogenies. Thus, specifying an outgroup can be beneficial if a more reliable root for the BQP is desired.65

If a root is not provided, mPTP will automatically root the BQP on its longest branch.66

If the number of QS in a given branch QS MSA exceeds a user-specified maximum (500 by67

default), we reduce the number of QS to that maximum using the two-stage clustering method described68

in Section 2.1. This option is necessary to maintain BQP tree inference times within reasonable limits.69

On empirical datasets, specific reference branches can contain more than 100, 000 QS, hence yielding the70

inference of a BQP computationally challenging.71

Once the query MSAs have been generated for all branches of the reference tree, we infer a72

phylogeny for each of them separately using RAxML-NG (Kozlov et al., 2019). As there may be a large73

number of trees (potentially as many as there are branches in the reference tree) with highly variable sizes74

to infer, we use ParGenes (Morel et al., 2018) to orchestrate this tree inference process in a parallel, scalable,75

and efficient way. The inferred BQPs are then processed using mPTP to obtain a species delimitation, and76

corresponding species count. The information produced by each mPTP run is tracked for each branch that77

contains QS in the reference tree.78

The set of inferred BQPs can optionally be expanded to calculate species count variance. Two79

options are available to calculate this variance: rootings, generates a tree set on each BQPs by enumerating80

all possible rootings for the unrooted BQP, or bootstraps, generates a given number (20 by default) of81

bootstrapped branch QS MSAs and then re-optimizes the branch lengths on the original BQP for each of82

the bootstrapped branch QS MSAs. When using these expanded BQP sets, we calculate the final species83

count as median over all per-branch species delimitation results (i.e., over all rootings or all bootstrap84

replicates).85

The rootings and bootstraps options constitute two of the three principal operating modes of86

SCRAPP. The third operating mode, the outgroup mode, offers the rooting of the BQPs via inclusion of a87

reference outgroup (as described above).88

Finally, SCRAPP generates two types of output files. Firstly, it outputs an annotated version of the89

reference tree in the extended NEWICK format, that can easily be visualized by a number of tree viewers90

(e.g., iTOL (Letunic & Bork, 2006) or Dendroscope (Huson et al., 2007)). This is useful for obtaining a91
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high level overview of the diversity, as diversity is represented by just one species count value per reference92

tree branch.93

To allow users to explore the results more thoroughly, for example, by inspecting the variance of94

the median species count, we also produce a comprehensive output file in a json-based file format that is95

analogous to the jplace format (Matsen et al., 2012). This format, called Tree Edge Annotations (TEA),96

contains the reference tree with enumerated branches, as specified in jplace, followed by annotation97

information. The annotation comprises a list of per-branch values. In SCRAPP this annotation includes98

the median species count, and the species count variance, among others. We provide a full specification99

and an example of the TEA format in the supplement, as well as online at https://github.com/pbdas/100

scrapp/wiki/TEA-format.101

2.1 Placement space clustering102

In general, phylogenetic diversity metrics face a fundamental scalability issue, as they rely on a phylogeny103

inferred on the QS. With increasing sequencing volumes, inferring such phylogenies under maximum104

likelihood becomes prohibitively expensive. Moreover, as metabarcoding/metagenomic samples typically105

comprise short sequences, the available signal for reliable tree inference on thousands or tens of thousands of106

taxa is mostly insufficient (Bininda-Emonds et al., 2000). This was the key motivation for the development107

of phylogenetic placement methods as a scalable and more reliable alternative.108

Nonetheless, SCRAPP faces this same computational issue again at a different level as a reference109

branch may contain tens of thousands of QS. To alleviate this, we have implemented a two-stage clustering110

method called placement space clustering (PSC) in SCRAPP. PSC leverages the fact that the insertion111

location of a maximum likelihood placement of QS along the reference branch (the so-called proximal112

length) and distance from that reference branch (the so-called pendant length) can be interpreted as an113

embedding into a 2-dimensional euclidean space (hereafter called placement space). When using PSC,114

we map the set of placements on a branch into placement space and then perform a standard k-means115

clustering on the respective datapoints. Subsequently, we select a small number x of placements from each116

cluster as representatives of that cluster, such that k ∗ x equals the maximum desired number (as specified117

by the user) of sequences per branch QS MSA. More specifically, we select the top x := 10 sequences by118

number of informative (non-gap or non-undetermined) sites, thereby maximizing the potential phylogenetic119

signal for the subsequent tree inference.120

3 EVALUATION121

We assessed the accuracy of SCRAPP using both, simulated, and empirical data.122

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.28.969980doi: bioRxiv preprint 

https://github.com/pbdas/scrapp/wiki/TEA-format
https://github.com/pbdas/scrapp/wiki/TEA-format
https://github.com/pbdas/scrapp/wiki/TEA-format
https://doi.org/10.1101/2020.02.28.969980
http://creativecommons.org/licenses/by-nc-nd/4.0/


