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Abstract 

A fundamental goal in microbiome studies is to determine which microbes affect host physiology. Standard methods for 
determining changes in microbial taxa measure relative microbial abundances, which cannot capture absolute changes. 
Moreover, studies often focus on a single site (usually stool), although microbial demographics differ substantially among 
gastrointestinal (GI) locations. Here, we developed a quantitative framework to accurately measure absolute abundances 
of individual bacterial taxa by combining the precision of digital PCR with the high-throughput nature of 16S rRNA gene 
amplicon sequencing. In a murine ketogenic-diet study, we compared microbial loads in lumenal and mucosal samples at 
several sites along the GI tract. Measurements of absolute (but not relative) abundances revealed decreases in total 
microbial loads on the ketogenic diet and enabled us to accurately determine the effect of the diet on each taxon at each 
GI location. Quantitative measurements also revealed different patterns in how the ketogenic diet affected each taxon’s 
abundance in stool and small-intestine mucosa samples. This rigorous quantitative microbial analysis framework applied 
to samples from relevant GI locations will enable mapping microbial biogeography of the mammalian GI tract and more 
accurately capture the changes of microbial taxa in experimental microbiome studies. 

 

 

One main goal of microbiome studies is to determine which taxa, if any, drive phenotypic changes among study groups.1-3 
The first step in this process is often to survey which microbial taxa differ in abundance between study groups 
(differentially abundant taxa). This survey is commonly performed by amplifying the 16S rRNA gene amplicon with 
“universal” primer sets before high throughput sequencing.4 The output of these studies provides the relative, not 
absolute, abundance of each taxon in each sample. Researchers often then use standard statistical tests or microbiome 
specific packages to determine which taxa are differentially abundant.5, 6 

Relative-abundance analyses are effective for determining the major microbial taxa in an environment (e.g., the human 
Microbiome Project). However, several researchers have pointed out the inherent limitations of comparing relative 
abundances between samples.7-10 In analyses of relative data, every increase in one taxon’s abundance causes an 
equivalent decrease across the remaining taxa. Thus, the measurement of a taxon’s relative abundance is dependent on 
the abundance of all other taxa, which can lead to high false positive rates in differential taxon analyses8, 11-13 and 
negative-correlation biases in correlation-based analyses.14, 15 Several methods (e.g., ALDEx216, Ancom17, Gneiss18, 
Differential Ranking10) acknowledge these biases and aim to address them by using the ratios among taxa, which are 
conserved regardless of whether the data are relative or absolute. These methods are particularly valuable because they 
enable improved re-analysis of existing datasets reporting relative abundances.10, 16-18 

Despite such methodological advancements, analyses of relative abundance cannot fully capture how individual microbial 
taxa differ among samples or experimental conditions. Using the simple example of a community containing two taxa (Fig. 
1), we see that an increase in the ratio between Taxon A and Taxon B could indicate one of five scenarios: (i) Taxon A 
increased (Fig. 1a), (ii) Taxon B decreased (Fig. 1b), (iii) A combination of 1 and 2, (iv) Taxon A and Taxon B increased 
but Taxon A increased by a greater magnitude, or (v) Taxon A and Taxon B decreased but Taxon B decreased by a 
greater magnitude (Fig. 1c). Knowing which of these five scenarios occurs when analyzing experimental data could 
drastically alter the interpretation of which taxa are positively or negatively associated with phenotypes. Thus, an inherent 
limitation of methods that use relative abundance is that they cannot determine whether an individual taxon is more 
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abundant or less abundant (the direction of the change) or by how much (the magnitude of the change) between two 
experimental conditions or samples. 

 

Figure 1: The value of absolute quantification is illustrated by three hypothetical scenarios in which the relative abundance of 
two taxa (Taxon A and Taxon B) are found in equal abundance (50:50) in a “healthy” state but in an 80:20 ratio in the 
“disease” state. (a) Taxon A increases in abundance while Taxon B remains the same; (b) Taxon A remains unchanged 
while Taxon B decreases in abundance, and (c) Taxon A and Taxon B both decrease, but Taxon B decreases by a 
greater magnitude. 

 

To overcome these limitations, several important methods have been developed for quantifying the absolute abundance 
of microbial taxa by using known “anchor” points to convert relative data to absolutes. Spiked standards are commonly 
used in method calibration and have recently been applied to quantifying taxa in microbiome research.19-23 These 
methods require a purified DNA sequence of known concentration from an organism not present in the sample and an 
estimate of the initial sample concentration to determine the amount of exogenous DNA to spike-in. Another group of 
anchoring methods, such as those that use flow cytometry24, total DNA25, or qPCR26-28, measure the total concentration of 
cells, DNA, or amplicons to transform the relative abundances to absolute numbers. These methods have already 
demonstrated the value of quantitative microbiome analysis, yet microbiome researchers have not yet uniformly adapted 
these methods. One may speculate that this lack of adoption is because of real or potential limitations of these methods. 
For example, flow-cytometry based methods require dissociating the sample into single bacterial cells, which could 
require complex sample preparation and have not been validated with complex samples such as from gut mucosa. Total-
DNA-based methods are limited to samples only containing microbial DNA (no host DNA), and spike-in or qPCR-based 
methods can be limited by amplification biases.29, 30 To increase utilization of quantitative microbiome analyses, the 
following capabilities and validation need to be demonstrated: (i) performance across samples with microbial loads 
ranging from high, as in stool, to low, as in the small intestine; (ii) performance across biogeographically diverse sample 
types, from microbe-rich stool and colonic contents to host-rich mucosal samples; (iii) explicit evaluation of limits of 
quantification of the method, and how these limits depend on the starting microbial load, relative abundance of a specific 
target taxon in the sample, and sequencing depth. 

To address this challenge, in this paper we establish a rigorous, absolute quantification framework based on digital PCR 
(dPCR) anchoring. We chose dPCR as our anchoring method because PCR is already part of sequencing protocols and 
has been extensively validated as a quantitative method in nucleic-acid measurements. To achieve precise 
measurements of absolute abundance from diverse sample types, we assessed the efficiency and evenness of the DNA 
extraction protocol. To minimize and quantify bias resulting from potentially uneven amplification of microbial 16S rRNA 
gene DNA, or non-specific amplification of host DNA, we utilized dPCR in a microfluidic format.31-33 . dPCR is an 
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ultrasensitive method for counting single molecules of DNA or RNA.34-36 By dividing a PCR reaction into thousands of 
nanoliter droplets and counting the number of “positive” wells (those with amplified template), dPCR yields absolute 
quantification without a standard curve. To understand the quantitative limits of our methodology, we measured the 
accuracy of each taxon’s absolute abundance as a factor of both input DNA amount and individual taxon relative 
abundance.37-39 We then evaluated this absolute quantification workflow by performing a murine ketogenic-diet study that 
illustrates how the selection of relative- vs. absolute-quantification analyses can result in different interpretations of the 
same experimental results. Many studies have shown that ketogenic diets can induce substantial compositional changes 
in gut microbiota,40-42 so, we predicted it would serve as a good illustrative model for our workflow. Finally, we applied this 
workflow to an analysis of microbial loads along the entire gastrointestinal (GI) tract to highlight the importance of 
judicious selection of sample location when evaluating the impact of diet on host phenotype, and to highlight the 
applicability of this workflow to GI sites with diverse microbial loads. 

