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ABSTRACT 

Background: Microsatellite instability (MSI) is a negative prognostic factor for 

colorectal cancer (CRC) and can be used as a predictor of success for immunotherapy 

in pan-cancer. However, current MSI identification methods are not available for all 

patients. We propose an ensemble multiple instance learning (MIL)-based deep 

learning model to predict MSI status directly from histopathology images. 

Design: Two cohorts of patients were collected, including 429 from The Cancer 

Genome Atlas (TCGA-COAD) and 785 from a self-collected Asian data set (Asian-

CRC). The initial model was developed and validated in TCGA-COAD, and then 

generalized in Asian-CRC through transfer learning. The pathological signatures 

extracted from the model are associated with genotypes for model interpretation. 

Results: A model called Ensembled Patch Likelihood Aggregation (EPLA) was 

developed in the TCGA-COAD training set based on two consecutive stages: patch-

level prediction and WSI-level prediction. The EPLA model achieved an area-under-

the -curve (AUC) of 0.8848 in the TCGA-COAD test set, which outperformed the 

state-of-the-art approach, and an AUC of 0.8504 in the Asian-CRC after transfer 

learning. Furthermore, the five pathological imaging signatures identified using the 

model are associated with genomic and transcriptomic profiles, which makes the MIL 

model interpretable. Results show that our model recognizes pathological signatures 

related to mutation burden, DNA repair pathways, and immunity. 

Conclusion: Our MIL-based deep learning model can effectively predict MSI from 

histopathology images and are transferable to a new patient cohort. The interpretability 

of our model by association with genomic and transcriptomic biomarkers lays the 
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foundation for prospective clinical research. 
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INTRODUCTION 

Microsatellite instability (MSI) is a hypermutator phenotype that occurs in tumors with 

impaired DNA mismatch repair (MMR)[1], which is reported as a hallmark of 

hereditary Lynch syndrome (LS)-associated cancers[2] and observed in about 15% of 

colorectal cancer (CRC)[3]. High levels of MSI (MSI-H) have been found to be a 

favorable prognostic factor but a negative predictor for adjuvant chemotherapy in stage 

II CRC[4]. More importantly, recent studies have demonstrated MSI-H/MMR 

deficiency is correlated to an increased neoantigen burden, which sensitizes the tumor 

to immune checkpoint blockade (ICB) treatment[5]. Further investigations suggest that 

the benefit of ICB treatment for patients with MSI-H is not limited to specific tumor 

types but to all solid tumors[6], which establishes the crucial role of MSI in predicting 

the efficacy of immunotherapy for advanced solid tumors, especially CRC. 

MSI or MMR-deficiency (dMMR) testing has traditionally been performed in 

patients with CRC and endometrial cancer (EC) to screen for LS–associated cancer 

predisposition[7]. Recently, with the U.S. Food and Drug Administration (FDA) 

designation of MSI/dMMR as a favorable predictor of anti-PD-1 immunotherapy[8] (a 
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subset of ICB treatment), the clinical demand for MSI/dMMR testing has increased 

dramatically. However, in clinical practice, not every patient is tested for MSI, 

especially in those cancers with lower occurrences of MSI or in patients in developing 

countries, because it requires additional genetic or immunohistochemical tests which 

are costly and time-consuming. Additionally, various existing MSI testing methods 

show different sensitivities and specificities, leading to the disunity of results[9, 10]. 

Therefore, there are both opportunities and challenges that lie ahead in developing an 

MSI testing method that is available for all cancer patients. 

The emergence of computational pathology had provided an opportunity for the 

detection of MSI because pathology slides are produced for almost every patient 

diagnosed with cancer; these slides can be digitized into whole slide images 

(WSIs)[11]. WSI can not only reveal the tissue spatial arrangement of tumor cells at 

low magnification, but also the cell structure at high magnification[12]. Furthermore, 

histopathology images also show the immunologic microenvironment of tumors[13]. 