Input .jplace
Query
MSA

Query
MSAs

Create per-branch
Query MSAs

Place-
mentsReference

Tree

ParGenes

RAxML-NG

mPTP ... mPTP

Annotated
Tree

Map per-branch Species Counts
onto Reference Tree

Output

...

mPTP ... mPTP

TEA
File

Include Outgroup

Placement
Space Clustering

BS trees rootings?

Figure 1: Overview of the major components of the SCRAPP pipeline. In green, we highlight optional
components (inclusion of reference sequences for BQPs outgroup rooting, placement space clustering for
limiting computational effort, bootstrapping or re-rooting for delimitation variance assessment).
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3.1 Simulated Data123

We generated true species trees using the msprime (Kelleher et al. (2016), v0.7.3) coalescent simulator. We124

then used Seq-Gen (Rambaut and Grass (1997), v1.3.4) to generate MSAs on those trees. We generated125

the trees and MSAs such as to evaluate SCRAPP under a broad range and combination of simulation126

parameters (population size, mutation rates, number of taxa, etc.). In particular we investigated the127

influence on each parameter individually while keeping the remaining parameters fixed to a set for default128

values (see supplement for details).129

From each simulated true tree and MSA, we first pruned a set of QS by removing all but one130

individual from each starting population. To account for incomplete reference data with lower taxon131

sampling density, we subsequently further pruned a given fraction (denoted as prune fract) of taxa132

uniformly at random from the trees. We then labeled the branches of the remaining reference tree by the133

number of query species (here assumed to be equal to the number of populations) whose true location is134

on that given branch.135

We then used EPA-ng to place the query data back onto the tree. Next, we evaluated these136

placement results using SCRAPP, yielding an annotated NEWICK tree. Finally, we compare the reference137

tree with the inferred species count annotations (hereafter SCRAPP-tree) to the reference tree with the138

true species count annotations.139

All scripts used for generating the simulated data can be found in the SCRAPP repository: https://140

github.com/Pbdas/scrapp/tree/master/simtest141

3.2 Empirical Data142

In addition to the tests on simulated data, we replicated part of the evaluation of (McCoy & Matsen IV,143

2013). McCoy and Matsen IV evaluated different diversity metrics by the quality of their fit with clinical144

metadata, which are known from literature to correlate with alpha diversity. We chose to replicate and145

extend the evaluation of the Bacterial Vaginosis dataset (Srinivasan et al., 2012) (hereafter called BV), as146

we already had access to the data and the specific dataset has been particularly well studied (Czech &147

Stamatakis, 2019). Unfortunately, due to patient data protection issues, we cannot make this dataset148

publicly available. Please refer to (Srinivasan et al., 2012) and (Czech & Stamatakis, 2019) for an149

exhaustive exploration of the BV dataset, and a detailed description of the placement of the per sample150

data, respectively.151

Firstly, to obtain the OTU-derived diversity measures used in the evaluation of (McCoy &152

Matsen IV, 2013), we performed OTU clustering using SWARM (Mahé et al. (2014, 2015), v3.0, -d 1 -f),153

and utilizing VSEARCH (Rognes et al. (2016), v2.6.2) for dereplication and filtering. We further analyzed154
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the resulting OTU table using the R package phyloseq (McMurdie and Holmes (2013), v1.22.3, function155

estimate richness) to obtain the Shannon (Shannon, 1948), Simpson (Simpson, 1949), ACE (Chao &156

Lee, 1992), and Chao1 (Colwell & Coddington, 1994) indices.157

Secondly, to assess the placement based methods, we computed a phylogenetic placement of the158

sample data. Note that, we did not use the reference tree given in the original publication (Srinivasan et159

al., 2012), as we found that the inclusion of multiple strains of the same bacterial species can produce a160

very flat likelihood distribution for potential placements of a single QS across individual branches of the161

tree (Czech & Stamatakis, 2019). Therefore, we used an appropriately modified version of the reference162

tree, as shown in Figure S1 in (Czech & Stamatakis, 2019). This modified reference tree only retains163

consensus sequences of all reference strains, such that only one taxon per species remains. The modified164

reference tree comprises 198 taxa.165

Based on this placement data, we obtained the measures outlined in (McCoy & Matsen IV, 2013),166

on a per-sample basis, using the guppy command fpd (Matsen et al. (2010); McCoy and Matsen IV (2013),167

v1.1.alpha19-0-g807f6f3). Note that, we chose to omit the guppy fpd --include-pendant option to avoid168

overestimating diversity. The placement process does not resolve relationships between individual QS.169