Results 

Microbial DNA extraction was efficient, unbiased, and quantitative over a wide range of microbial loads and 
across intestinal sample types 

To estimate the maximum quantity of sample we could extract before overloading the 20-µg column capacity, we 
measured total DNA and microbial DNA load across small intestine and large intestine lumenal and mucosal samples 
(Fig. S1). We then evaluated extraction efficiency across three tissue matrices (mucosa, cecum contents, and stool) to 
assess whether variation in levels of PCR inhibitors and non-microbial DNA interfered with microbial quantification. We 
spiked a defined 8-member microbial community into GI samples taken from germ-free (GF) mice. To assess quantitative 
limits, we performed a dilution series of microbial spike-in from 1.4 x 109 CFU/mL to 1.4 x 105 CFU/mL. dPCR 
quantification showed near equal and complete recovery of microbial DNA over 5 orders of magnitude (Fig. 2a). Overall, 
we measured ~ 2X accuracy in extraction across all tissue types (cecum contents, stool, SI mucosa) when total 16S rRNA 
gene input was greater than 8.3 x 104 copies (Fig. S2). Normalizing this sample input to the approximate maximum 
extraction mass (200 mg stool, 8 mg mucosa) yielded a lower limit of quantification (LLOQ) of 4.2 x 105 16S rRNA gene 
copies per gram for stool/cecum contents and 1 x 107 16S rRNA gene copies per gram for mucosa. Mucosal samples had 
a higher LLOQ because the high host DNA in this tissue type saturates the column, limiting total mass input. 

 

Figure 2: Lower limits of quantification for total microbial DNA extraction and 16S rRNA gene amplicon sequencing. (a) A 
comparison of theoretical and measured copies of the 16S rRNA gene with digital PCR using an eight-member microbial community 
spiked at a range of dilutions into germ-free (GF) mouse tissue from small-intestine (SI) mucosa, cecum, and stool. Each bar plot 
shows a single technical replicate for each matrix. (b) Relative abundance of the eight taxa as predicted and measured after 16S rRNA 
gene amplicon sequencing. (c) Correlation between the mean (n=4) relative abundance of each taxon and the coefficient of variation 
(%CV) using a cecum sample from a mouse on a chow diet with an initial template input of either 1.2 x 107 or 1.2 x 104 16S rRNA gene 
copies. Each analysis comprised four technical (sequencing) replicates. Taxa found only in the low-input sample were labeled 
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contaminants (red points); taxa found in the high-input sample but not low input sample were labeled dropouts (yellow points). Red 
shading indicates the Poisson sampling confidence interval (10,000 bootstrapped replicates) at a sequencing read depth of 28,000. (d) 
Relationship between relative abundance threshold (see text for details) and sequencing read depths at 30%, 40%, and 50% CV 
thresholds. 

 

Next, to ensure extraction performance was consistent for both Gram-negative and Gram-positive microbes, we 
performed 16S rRNA gene amplicon sequencing using previously described improved primers and protocol31, 33 on a 
subset of the extracted samples (Fig. 2b). It is important to note that all amplification reactions for 16S rRNA gene library 
prep were monitored with real-time qPCR and we stopped the reactions when they reached the late exponential phase to 
limit overamplification and chimera formation.30‐33, 43, 44 Extraction appeared less even among microbial taxa at lower total 
microbial DNA inputs (Fig. 2b). This discrepancy from the theoretical profile did not correlate with the presence of chimeric 
sequences (Fig. S3) and was likely a function of the reduced accuracy incurred when diluting complex microbial samples. 
Additionally, sequencing samples with low total microbial loads (<1 x 104 16S rRNA gene copies) resulted in the presence 
of contaminants, as confirmed by sequencing of negative-control extractions (Table S1). 

Quantitative limits of amplicon sequencing provide informative thresholds for data analysis 

To establish the precision of relative-abundance measurements, we sequenced four replicates of DNA extractions from 
cecum samples. Libraries from one DNA extraction were prepared with either an input of 1.2 x 107 16S rRNA gene copies 
or 1.2 x 104 16S rRNA gene copies to determine the impact of starting DNA amount on sequencing variability. We 
calculated the coefficient of variation (%CV) for each taxon’s relative abundance from amplicon sequencing the replicate 
samples. Each taxon’s mean relative abundance (n=4) was then plotted against its corresponding coefficient of variation 
of the relative abundance (Fig. 2c). We defined “dropouts” as taxa present only in the high-DNA-input sample whereas we 
defined “contaminants” as taxa present only in the low-DNA-input sample. The two dropout taxa in the low input sample 
corresponded to the lowest abundance taxa from the high input DNA sample (yellow points, Fig. 2c). Most of the 
contaminant taxa had a relative abundance < 0.03%, but three taxa (Pseudomonas(g), Acinetobacter(g), Rhizobiales(f)) 
had relative abundances of 0.38%, 0.35%, and 0.1%, respectively. These three taxa were also the three most common 
contaminants in our negative-control extractions (Table S1). The presence of contaminants in the sample containing 1.4 x 
104 16S rRNA gene copies was consistent with the input amount at which we observed contaminants in our mixed 
microbial community dilutions (Fig. 2b). We calculated a bootstrapped Poisson sampling confidence interval at our 
sequencing depth (28,000 reads) to assess how close our accuracy limits were to the theoretical limits (red shading, Fig. 
2c). At the low DNA input level of 1.2 x 104 16S rRNA gene copies, we began to reach the fundamental Poisson loading 
limit in our library-preparation reaction (Fig. S4a). We expected divergence of the %CV at ~0.01% abundance because at 
a read depth of 28,000 a relative abundance of 0.01% is a measure of ~3 reads whereas at a total 16S rRNA gene copy 
input of 1.4 x 104 a relative abundance of 0.01% is ~1 copy. Poisson statistics also helped us define the theoretical lower 
limits of relative-abundance measurements as a factor of sequencing depth (Fig S4b). 