Thus, the cell level phenotypes expressed in WSI are the direct reflection of genotypes 

such as MSI at the molecular scale. With the continuous penetration of artificial 

intelligence (AI) into the field of medical imaging, researchers have sought solutions 

based on deep learning, a subset of AI, in a wide range of medical problems, such as 

prediction of gene mutation[14] and tumor-infiltrating lymphocytes[12]. Whereas 

traditional machine learning depends largely on the rationality of human-selected 

features[15], deep learning can learn features from the data, which makes it possible 

for researchers to discover uncharted findings[16, 17]. Previous studies have suggested 

that deep learning can discover regions that contribute to MSI status with special 
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pathomorphological characteristics[18], but the applicability of the model in the Asian 

population remains in question because of the great variation in demographics and data 

preparation. The inability to interpret the extracted features and the predictions made 

by the model is considered to be one of the major issues that limits the acceptance of 

AI models in medicine. 

In this study, we developed a multiple-instance-learning (MIL)-based deep 

learning model to predict MSI status from histopathology images. The model, which 

we have termed Ensemble Patch Likelihood Aggregation (EPLA), combines both deep 

learning and traditional machine learning techniques. The proposed MIL model was 

trained using the TCGA-CORD data set, and then transfer learning was implemented 

to fine tune the model using the Asian-CRC data set, which enhanced the 

generalizability of this model. More importantly, we also demonstrate the 

interpretability of the model by identifying the critical MIL model generated 

pathological signatures and linking them with MSI genomic and transcriptomic 

profiles. 

 

MATERIALS AND METHODS 

Patient cohorts and dataset partition 

In this study, whole slide images (WSI) of two large cohorts were collected. An MSI 

label was assigned to each WSI based on the patient’s microsatellite measurement, 

where samples with MSI sensor scores less than 10 were denoted as microsatellite 

stable tumors (MSS) and those greater than or equal to 10 were denoted as 

microsatellite instable (MSI)[19]. The first cohort (TCGA-COAD), retrieved from The 
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Cancer Genome Atlas, comprised 429 frozen tissue slides diagnosed as colon 

adenocarcinoma and were downloaded from the Digital Slide Archive 

(https://cancer.digitalslidearchive.org/); 358 cases were labeled as MSS and 71 cases 

were labeled as MSI. The second cohort (Asian-CRC), collected from Tongshu 

Biotechnology Co., Ltd, consisted of 785 formalin-fixed paraffin-embedded (FFPE) 

sections diagnosed as CRC, which were provided from three medical centers in China. 

Patients in the Asian-CRC group were analyzed by an MSI detection kit (Shanghai 

Tongshu Biotechnology Co., Ltd.), and 164 cases were identified as MSI-high; the 

balance cases (621 cases) were identified as MSI-low or MSS. In order to use these 

histopathology images, patient consents were obtained, and this study was approved by 

the Institutional Ethical Review Boards of Nanfang Hospital. The details of the two 

cohorts are summarized in Table S1. 

The TCGA-COAD cohort was split into separate training and test sets at a 7:3 

ratio. In order to maintain the same ratio of positive to negative samples in the training 

set and test set, a data splitting procedure was conducted as follows: (1) all WSIs in the 

dataset were divided into two groups, i.e, the WSI group with the MSI label,  and the 

group with the MSS label; (2) 70% images in the MSI group and 70% images in the 

MSS group were randomly selected to compose the training set; and (3), the remaining 

images made up the test set. The training set was used for hyper-parameter tuning 

based on cross-validation, whereas the test set was used for the evaluation of 

generalization performance. 

 

ROI delineation, tiling, and data preprocessing 
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All WSIs were digitalized at 20× magnification with a predefined pixel size (=0.5μm). 

In order to reduce the influence of unrelated areas and alleviate the workload of the 

classification method, regions of carcinoma (ROI) on WSIs were manually annotated 

by expert pathologists, according to the following rules: (1) the tumor cells should 

occupy more than 80% of an ROI, i.e., the interstitial component is less than 20%; and 

(2), obvious interfering factors, including creases, bleeding, necrosis and blurred areas, 

should be excluded. The annotation was performed using Aperio ImageScope (Aperio 

Technologies, Inc.). 

Given the extremely large image size (typically 100,000 × 50,000 pixels) of a 

WSI, the WSIs were subsequently tiled into 512×512 patches. Only patches having a 

greater than 80% overlap with the carcinoma ROI were used for the following analysis. 