Thus, the distance of each individual QS to the RT is denoted by a so-called pendant length. Consequently,170

if two or more QS are phylogenetically close to each other, but relatively distant to the RT, the common171

distance to the RT may be counted once per QS in the PD calculation. This can lead to potential172

overestimation.173

Lastly, we applied SCRAPP to the placement data, running the analysis in the bootstrap operating174

mode, and limiting the maximum number of taxa per BQP to 1000. This again yields a SCRAPP-tree (see175

Section 3.1).176

In the interest of comparability, we chose to re-implement the Balance Weighted Phylogenetic177

Diversity (BWPD) function using the genesis library (Czech et al., 2019), in a way such that it can be178

applied to SCRAPP-trees. The BWPD relies on a one-parameter function family interpolating between179

classical PD and a abundance weighted version of the PD. McCoy and Matsen IV chose to implement and180

evaluate the BWPD on placement results, which consist of precise locations and branch lengths of queries181

on the reference tree. In contrast to this, SCRAPP-trees comprise assignments of absolute numbers (species182

counts) to branches of the tree, without any more specific branch length information. To remedy this183

discrepancy, when calculating the BWPD on a SCRAPP-tree, we treat the species count of a branch as if it184

were a single placement, located at the middle of said branch, without a pendant length.185

All data handling and analysis scripts used in the empirical data evaluation can be accessed online186

at https://github.com/Pbdas/diversity-compare.187
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3.3 Clustering and Showcase188

Finally, we include a showcase test and analysis for two additional empirical datasets.189

In one set of experiments, we utilize data from an study of eukaryotic community composition190

in neotropical soils (Mahé et al., 2017) to evaluate our PSC methodology (Section 2.1). This data is191

particularly challenging for phylogenetic placement, as the available reference data is too sparse to cover192

the diversity that was sampled. We will refer to this dataset as the neotrop dataset. For our purposes,193

we randomly selected small subsets of 1, 000 QS from this dataset and placed them on the reference tree194

described in (Mahé et al., 2017) (512 reference taxa). We then executed SCRAPP for distinct settings of195

--cluster-above, thereby limiting the maximum number of sequences per branch used in the subsequent196

BQP tree searches. As the randomly selected 1, 000 QS subsets produced a maximum of 298 QS placements197

per branch, a threshold value of 300 was selected as the benchmark against which all other runs are198

compared to, as this constitutes the ”no clustering” case. For each clustering threshold setting and199

each operating mode we performed 5 independent runs of the same data in order to quantify variability200

introduced by the randomization component in the clustering algorithm.201

In a second set of experiments, we used a large dataset from the UniEuk project (Berney et al.,202

2017) as a showcase for deploying SCRAPP on a standard parallel compute cluster. For this test, we used203

a phylogenetic placement of 585, 050 QS on a reference tree comprising 800 taxa, which resulted from204

an OTU clustering of roughly 300 million sequences (respective article in press). Unfortunately, the205

dataset has not yet been published, so we are yet unable to make it available. From this, SCRAPP identified206

254, 103 QS as being placed with a LWR above the default 0.5 threshold (see Section 2). We limited the207

maximum number of sequences per branch to 800, and utilized the bootstrap operating mode, generating208

100 bootstrap trees per BQP. This resulted in the inference of 1070 trees, the largest tree containing 979209

taxa. SCRAPP further evaluated each of them via 100 distinct bootstrap MSAs.210

4 RESULTS211

For the simulated data, we calculate two distinct accuracy values. The first is the absolute difference212

between the inferred and the true species count on a branch in the reference tree. This absolute difference213

is then averaged over all branches of the reference tree that have non-zero values in either tree. We denote214

this accuracy metric as mean absolute per branch error (hereafter MAE).215

More formally, let S and T be two trees with identical topologies and branch-associated values si216

and ti for a given branch index i, respectively. T denotes the true tree, while S denotes the SCRAPP-tree217

(Section 3.1). Let B be the set of branch indices for which either S or T have non-zero values. We can218
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now write the MAE as219

MAE =

∑
i∈B |ti − si|
|B|

(1)