We next wished to quantify an approximate threshold that would tell us, for a given sequencing depth, at what percentage 
of relative abundance we lose accuracy in our measurements (we defined this threshold as “relative abundance 
threshold”). To determine this threshold, we fit a negative exponential to the replicate data and identified the percentage 
abundance at which 30% CV was observed. This threshold is a function of the sequencing depth, so we subsampled the 
data at decreasing read counts and repeated the exponential fitting method to calculate the relationship between the 
relative abundance threshold and sequencing depth (Fig. 2d). Greater sequencing depths yielded lower quantitative limits 
with diminishing returns, as expected. We found that the threshold for percentage abundance decreases with increasing 
sequencing depth with a square root dependence analogous to the square-root dependence of Poisson noise. This trend 
follows for %CV thresholds of 40% and 50% as well (Fig. 2d). This analysis provides a framework with which to impose 
thresholds on relative-abundance data that are grounded on the calculated limits of quantitation. 

Digital PCR anchoring quantifies bias in amplicon sequencing and provides a framework for absolute 
quantification of taxa 

We calculated absolute abundances of taxa from sequencing data using dPCR measurement of total microbial loads as 
an anchor. Briefly, relative abundance of each taxon was measured by sequencing and these numbers were multiplied by 
the total number of 16S rRNA gene copies (obtained using the same universal primers from amplicon sequencing) from 
dPCR. Next, we evaluated the accuracy of this quantitative sequencing approach. We were not able to directly compare 
our measurements to other absolute abundance techniques discussed in the introduction because these techniques have 
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not been validated on the broad range of sample types and microbial loads tested here (Table S2). A fair side-by-side 
comparison would require re-optimization of current techniques for complex sample types like those with high host DNA 
levels and low microbial biomass (e.g., mucosa). Typically, evaluation of quantitative accuracy and precision would 
involve the use of a mock microbial community (like the one used in Fig. 2). However, because we computed the absolute 
instead of relative abundances, we were able to use the actual gut-microbiota samples and compare the results to the 
dPCR data obtained with relevant taxa-specific primers. The 16S rRNA gene copy amount was then normalized to the 
mass of each extracted sample after correcting for volume losses (Materials and methods; Eqn. 1). We chose four 
representative taxa to encompass common gut flora of varying classification levels: Akkermansia muciniphila(s), 
Lachnospiraceae(f), Bacteroidales(o), and Lactobacillaceae(f). Like eubacterial primers, taxa-specific primer sets can (in 
principle) give rise to nonspecific amplification due to overlap with host mitochondrial DNA. To avoid nonspecific 
amplification, we ran temperature gradients with GF mucosal DNA and taxa-specific microbial DNA to identify the optimal 
annealing temperature for each primer set (Fig. S5). Each taxa-specific primer targets a separate region of the 16S rRNA 
gene than the universal primer set, thus keeping the gene copy number equivalent across primers. We observed high 
correlation coefficients between the taxa load determined by quantitative sequencing with dPCR anchoring and the taxa 
load measured by dPCR with taxa-specific primers (all r2 >= 0.97, Fig. 3a) for all four taxa over a range of ~ 6 orders of 
magnitude. The ratio of the total load measurements obtained by quantitative sequencing with dPCR anchoring and by 
dPCR with taxa-specific primers showed unity agreement between three of the four primer sets with 2-fold deviation from 
the mean (Fig. 3b and Fig. S9). Sequencing quantification was consistently 2.5-fold higher than dPCR quantification for 
the species Akkermansia muciniphila (Fig. 3b). We cannot confirm amplification bias as a factor because the error did not 
depend on the number of cycles used in library preparation. An alternative factor could be a discrepancy in 
coverage/specificity between the taxon-specific and universal primer sets. We next tested the limits of the sequencing 
accuracy as a factor of input DNA load. A 10X dilution series of a cecum sample was created to cover input DNA loads of 
1x108 copies down to 1x104 copies. Minimal differences in beta diversity (Aitchison distance) between the undiluted and 
diluted samples were observed with a trend towards increasing difference with decreasing DNA load (Fig. 3c). This 
negative correlation between beta diversity and microbial load is not unexpected due to the higher presence of 
contaminant species from our negative controls in the lower input samples, specifically Pseudomonas(g) (data not 
shown). 

 

Figure 3: Taxon-specific digital PCR (dPCR) demonstrates low biases in abundance measurements calculated by 16S rRNA 
gene quantitative sequencing with dPCR anchoring. (a) Correlation between the Log

10
 abundance of four bacterial taxa as 

determined by taxa-specific dPCR and quantitative sequencing with dPCR anchoring (relative abundance of a specific taxon measured 
by sequencing * total 16S rRNA gene copies measured by dPCR). (b) The Log

2
 ratio of the absolute abundance of four bacterial taxa 

as determined either by taxa-specific dPCR or by quantitative sequencing with dPCR anchoring (N = 32 samples). Data points are 
overlaid on the box and whisker plot. The body of the box plot represents the first and third quartiles of the distribution and the median 
line. The whiskers extend from the quartiles to the last data point within 1.5× interquartile range, with outliers beyond. All dPCR 
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measurements are single replicates. (c) Analysis of beta diversity in cecum samples at a series of 10X dilutions (n=1 for each dilution). 
Mean Aitchison distance for n = 4 sequencing replicates is shown for reference (error bar is standard deviation). 

 

A ketogenic-diet experiment reveals how a quantitative sequencing framework can provide insights in 
microbiome studies 

To test the impact of using a quantitative framework for 16S rRNA gene amplicon sequencing, we performed a ketogenic-
diet study. Our goals were twofold. First, we wished to test whether absolute instead of relative microbial abundances can 
more accurately quantify changes in microbial taxa between study groups. Second, we wished to investigate how using a 
quantitative sequencing framework can guide the interpretation of changes in taxa across study conditions. We 
emphasize that our objective was not to make claims about the effect of a ketogenic diet on the microbiome, but rather to 
use this model as an illustration of the added benefits of using this quantitative sequencing framework. 

After one week on a standard chow diet, 4-week old Swiss Webster mice were split into two groups (n=6 each): one was 
fed a ketogenic diet and the other a vitamin and mineral matched control diet (Table S3). Stool was sampled immediately 
before the two diets were introduced (day 0), and again at days 4, 7 and 10. Additionally, on day 10, all mice were 
euthanized and lumenal and mucosal samples were collected from throughout the GI tract (Fig. 4a). Microbial loads 
(quantified with dPCR) ranged from ~109 16S rRNA gene copies/g in small intestinal mucosa to ~1012 16S rRNA gene 
copies/g in stool. On average, we observed lower microbial DNA loads in the mice on the ketogenic diet compared with 
mice on the control diet, except in the stomach, where loads were similar in mice on both diets (Fig. 4b). 