The number of patches per WSI in TCGA-COAD ranged from 22 to 2357 (average 

224), whereas the Asian-CRC ranged from 5 to 3718 (average 338) (Table S1). 

Data augmentation and normalization were applied for training patches, whereas 

only normalization was employed for test patches. Data augmentations used in our 

work included random horizontal flipping and random affine transformation of the 

patches (keeping the center invariant). The random affine transformation had the 

following processes: (1) a random rotation ranging from -90 to +90 degrees; and (2), a 

random translation with the horizontal shift and the vertical shift range from -8% to 

+8% of patch width and height respectively. Finally, the augmented patches were 

center cropped to 224 pixels × 224 pixels, following a z-score normalization on RGB 

channels.  
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MIL-based Deep Learning pipeline 

Our MIL-based deep learning pipeline is illustrated in Figure 1 (‘Processing a WSI in 

Two Stages’). Figure 1 presents two predictions:  patch-level and WSI-level. Due to 

the large image size, the WSI was first divided into small patches, and then the patch 

likelihoods were aggregated in an ensemble classifier to obtain the WSI-level 

prediction. Therefore, our method is termed Ensemble Patch Likelihood Aggregation 

(EPLA). 

During the patch-level prediction, a residual convolutional neural network 

(ResNet-18) was trained to compute the patch likelihood in a MIL paradigm where the 

patches were assigned with the WSI’s label. Binary cross-entropy (BCE) loss was 

utilized to optimize the network using a mini-batch gradient descent method. 

We used two independent MIL methods to aggregate the patch likelihoods: Patch 

Likelihood Histogram (PALHI) pipeline and Bag of Words (BoW) pipeline, which 

were inspired by the histogram-based method[20] and the vocabulary-based 

method[21] , respectively. In PALHI, a histogram of the occurrence of the patch 

likelihood was applied to represent the WSI, whereas in BoW, each patch was mapped 

to a TF-IDF floating-point variable, and a TF-IDF feature vector was computed to 

represent the WSI.  

Traditional machine learning classifiers were then further trained using these 

feature vectors to predict the MSI status for each WSI. Here, Extreme Gradient 

Boosting (xgboost), a kind of gradient boosted decision tree, was employed in the 

PALHI pipeline. Naïve Bayes (NB) was used in the BoW pipeline. During the training 

of the WSI-level classifier, the hyperparameters were determined based on the cross-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.02.29.971150doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.971150


10 

 

validation on the training set, using WSI-level ROCAUC (ROCAUC) as the 

performance metric. The PALHI and BoW classifiers were then ensembled to obtain 

the final prediction[22]. 

 

Transfer learning 

Transfer learning applies the knowledge learned in one field to different but related 

fields. The initial parameters of the model were trained using the public data of TCGA-

COAD, and the transfer learning was implemented using the Asian-CRC data. The 

transfer learning was conducted by reusing the model weights in the patch-level 

discriminators and then fine-tuning the weights using a small amount of labeled Asian-

CRC data. In addition, we gradually added more Asian-CRC data for model fine-

tuning to explore the impact on model performance, following the work by Yosinski et 

al[23]. 

 

Model interpretability through molecular correlation analysis of pathological 

signatures 

We explored our model interpretability by examining the pathological signatures and 

their correlation with MSI-related genome types. 

Identification of pathological signatures of importance 

The occurrence histograms in the PALHI and the TF-IDF feature vector in BoW were 

the pathological signatures generated by our model. The importance of each signature 

was measured by its contribution weight to the final WSI-level prediction. Wilcoxon 

Rank Sum tests were performed to evaluate the discriminating power of each 
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pathological signatures. The top signatures were then sent for genomic and 

transcriptomic correlation analysis. 

Genomic and transcriptomic data acquisition 

The DNA mutation profile and the mRNA expression profile of TCGA-COAD were 

retrieved from cBioPortal (http://www.cbioportal.org/)[24]. The RNA-seq data was 

normalized using RSEM[25]. The synonymous mutations were excluded from the 

following correlation analysis. For a particular gene set, as long as there was a non-

synonymous mutation in any of its gene members, it would be defined as deficient.  