Our second accuracy metric is based on normalized per-branch species counts. For a given branch220

with index k, we calculate this normalized count based on a absolute species count xk as221

xnormk =
xk∑
i∈B xi

(2)

where k denotes the index of a given branch, and B is as defined above.222

Further, instead of calculating the absolute difference, we calculate the relative difference:223

rel(tk, sk) =
|tk − sk|

tk
(3)

Again, sk and tk are the values for a given branch with index k, of two given trees S and T as224

defined above.225

Finally, we again calculate the average over all relative normalized species count differences across226

all branches that have non-zero value, resulting in the normalized mean relative per branch error (NMRE).227

NMRE =

∑
i∈B rel(t

norm
i , dnormi )

|B|
(4)

The MAE captures the deviation of the SCRAPP-based species count from the true species count.228

The NMRE quantifies the difference between the true and the inferred diversity distribution over the tree.229

Regarding the accuracy evaluation of the empirical dataset, please refer to (McCoy & Matsen IV,230

2013) for an in-depth description of the methods and metrics used.231

4.1 Simulated Data232

We performed a total of 270 independent simulation runs, covering all simulation space dimensions, all of233

their combinations with the SCRAPP operating modes, and repeating runs for each individual configuration234

5 times. We show high level results across all runs, and stratified by operating mode, in Table 1. We235

observe a mean NMRE of 0.344 over all experiments. When stratified by the different operating modes,236

we observe the lowest overall NMRE for the rootings mode (0.3 mean NMRE).237

To summarize our exploration of the impact of different simulation parameters, we find that result238

accuracy in terms of mean NMRE increases with increasing overall population size, sample size (number of239

individuals per population), and sequence length, as well as decreasing prune fract (Section 3.1). While240
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NMRE σ2 CV MAE σ2 CV
bootstrap 0.356 0.01 0.27 5.71 3.00 0.30
outgroup 0.377 0.01 0.28 7.67 5.44 0.30
rootings 0.300 0.01 0.38 8.17 5.78 0.29
across-all 0.344 0.01 0.32 7.18 5.84 0.34

Table 1: We report the mean NMRE and mean MAE, across all runs (last row) and across all runs of the
specific operating modes (middle rows). σ2 denotes the variance of the given means, and CV denotes
the coefficient of variation. As a reference, the mean variance among simulation replicates (identical
parameter configurations but different random number seeds) was 3× 10−4 and 3× 10−2 for the NMRE
and the MAE, respectively.

less pronounced, there is a trend for the NMRE to improve with increasing total tree size which may be241

attributed to improved taxon sampling density. This can be observed in Figure 2, which shows data for242

those simulation runs where we only varied the total number of starting populations (here called species).243

For detailed figures exploring the effect of varying individual simulation parameters, please refer to the244

supplement.245

●

● ●

●

●
●

●

●

●

0.24

0.28

0.32

0.36

200 400 600
species

N
M

R
E bootstrap

outgroup

rootings

Figure 2: NMRE (Equation 4) for several runs on simulated datasets where we only varied the total
species count of the ”true” tree (the number of individual populations). Error bars denote the first
standard deviation from the mean. Data was stratified by the three different operating modes of SCRAPP
(see Section 2).
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Measure Amsel accuracy Nugent R2 Amsel p-value Mean rank
bwpd 0.25.guppy 0.877 0.777 2.01e-35 2.33
bwpd 0.25.scrapp 0.874 0.785 4.02e-34 2.33
phylo entropy.scrapp 0.873 0.782 4.70e-34 4.00
bwpd 0.5.guppy 0.873 0.757 1.03e-34 4.33
bwpd 0.5.scrapp 0.872 0.786 1.37e-33 4.67
bwpd 0.scrapp 0.873 0.767 1.49e-33 5.67
quadratic.scrapp 0.869 0.779 1.60e-32 8.33
bwpd 0.75.guppy 0.870 0.725 2.46e-33 9.00
bwpd 0.75.scrapp 0.868 0.772 5.10e-32 10.33
quadratic.guppy 0.869 0.718 7.97e-33 10.33
bwpd 0.guppy 0.872 0.713 2.00e-31 11.17
unrooted pd.guppy 0.872 0.713 2.00e-31 11.17
phylo entropy.guppy 0.869 0.716 1.43e-32 11.33
rooted pd.guppy 0.871 0.701 5.73e-31 13.00
bwpd 1.scrapp 0.861 0.741 1.30e-29 13.67
bwpd 1.guppy 0.867 0.691 8.36e-32 14.33
Shannon 0.826 0.387 5.03e-18 17.00
ACE 0.822 0.242 1.41e-10 18.00
Chao1 0.810 0.213 6.35e-09 19.00
Simpson 0.788 0.168 3.61e-08 20.00