All stool samples and roughly half of the samples for all other GI sites (evenly distributed across mice on the two diets) 
underwent 16S rRNA gene amplicon sequencing. Ordination methods (PCA, PCoA, NMDS, etc) are a common 
exploratory data analysis technique in the microbiome field. Common transformation techniques based on non-Euclidian 
distances (e.g., Bray-Curtis, UniFrac) can skew the accuracy of visualizations of relative data (Fig S6a).11 We used the 
centered log-ratio transformation (CLR, often used to compute the Aitchison distance) to handle compositional effects, 
and performed PCA on the transformed absolute abundance data for all samples from the final collection day (Fig. 4c). A 
clear separation along the first two principal components (PC) was observed. Separation along PC1 was related to the 
location within the GI tract whereas separation along PC2 was related to the diet. The PCA analysis suggested that 
stomach samples were distributed somewhere in-between small-intestine and large-intestine samples, possibly resulting 
from coprophagy in mice.32, 33 Additionally, the mucosal and lumenal samples from the small intestine on the control diet 
seemed to be closer together than on the ketogenic diet (Fig. 4c). 

We next investigated which taxa were contributing to separation in our principal component space. We calculated the 
scaled covariance between each taxon and the first two principal components by multiplying the eigenvectors by the 
square root of their corresponding eigenvalues. These values are also known as “feature loadings.” Plotting these feature 
loadings from smallest to highest shows that Lactobacillus(g) and Lactococcus(g) had the greatest impact on separation 
along PC1 in the direction of the small intestinal samples whereas Ruminiclostridium(g) and Lachnospiraceae(f) 
separated in the direction of the large intestine (Fig. 4d). This matches with what we know about the major genera 
commonly present in the small and large intestine.45 Along PC2 (the “diet axis”), the top two contributing taxa towards the 
control diet were Turicibacter(g) and Marvinbryantia(g), while towards the ketogenic diet Akkermansia(g) and 
Enterococcus(g) had the greatest covariance. 

Although the CLR transformation preserves distances in principal component space regardless of whether the starting 
data are relative or absolute, it normalizes out the differences in total loads by looking at log ratios between each taxon’s 
abundance and the geometric mean of the sample (Fig. S6b). In many cases, we want to know if the absolute load of a 
taxon is higher or lower under different conditions (e.g., in mice on ketogenic and control diets). When the total microbial 
load varies among samples, analyses of relative abundance cannot determine which taxa are differentially abundant (Fig. 
1). To assess the impact of using absolute quantification in analyses, we analyzed microbiomes of stool samples from 
mice on ketogenic and control diets. PCA analysis on the CLR-transformed relative abundances of microbial taxa showed 
separation between the two diets (Fig. 5a). Feature loadings were analyzed as before, but this time total impact of each 
taxa on the PC space was plotted, which was defined as the sum of the feature loading vectors in PC1 and PC2 (Fig. 5b). 
The same analysis was performed on the log-transformed absolute abundance data (Fig. 5a). Separation between diets is 
clear in both relative and absolute abundance analyses, but the contribution of each taxon to the separation differed in 
direction and magnitude. Comparing the magnitude of feature loadings for two taxa, Akkermansia(g) and Acetatifactor(g), 
between the relative and absolute PCA plots showed obvious differences in the contribution of a given taxa to the 
separation in principal-component space. Analysis of relative-abundance data implies that Akkermansia(g) has the 
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biggest contribution on separation between diets in PC space whereas the absolute abundance data implies that ~50% of 
the taxa in the sample have a greater contribution than Akkermansia(g) to the separation between the diets in PC space. 

 

 

Figure 4: Analysis of data comparing ketogenic and control diets provides changes of total microbial loads, separation of 
microbial communities by GI location and by diet in principal component analysis, and the top taxa driving the separation of 
samples along the principal components. (a) Overview of experimental setup and sample-collection protocol. Gastrointestinal tract 
(GIT) samples were collected from the following regions: stomach, upper small intestine (SI), lower SI, cecum, colon, and stool. (b) 
Comparison of total microbial loads between ketogenic and control diets in lumenal (top) and mucosal (bottom) samples collected after 
10 days on each diet. The body of the box plot represents the first and third quartiles of the distribution and the median line. The 
whiskers extend from the quartiles to the last data point within 1.5× interquartile range, with outliers beyond. (c) Principal component 
analysis (PCA) on the centered log-ratio transformed absolute abundances of microbial taxa shows separation by GI location and diet. 
(d) Ranked order of the eigenvector coefficients scaled by the square root of the corresponding eigenvalue for the top two principal 
components. The two most positive and most negative taxa are shown. 

 

PCA is only an exploratory data-analysis technique, so we next used a non-parametric statistical test to test for 
differentially abundant taxa in stool samples from mice on control and ketogenic diets (Fig. 5c).46 We performed separate 
analyses of the relative and absolute abundance data. We plotted the -log10 P-value for each taxon’s relative abundances 
against the corresponding -log10 P-value for that taxon’s absolute abundances. Points along the diagonal indicate 
congruence between the predictions from the relative and absolute abundance data. Points in the upper left corner 
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indicate taxa that differed between the diets in the analysis of relative-abundance but not in the analysis of absolute 
abundance. Conversely, points in the lower right corner indicate taxa that do not differ between diets in the analysis of 
relative abundance but do differ in the analysis of absolute abundance. Akkermansia(g) is an example of a microbe that 
appears to differ (P = 6.49 x 10-3) between mice on the two diets in the relative-abundance analysis but not in the 
absolute-abundance analysis (P = 3.37 x 10-1). Lachnospiraceae(f) showed the opposite trend; in the relative-abundance 
analysis it appears unchanged (P = 6.31 x 10-1) but in the absolute-abundance analysis it differs (P = 3.95 x 10-3) between 
the two diets. Neither of these analyses is wrong, they are simply asking two different questions: with relative data, the 
question is whether the percentage of that microbe is different between two conditions whereas with absolute data, the 
question is whether the abundance of that microbe is different between two conditions. 

 

Figure 5: Analyses of relative and absolute microbial abundances from the same dataset result in different conclusions. (a) 
PCA on centered log-ratio transformed relative abundance data and log transformed absolute-abundance data (only the vectors of the 
five features with the largest magnitude are shown). (b) The impact of each taxon in the principal-component space (see text for 
details), with two taxa indicated to illustrate the comparison. (c) A comparison of the taxa determined to be significantly different 
between diets using relative versus absolute quantification (N = 6 mice per diet). P-values were determined by Kruskal-Wallis. Each 
point represents a single taxon; blue points indicate taxa with the absolute value of P-value ratios greater than 2.5; red points indicate 
two taxa that disagreed significantly between the relative and absolute analyses. (d) For illustrative purposes, a comparison of 
Akkermansia(g) relative abundance (percentage of Akkermansia), absolute abundance (Akkermansia load), and total microbial load 
between stool samples from one mouse on each diet. 