Genomic correlation analysis 

The relationship between MSI and some mutation indexes has been reported in 

previous literature, including INDEL and TMB[26]. INDEL mutations refer to a 

variant type caused by sequence insertion (INS) or deletion (DEL) and can be 

calculated as the frequency of DEL and INS mutations. As the mutation data was 

profiled by the whole exome sequencing, TMB was defined and calculated as the total 

number of somatic nonsynonymous mutations of the entire genome[27]. To explore the 

relationship between the pathological signatures and these known genomic biomarkers, 

they were first normalized to a range of 0 to 1 and then visualized in a heat map using 

an R package pheatmap, during which unsupervised clustering was applied using 

Ward's minimum variance method. 

Transcriptomic correlation analysis 

WGCNA is a bioinformatics method based on expression data and is typically used to 

identify gene modules with highly synergistic changes[28]. We first constructed a co-

expression network for the mRNA expression profile using the R package WGCNA, 
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during which the soft threshold for the network was set to the recommended value 

selected by the function pickSoftThreshold (Figure S1). Setting the minimum module 

size to 100 and other parameters to default, we identified 24 transcriptomic modules 

(Figure S2). The biological functions of the modules were annotated by the Gene 

Ontology (GO) over-representation test using the R package clusterProfiler[29], during 

which the Benjamini-Hochberg method was used to adjust P value. Only those GO 

terms with adjusted P values lower than 0.05 were considered significantly enriched in 

a particular module. After that, we calculated Spearman's rank correlation coefficients 

for each pair of modules and pathological signatures to recognize the modules in 

interest. 

 

Statistical analysis  

The ROC curves were drawn using pROC and ggplot2 in R (version 3.6.1). The area 

under the ROC curve was calculated in pROC. The significance of AUC differences 

was tested using the Wald test statistic. The optimal cutoff points of the ROC curves 

were estimated using the Youden Index. The Wilcoxon Rank Sum test was used to 

compare two paired groups and visualized as a boxplot using R package ggpubr. 

Spearman's rank correlation coefficients were used for correlation analysis. 

 

RESULTS 

Development of Ensemble Patch Likelihood Aggregation (EPLA) 

Our model consists of two consecutive stages: patch-level prediction and WSI-level 

prediction (Figure 1). Briefly, a WSI was annotated to delineate the region of 
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carcinoma (ROI). The ROI was tiled into patches, which were subsequently fed to a 

residual convolutional neural network (ResNet-18) to obtain the patch-level MSI 

prediction. Then, we trained two independent MIL pipelines to integrate multiple 

patch-level predictions into an MSI value at the WSI level: the PAtch Likelihood 

HIstogram (PALHI) pipeline and the Bag of Words (BoW) pipeline. To obtain the 

optimal convex combination of the two MIL methods, we employed ensemble learning 

to eventually obtain the predicted MSI status of the patient (Figure 1). 

 

Performance of EPLA  

The performance of the EPLA model was measured in the TCGA-COAD test set. Two 

representative heat maps, MSI and MSS respectively, are shown in Figure 2A. These 

heat maps provide the patch-level prediction. The EPLA model achieved an AUC of 

0.8848 at the WSI level (Figure 2B) and outperformed the state-of-the-art deep-

learning based majority voting method (denoted as DL-based MV) in Kather’s 

study[18], which trains a ResNet for patch-level predictions and then takes the 

majority of these predictions as the final MSI status of the patient (Figure 2D). To 

directly compare our method with the DL-based MV in the same test set, we 

implemented DL-based MV method as a variant of PALHI, by downsizing the 

histogram in PALHI to only two bins (0-0.5 and 0.5-1). Consistent with the results in 

Kather's study, the DL-based MV method achieved similar performance with an AUC 

of 0.8457 in the TCGA test set (Figures 2B and 2D).  

We further compared the performance of components of the EPLA ensemble (i.e., 

PALHI and BoW) to that of DL-based MV (Table S2). We found that BoW achieved 
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higher specificity (89.5% vs 75.2%) and PALHI was superior in terms of sensitivity 

(86.4% vs 81.8%). The ensembled EPLA classifier combines the advantage of both 

models, which obtained both superior specificity and sensitivity compared to the DL-

based MV (Table S2). Representative heat maps of the discrepant cases are shown in 

Figure 2C. These cases were correctly predicted by EPLA but mistakenly classified by 

DL-based MV. 