Table 2: Correlation and predictive power of SCRAPP in comparison with analogous approaches on the
Bacterial Vaginosis data. Amsel accuracy, Nugent R2, Amsel p-value, and mean rank are calculated exactly
as in (McCoy & Matsen IV, 2013). Rows are sorted by mean rank. Measures suffixed by .guppy are
calculated using guppy fpd (Matsen et al., 2010), whereas measures suffixed by .scrapp were calculated
based on results produced by SCRAPP. Shannon, ACE, Chao1, and Simpson values were calculated based
on an OTU clustering of the same data (see Section 3.2).

4.2 Empirical Data246

The most important results of our evaluation based on the BV dataset are shown in Table 4.2. We were247

able to closely replicate the results of (McCoy & Matsen IV, 2013) (their Table 2), although we observe248

generally higher values for the Amsel accuracy and Nugent R2. The exception to this are the R2 values249

obtained from the ACE and Chao1 measures, that substantially underperform compared to the results of250

(McCoy & Matsen IV, 2013). As ACE and Chao1 are the only tested OTU-based metrics that specifically251

assign a higher weight to rare observations, we speculate that our data handling approach has reduced252

the number of rare OTUs. However, our results confirm the general trend that phylogenetic methods253

outperform OTU methods with respect to the aforementioned metrics.254

Further, we observe a high level of agreement between metrics directly calculated from placement255

results, and metrics derived from SCRAPP results.256

4.3 Clustering and Showcase257

The results of evaluating PSC with varying clustering thresholds are shown in Figure 3. Both, the258

bootstrap, and rootings operating modes produced stable results, that are qualitatively similar to the259
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tests on simulated data. However, the outgroup operating mode proved to be highly sensitive to the260

PSC, yielding high species count deviations starting at a clustering threshold of 200 (a data reduction of261

approx. 33%). Due to the known issues with the eukaryotic soil reference dataset at hand we hypothesize262

that the cause for this behavior is the sparse taxon sampling in the reference MSA. This incomplete taxon263

sampling induces a high branch length distance between the ingroup QS and the outgroup, as SCRAPP264

selects the phylogenetically most distant taxon in the reference tree as outgroup.265
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Figure 3: MAE (Equation 1) of multiple runs of SCRAPP, using different thresholds down to which placement
space clustering (PSC) reduces the maximum per-branch data volume. The MAE is calculated with
reference to the case of the threshold being 300, as 300 was the maximum number of QS that were placed
per-branch. The underlying query and reference data are from the neotrop dataset (Section 3.3, (Mahé et
al., 2017)).

As a final showcase for the scalability of SCRAPP on distributed computing clusters, we performed266

an analysis of a large dataset of 585, 050 QS placed on a 800 taxon reference tree, utilizing 50 compute267

nodes comprising a total of 800 cores. Running this analysis involved handling about 1 million files, of268

which approximately 8, 500 had to be retained as intermediate results for further downstream analysis.269

The total runtime under this setting was 26.5 hours, which we regard as being fast considering the size of270

the overall task.271
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5 CONCLUSION272

We presented SCRAPP, a highly scalable and fully automated pipeline for diversity quantification of273

phylogenetic placement data. The primary goal of SCRAPP is to quantify the diversity distribution of274

a given microbial sample over the reference tree. We show that, on simulated datasets, SCRAPP yields275

phylogenetic diversity distributions with a comparatively low per-branch error rate. On empirical data,276

we show that alpha diversity metrics calculated on the results obtained from SCRAPP rank among the top277

of those tested in terms of predictive power, and correlation with clinical metadata.278

By using MPI (Message Passing Interface), SCRAPP achieves a high level of parallelism, enabling279

the user to utilize an arbitrary number of cores in a cluster computing environment. In a selected showcase,280

we were able to run SCRAPP on a dataset with 585, 050 QS on 50 cluster nodes, using a total of 800 cores,281

in 26.5 hours. This run involved hundreds of tree inferences with up to 797 taxa, and the handling of282

approximately 1 million intermediate files.283

Using placement space clustering, a novel clustering method for placements, SCRAPP is able to to284

efficiently perform dimensionality reduction of the branch QS MSA input data. This enables SCRAPP to285

tackle the scalability challenge induced by the metagenomic and metabarcoding data flood. Finally, it286

should be noted that issues with the underlying reference data regarding taxon sampling density may287

negatively affect the results when clustering is used.288
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