 

To explore one example of how different interpretations of how taxa differ between study conditions occur when using 
relative versus absolute abundance, we analyzed Akkermansia(g) in stool across each of the three time points on 
experimental diets (days 4, 7, and 10) and day 0 on chow diet. For simplicity in this illustration, we compared data from 
one mouse on each diet, but the trends hold on average between all mice on the two diets (Fig. S7). Analysis of relative 
microbial abundance demonstrated ~3X higher abundance of Akkermansia(g) in samples from the ketogenic compared 
with the control diet on days 7 and 10. However, when analyzing the difference in absolute abundance, more nuanced 
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conclusions emerged. The rise in Akkermansia(g) results from switching mice from chow to experimental diets. The 
resulting Akkermansia(g) loads are similar in the two diets on days 7 and 10. However, the ketogenic diet reduces the 
total microbial load relative to both chow and control diets, therefore leading to the observed higher % of Akkermansia(g) 
in samples from mice on ketogenic diet. 

Absolute quantification accurately reveals the direction and magnitude of changes in microbial taxa 

We next analyzed the absolute microbiota abundances in stool and lower small intestinal mucosa samples from day 10. A 
volcano plot, akin to those used in gene expression studies, was used to represent the overall changes in taxa 
abundances between the two diets, and the absolute abundance of each taxon was indicated by the size of its symbol 
(Fig. 6a). P-values from the Kruskal-Wallis tests were corrected for multiple hypothesis testing with the Benjamini–
Hochberg method, resulting in q-values.46, 47 A false discovery rate (FDR) of 10% was labeled on the volcano plot and q-
values < 0.1 were used as a cutoff for designating differential taxa for downstream analyses. Comparisons between the 
two GI locations showed substantial differences in microbial response to diet by location. In stool, approximately 66% of 
the differential taxa were lower on the ketogenic diet vs the control diet whereas in the lower SI mucosa, > 80% of the 
differential taxa were more abundant in the ketogenic diet than control diet (Table S4, Table S5). 

Next, we highlighted several specific differential taxa that were discordant between stool and lower SI mucosa. (1) 
Bacteroides(g) was lower on ketogenic diet in stool and higher on ketogenic diet in lower SI mucosa. This type of result 
could lead researchers who analyze stool samples to believe that lower levels of Bacteroides(g) may be associated with a 
phenotype when it could be the opposite if the phenotype is driven by the SI mucosal microbiota. (2) Parabacteroides(g) 
and Lachnospiraceae GCA-900066575(g) showed the highest fold changes (in opposite directions) in stool but were not 
detected in the lower SI mucosa. The opposite was observed for Escherichia(g), which was more abundant in the 
ketogenic diet than the control diet in the lower SI mucosa but was not detected in stool. (3) Akkermansia(g) and 
Desulfovibrionaceae(f) were more abundant in the ketogenic diet than the control diet in the lower SI mucosa but were 
similar between the two diets in stool. Such microbes could have a relationship with phenotype through the small intestine 
but would be missed if only stool samples are analyzed. 

A further breakdown of the differential taxa, using our quantitative limits of sequencing accuracy (defined earlier), allowed 
us to categorize four distinct scenarios that describe how microbes differed between GI locations of mice on the two diets. 
We refer to these four scenarios as “quantification classes” (Fig. 6b). First, there were microbes that were present in one 
diet and absent in the other (“presence/absence” class). For example, Dorea(g), in stool, and Escherichia(g), in SI 
mucosa, were absent from the control diet but present in the ketogenic diet. Second, there were microbes above the 
detection limit but below the quantitative limit in both diets (“no quant” class). For example, in stool, Candidatus 
Soleaferrea(g), ranges in relative abundance from 0.002% to 0.025%, well below the 30% CV quantification threshold of 
0.04% (as defined in Fig. 2d). Thus, we cannot quantitatively define the difference of this microbe between mice on the 
two diets. Third, microbes were above the detection limit in both diets but only above the quantitative limit in one of the 
diets (“semi-quant” class). For example, Desulfovibrionaceae(f) in the lower small-intestine mucosa was above the 
detection limit in mice on both diets but only above the quantitative limit in mice on the ketogenic-diet, so although we can 
be confident that a difference between the diets exists, we cannot be confident in our measurement of the magnitude of 
that difference. Fourth, microbes were found above the quantitative limits in both diets (“quant” class). For example, for 
Parabacteroides(g) in stool, we can be confident in both the difference between the diets (it was more abundant in the 
control diet) and in the magnitude of that difference (a 32.2-fold difference). We have the lowest confidence in the 
measured absolute fold change of a taxon that is classified in the presence/absence class, and the greatest confidence in 
a taxon in the quant class. 
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Figure 6: A quantitative framework that explicitly incorporates limits of quantification separates differential microbial taxa into 
four classes, and for each GI location identifies a distinct set of differential taxa, including taxa with opposite patterns in stool 
and SI mucosa. (a-b) Microbial taxa in stool (a) or lower small-intestine (b) mucosa in mice on ketogenic (N = 6) and control (N = 6) 
diets. The fold change on the x-axis is the Log2 ratio of the average absolute loads of taxon loads in each diet. Negative values indicate 
lower loads in ketogenic diet compared to control diet. The q-value for a taxon indicates the significance of the difference in absolute 
abundances between the two diets and were obtained by Kruskal-Wallis with a Benjamini–Hochberg correction for multiple hypothesis 
testing. The Log10 absolute abundance of each taxon is indicated by circle size. Orange circles indicate taxa discussed in the main text 
including taxa that show discordant fold changes between stool and lower SI mucosa. The red dashed line is shown at a q-value 
representing a 10% false-discovery rate. (c-d) A subset of taxa from stool (c) and lower SI mucosa (d) that were significantly different 
between diets (q-values < 0.1) and their corresponding fold change, absolute abundance (larger of the average absolute abundances 
between the two diets), and quantification class. Quantification class is determined by whether one or both measurements were above 
or below the lower limit of quantification and the limit of detection.  

 

Discussion 

In this study, we have shown that this technology performs across biogeographically diverse samples with microbial loads 
spanning over 6 orders of magnitude. Our lower limits of quantification for total microbial load from lumenal (e.g., stool, 
cecum contents) and mucosal samples were 4.2 x 105 16S rRNA gene copies/g and 1.0 x 107 16S rRNA gene copies/g 
respectively. These lower limits were mainly restricted by the column-based extractions used which require < 200 mg of 
sample input for lumenal contents and < 8 mg of input for mucosal samples. This sample input is limited by the high 
concentration of PCR inhibitors and host DNA in these samples. New sample-processing methods that deplete host DNA 
before extraction (e.g. the use of propidium monoazide (PMA) or saponin with DNase)48, 49 could help improve the 
quantitative limits in samples with high levels of host DNA (e.g., mucosa) by removing non-microbial DNA before 
extraction. Such host-depletion methods could also improve performance of other current or future methods of 
quantitative sequencing. Before these methods are introduced into quantitative sequencing protocols, they will require 
extensive validation to understand the impacts host DNA depletion has on the microbial load and composition of these 
samples, which will affect the accuracy of any absolute-abundance technique. We showed that the precision of any 
individual taxon’s abundance can be defined as a function of that taxon’s relative abundance and the sequencing depth. 
These accuracy thresholds generally state that all taxa with relative abundance > 0.01% have a maximum %CV of 30%. 
We did not quite reach the theoretical limit of Poisson precision (Fig. 2c), which might be explained by slight differences in 
PCR amplification between high- and low-abundance microbes, and could potentially be corrected with single-molecule 
counting techniques utilizing unique molecular identifiers (UMIs).50, 51 Interestingly, the precision of these abundance 
measurements did not differ between high input DNA samples (1.2 x 107 16S rRNA gene copies) and low-input DNA 
samples (1.2 x 104 16S rRNA gene copies), even though the low-input sample required 10 additional PCR cycles. The 
lack of an increase in observed chimeric sequences in the low-input sample indicates that PCR bias from chimera 
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generation may occur mainly during over-amplification; thus, we suggest monitoring library-prep amplification reactions 
with qPCR and stopping reactions during the late exponential phase. 

Our quantitative sequencing method, as validated, is subject to some of the same limitations of general 16S rRNA gene 
amplicon sequencing. Primarily, the accuracy of any given taxon’s abundance is believed to be impacted by amplification 
bias. We showed that the abundances of Akkermansia muciniphila(s), Lachnospiraceae(f), Bacteroidales(o), and 
Lactobacillaceae(f) could be quantified with similar precision (2X), but different accuracy, i.e. Akkermansia muciniphila(s) 
abundance was ~2.5X higher in the quantitative-sequencing estimate compared with the estimate from dPCR with taxa-
specific primers. This offset was consistent between samples, indicating that it may be related to differences in primer 
coverage between the taxon-specific primer set and the universal primer set used in this study. Nevertheless, such offsets 
should be similar if the same library-prep conditions are used, so one can reliably compare taxa among groups or studies 
and the use of UMIs may further eliminate any potential amplification biases. We note that dPCR-based total microbial 
load measurements should be more robust to amplification biases of individual taxa. Additionally, the total microbial load 
measurement will be affected by the 16S rRNA primer set chosen and its respective taxonomic coverage. The primers in 
this study were chosen to have broad coverage and also to limit amplification of host mitochondrial DNA,31-33 to ensure 
proper quantification of mucosal and small-intestine samples with high host DNA loads. Finally, to take full advantage of 
the power of this quantitative framework, study designs must incorporate proper sampling techniques to address 
spatiotemporal variation in microbial abundances.22  

A method-specific limitation is the requirement of an additional step, dPCR total microbial load quantification, which 
consumes a portion of the extracted DNA sample. This limitation is minor because dPCR generally requires at least 100 
copies for a measurement with a ~10% Poisson error, which is much less than the roughly 10,000 copies required for 
sequencing. Additionally, the absolute abundances are reported in 16S rRNA gene copies/g and require conversion to 
number of cells/g, which has standard limitations (e.g., the completeness of rRNA databases and copy-number variation 
among similar species). However, when comparing taxa across study groups, the 16S rRNA gene copies per taxonomic 
group should be similar. Finally, this method was only validated for 16S rRNA gene amplicon sequencing; thus, further 
validation would be required for applying this method to converting metagenomic sequencing from relative to absolute 
quantification. 

We applied the quantitative framework to a murine ketogenic-diet study to identify how microbial taxa at several GI 
locations respond to diet. Because total microbial loads were lower in the ketogenic diet compared to the control, analysis 
of absolute abundance was required to correctly identify differential taxa. The lower load observed on the ketogenic diet 
can likely be explained by its lower fiber and carbohydrate content, as these dietary components are main substrates for 
many gut microbes.52 Many factors (including diet) that induce changes in relative microbial abundances can also impact 
total microbial load.25, 53 Even among healthy mice on the same (chow) diet, total microbial loads in stool can differ by 10 
times.25 Such variation in total microbial load likely contributes to the noise in microbiome studies. Another insight of this 
study was that we found different patterns in the microbial communities at each GI sampling site. For example, 
Akkermansia(g) loads did not differ between diets in stool, but they were significantly greater in the small-intestine mucosa 
in the ketogenic diet compared with the control. Bacteroides(g) load was lower in stool and greater in the small-intestine 
mucosa in the ketogenic relative to the control diet. Clearly, differential taxa at one GI location cannot be used as a proxy 
for measuring differential taxa at another GI location. To our knowledge, this is the first microbiome study to show that 
microbial taxa in the small intestine and the stool can change in different directions and by different magnitudes in 
response to diet. Furthermore, for each taxon, this method enables a comparison of absolute microbial abundance to 
limits of detection and quantification. This comparison separates differential taxa into four classes (Quant, Semi-Quant, 
No Quant, Presence/Absence) which provide a convenient shortcut for more quantitative interpretation of microbiome 
studies. It should be noted that the absence of a microbe in a dataset is a factor of the sequencing depth, and just 
because a microbe is not found in the sequencing data does not mean it is not in the sample. However, with absolute 
anchoring, one can confidently say that when a microbe is not found, that microbe is below a given abundance. 

We have not focused on correlations among taxa in this dataset. However, the absolute abundance measurements 
acquired using our method should help overcome many of the limitations of correlation-based analyses on relative 
abundances54, 55 and enable analyses using standard methodologies like Spearman’s rank correlation (Fig. S8). However, 
further work will be required to properly address the impact that correlations between total microbial loads will have on 
taxon-based correlation networks. In addition, new statistical and/or experimental design methods may be required for 
interpreting the correlations between a taxon’s presence and/or total load and observed phenotypes. 

This method overcomes three bottlenecks to wider adoption of absolute quantitative measurements in microbiome 
analysis: (i) performance across samples with a wide range of microbial loads; (ii) performance across biogeographically 
diverse sample types (iii) explicit evaluation of limits of quantification of the method. This method will be useful in other 
areas that benefit from quantitative analysis, such as monitoring microbial communities during manufacturing of complex 
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probiotic mixtures56 and monitoring changes of host-associated microbial communities over time (e.g. in health, aging and 
development, disease progression, and during probiotic or other treatments). Applying absolute quantification19-21, 23-28, 32, 

33 of microbial taxa to biogeographically relevant GI locations will provide researchers with new insights in how microbial 
communities affect host phenotypes.  

  

 

Methods 

Mice 

All animal husbandry and experiments were approved by the Caltech Institutional Animal Care and Use Committee 
(IACUC protocols #1646 and #1769). Male and female germ free (GF) C57BL/6J mice were bred in the Animal Research 
Facility at Caltech, and 4-week-old female specific-pathogen-free (SPF) Swiss Webster mice were obtained from Taconic 
Farms (Germantown, NY, USA). Experimental animals were fed standard chow (Lab Diet 5010), 6:1 ketogenic diet 
(Harlan Teklad TD.07797; Table S3) or vitamin- and mineral-matched control diet (Harlan Teklad TD.150300; Table S3). 
Diet design and experimental setup were taken from a recently published study.40 To minimize cage effects, mice were 
housed two per cage with three cages per diet group. Custom feeders, tin containers approximately 2.5 inches tall with a 
1-inch diameter hole in the top, were used for the ketogenic diet as it is a paste at room temperature. Mice were 
euthanized via CO2 inhalation as approved by the Caltech IACUC in accordance with the American Veterinary Medical 
Association Guidelines on Euthanasia.57 

Microbial Samples 

The mock microbial community (Zymobiomics Microbial Community Standard; D6300) was obtained from Zymo Research 
(Irvine, CA, USA). This community is stored in DNA/RNA Shield, which interferes with extraction efficiency at high 
concentrations (data not shown). We found that a 100 µL input of a 10X dilution of the microbial community stock is the 
maximum input that the Qiagen DNeasy Powersoil Pro Kit can handle without recovery losses. Negative control blanks 
were also used which included 100 µL of nuclease free water instead of mock community. 

Fresh stool samples were collected immediately after defecation from individual mice and all collection occurred at 
approximately the same time of day. For intestinal samples, the GIT was excised from the stomach to the anus. Contents 
from each region of the intestine (stomach, upper half of SI, lower half of SI, cecum, and colon) were collected by 
longitudinally opening each segment with a scalpel and removing the content with forceps. Terminal colonic pellets are 
referred to as stool. After contents were removed the intestinal tissue was washed by vigorously shaking in cold sterile 
saline. The washed tissue was placed in a sterile petri dish and then dabbed dry with a Kimwipe (VWR, Brisbane, CA, 
USA) before scraping the surface of the tissue with a sterile glass slide. These scrapings were collected as the mucosa 
samples. All samples were stored at -80 °C after cleaning and before extraction of DNA. 

DNA Extraction 

DNA was extracted from all samples by following the Qiagen DNeasy Powersoil Pro Kit protocol (Qiagen; Valencia, CA, 
USA). Bead-beating was performed with a Mini-BeadBeater (BioSpec, Bartlesville, OK, USA) for 4 min. To ensure 
extraction columns were not overloaded, we used ~10 mg of scrapings and ~50 mg of contents. Half of the lysed volume 
was loaded onto the column and elution volume was 100 µL. Nanodrop (NanoDrop 2000, ThermoFisher Scientific) 
measurements were performed with 2 µL of extracted DNA to ensure concentrations were not close to the extraction 
column maximum binding capacity (20 µg). 

Absolute Abundance 

The concentration of total 16S rRNA gene copies per sample was measured using the Bio-Rad QX200 droplet dPCR 
system (Bio-Rad Laboratories, Hercules, CA, USA). The concentration of the components in the dPCR mix used in this 
study were as follows: 1x EvaGreen Droplet Generation Mix (Bio-Rad), 500 nM forward primer, and 500 nM reverse 
primer. Universal primers to calculate the total 16S rRNA gene concentrations were a modification to the standard 515F-
806R primers4 to reduce host mitochondrial rRNA gene amplification in mucosal and small-intestine samples (Table 
S6).31-33 Thermocycling for universal primers was performed as follows: 95 °C for 5 min, 40 cycles of 95 °C for 30 s, 52 °C 
for 30 s, and 68 °C for 30 s, with a dye stabilization step of 4 °C for 5 min and 90 °C for 5 min. All ramp rates were 2 °C 
per second. The concentration of taxon-specific gene copies per sample was measured using a similar dPCR protocol, 
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except with different annealing temperatures. Annealing temperatures during thermocycling for taxa-specific primers can 
be found in Table S6. The concentration of total 16S rRNA gene copies per sample was also estimated using qPCR with 
the CFX96 RT-PCR machine (Bio-Rad). The concentration of the components in the qPCR mix used in this study were as 
follows: 1x SsoFast EvaGreen Supermix (BioRad), 500 nM forward primer, and 500 nM reverse primer. Thermocycling 
was performed as follows: 95°C for 3 min, 40 cycles of 95 °C for 15 s, 52 °C for 30 s, and 68 °C for 30 s. All dPCR 
measurements are single replicates. 

Concentrations of 16S rRNA gene per microliter of extraction were corrected for elution volume and losses during 
extraction before normalizing to the input sample mass (Equation 1). 

𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝐿𝑜𝑎𝑑 ൌ  𝑑𝑃𝐶𝑅 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 𝑒𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒 ∗
𝑑𝑒𝑎𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
∗

1
𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠

             ሺ1ሻ 

Absolute abundance of individual taxa was calculated either by dPCR with taxa-specific primers or multiplying the total 
microbial load from Eqn. 1 by the relative abundance from 16S rRNA gene amplicon sequencing.  

16S rRNA Gene Amplicon Sequencing 

Extracted DNA was amplified and sequenced using barcoded universal primers and protocol modified to reduce 
amplification of host DNA31-33. The variable 4 (V4) region of the 16S rRNA gene was amplified in triplicate with the 
following PCR reaction components: 1X 5Prime Hotstart mastermix, 1X Evagreen, 500 nM forward and reverse primers. 
Input template concentration varied. Amplification was monitored in a CFX96 RT-PCR machine (Bio-Rad) and samples 
were removed once fluorescence measurements reached ~10,000 RFU (late exponential phase). Cycling conditions were 
as follows: 94 °C for 3 min, up to 40 cycles of 94 °C for 45 s, 54 °C for 60 s, and 72 °C for 90 s. Triplicate reactions that 
amplified were pooled together and quantified with Kapa library quantification kit (Kapa Biosystems, KK4824, Wilmington, 
MA, USA) before equimolar sample mixing. Libraries were concentrated and cleaned using AMPureXP beads (Beckman 
Coulter, Brea, CA, USA). The final library was quantified using a High Sensitivity D1000 Tapestation Chip. Sequencing 
was performed by Fulgent Genetics (Temple City, CA, USA) using the Illumina MiSeq platform and 2x300bp reagent kit 
for paired-end sequencing. 

Data Analysis and Statistics 

16S rRNA Gene Amplicon Data Processing 

Processing of all sequencing data was performed using QIIME 2 2019.1.58 Raw sequence data were demultiplexed and 
quality filtered using the q2-demux plugin followed by denoising with DADA2.59 Chimeric read count estimates were 
estimated using DADA2. Beta-diversity metrics (Aitchison distance,9 Bray-Curtis Dissimilarity) were estimated using the 
q2-diversity plugin after samples were rarefied to the maximum number of sequences in each of the relevant samples. 
Rarefaction was used to force zeros in the dataset to have the same probability (across samples) of arising from the taxon 
being at an abundance below the limit of detection. Although rarefaction may lower the statistical power of a dataset60 it 
helps decrease biases caused by different sequencing depths across samples.12 Taxonomy was assigned to amplicon 
sequence variants (ASVs) using the q2-feature-classifier61 classify-sklearn naïve Bayes taxonomy classifier against the 
Silva62 132 99% OTUs references from the 515F/806R region. All datasets were collapsed to the genus level before 
downstream analyses.  All downstream analyses were performed in IPython primarily through use of the Pandas, Numpy 
and Scikit-learn libraries. 

Data Transforms and Dimensionality Reduction 

For dimensionality reduction techniques requiring a log transform, a pseudo-count of 1 read was added to all taxa. With 
relative abundance data, the centered log-ratio transform was used (Equation 2) to handle compositional effects whereas 
a log transform was applied to the absolute-abundance data to handle heteroscedasticity in the data.  

𝑥௖௟௥ ൌ ቂlog ቀ
௫భ

ீሺ௫ሻ
ቁ , log ቀ

௫మ

ீሺ௑ሻ
ቁ , … , log ቀ

௫ವ

ீሺ௑ሻ
ቁቃ     𝑤ℎ𝑒𝑟𝑒   𝐺ሺ𝑋ሻ ൌ  √𝑥ଵ ∗ 𝑥ଶ ∗ … ∗ 𝑥஽

ವ                      (2) 

For comparative purposes, principal co-ordinates analysis (PCoA) was also performed using the Bray-Curtis dissimilarity 
metric. Principal component analysis (PCA) and PCoA were performed using scikit-learn decomposition methods. Feature 
loadings for each principal component were calculated by multiplying each eigenvector by the square root of its 
corresponding eigenvalue. All data were visualized using matplotlib and seaborn. 
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Taxa Limits of Quantification 

Poisson confidence intervals were calculated by bootstrapping Poisson samples for rate parameters across the 
percentage abundance range (0–1) corresponding to either the input DNA copies or number of reads. We took 104 
bootstrap replicates with a Poisson sample size of 4 to match the number of replicates we sequenced. The %CV for each 
replicate was calculated and the middle 95th percentile was shown as the confidence interval. 

Thresholds for percentage abundance were calculated by first fitting a negative exponential curve 𝑦 ൌ 𝑎𝑥ି௕ to the plot of 
%CV versus percentage abundance using SciPy. Then the percentage abundance at a given %CV threshold was 
determined. This process was repeated after subsampling the data at decreasing read depths to find the relationship 
between percent abundance accuracy limits at sequencing depth. 

Measurement Uncertainty 

When measuring the absolute abundance of a given taxon in a sample, many factors contribute to the uncertainty of the 
measurement. Two primary factors, extraction efficiency and average amplification efficiency for each taxon, should be 
equivalent for each taxon across samples processed under identical conditions and thus neither should impact the 
discovery of differential taxa. However, other factors contributing to the uncertainty of an absolute-abundance 
measurement vary among samples and can impact the discovery of differential taxa. At least six independent errors can 
contribute to the overall uncertainty of a taxon’s absolute abundance: (i) extraction error (ii) the Poisson sampling error of 
dPCR, (iii) the Poisson sampling error of sample input into an amplification reaction to make a sequencing library, (iv) the 
uncertainty in the amplification rates among sequences, (v) the Poisson sampling error of the sequencing machine, and 
(vi) the uncertainty in taxonomic assignment resulting from different software programs that differ in how they convert raw 
sequencing reads to a table of read counts per taxon.  

To measure the total error in our absolute-abundance measurements, we compared the true absolute load value of four 
“representative” taxa (taxa that are common gut flora from different taxonomic ranks) as measured by taxa-specific dPCR, 
with the value obtained from our method of quantitative sequencing with dPCR anchoring (Fig. 3b) and then analyzed the 
relative error in these measurements, defined as the log2 of the observed taxon load over the true taxon load. We 
constructed a quantile-quantile (Q–Q) plot (Fig. S9) of the mean-centered log2 relative errors and found that the errors 
appeared normally distributed. We confirmed this by running a Shapiro–Wilk test (P-value = 0.272) on the mean-centered 
log2 relative errors, which uses a null hypothesis that the dataset comes from a normal distribution. The standard 
deviation of the mean-centered log2 relative errors was 0.48, which results in a 95% confidence interval of ~(-1,1), 
indicating a 2x precision on each individual measurement. However, as seen with Akkermansia(g) (Fig. 3b), accuracy 
offsets may exist for specific taxa. It is important to note that all samples used in this analysis had relative abundances 
above the 50% CV threshold defined in Fig. 2d and thus we do not make any conclusions about the precision of absolute 
abundance measurements for taxa with relative abundances below the 50% CV threshold. 

Biological Uncertainty and Statistical Inference Methods 

When measuring the absolute abundance of a taxon from a defined population (e.g., healthy adults, mice on a ketogenic 
diet) it is unlikely this abundance comes from a well-defined statistical distribution. Given this inherent limitation, we used 
non-parametric statistical tests, which do not rely on distributional assumptions, for our differential abundance analyses. 

Statistical comparisons between diet groups were analyzed using the Kruskal–Wallis46 rank sums test with Benjamini–
Hochberg47 multiple hypothesis testing correction. All statistical tests were implemented using SciPy.stats Kruskal function 
and statsmodels.stats.multitest multipletests function with the fdr_bh option for Benjamini-Hochberg multiple-testing 
correction. When calculating differentially abundant taxa, only taxa present in at least 4 out of 6 mice in a group were 
considered to remove fold-change outliers when plotting (Fig. 6a-b). 

Correlation Analysis: 

Samples were separated by diet (ketogenic and control) and only stool samples were used (days 4, 7, and 10). The total 
microbial load and top 30 taxa with the highest average absolute abundance were selected for analysis. Spearman’s rank 
correlation coefficient and corresponding P-values were calculated for all pairwise interactions using the 
scipy.stats.spearmanr function. Benjamini–Hochberg procedure was to calculate q-values, which account for multiple 
hypothesis testing. A heatmap of the diagonal correlation matrix was plotted (Fig. S8) for q-values <10% FDR.  
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Data Availability 

The complete sequencing data generated during this study are available in the National Center for Biotechnology 
Information Sequence Read Archive repository under study accession number PRJNA575097. Raw data for all figures 
available through CaltechDATA: https://data.caltech.edu/records/1371. 
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