 

Validation of EPLA in an Asian-CRC cohort 

We further measure the generalizability of our model in an Asian-CRC cohort. It is 

noteworthy that there exist great differences between the Asian-CRC cohort and the 

TCGA-COAD cohort, not only in race but also in the slide preparation techniques 

(Table S1). As a consequence, when directly tested in Asian-CRC, the EPLA model 

trained on TCGA-COAD only achieved an AUC of 0.6497 (Figure 3A). Considering 

the wide variations in medical practice, we applied transfer learning to generalize the 

EPLA model by fine-tuning ResNet-18 using 10% of cases from Asian-CRC, and thus 

achieved an AUC of 0.8504 in the remaining data set (Figures 3A and 3B).  

We subsequently evaluated the amount of data needed for model fine-tuning by 

increasing the proportion of cases from Asian-CRC for model training. The 

performance of the fine-tuned model steadily improved, resulting in 0.8627, 0.8967, 

0.9028 and 0.9264 AUCs in the ratios of 30%, 40%, 60% and 70%, respectively, 

implying that transfer learning using a larger amount of data from a different cohort is 

the key to generalizing a model with a better performance. (Figure 3C).  
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Top pathological signatures of the model 

To gain insight into the MSI prediction mechanism of the model, we explored the 

contribution of the pathological signatures extracted from the EPLA model to the 

prediction of MSI in TCGA-COAD. The ranking of significance of the top ten 

pathological signatures is shown in Figure 4A. Given that the top five pathological 

signatures (FEA#197, FEA#198, FEA#001, FEA#188 and FEA#200) were 

significantly more important than the others, they were selected for subsequent 

analysis. Among them, FEA#001 had a significantly higher value (P<0.0001) for 

patients in the MSS group, while the other four (FEA#188/197/198/200) had 

significantly higher values (P<0.0001) in the MSI group (Figure 4B). 

 

Genomic association analysis  

The output of the model can be interpreted from the perspective of the genome. Cluster 

analysis in figure 4C shows that patients with a high value of FEA#001 are mainly 

MSS with normal function in DNA repair-related pathways consisting of mismatch 

repair (MMR), DNA damage response and repair (DDR), and homologous 

recombination deficiency (HRD). On the contrary, patients with high levels of 

FEA#188/197/198/200 are mainly due to MSI with deficient DNA repair related 

pathways, namely deficient-MMR (dMMR), deficient-DDR (dDDR) and deficient-

HRD (dHRD). In addition, mutations of several representative genes in these 

pathways, including POLE, BRCA1, and BRCA2, also demonstrate a consistent 

finding. Moreover, since recent evidence suggests MSI is significantly related to TMB, 

especially INDEL mutation load[26], we assessed the relation between the 
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pathological signatures and these known biomarkers and found that high TMB and 

INDEL mutation load are often accompanied by low FEA#001 and high 

FEA#188/197/198/200 (Figure 4C). 

 

Transcriptomic association analysis  

In transcriptomic association analysis of the top five pathological signatures, we 

applied weighted gene co-expression network analysis (WGCNA) and identified 24 

modules (Figure 5A). Gene ontology (GO) enrichment analyses were performed to 

annotate the function of the modules (Table S3). 

Spearman's rank correlation between the 24 WGCNA modules and the top five 

pathological signatures showed that 11 out of 24 modules were of interest. Among 

them, seven modules, including ME19, ME13, ME23, ME9, ME8, ME14 ,and ME4, 

were found to be negatively correlated to FEA#001 but positively correlated to 

FEA#188/197/198/200. Conversely, four modules, including ME1, ME0, ME3 and 

ME5, were found to be positively correlated to FEA#001 but negatively correlated to 

FEA#188/197/198/200 (Figure 5B). 

By referring to the significantly enriched GO terms of the correlated modules, we 

found that those enriched in ME13 and ME8 are mainly related to the biological 

processes of immune activation, such as T cell activation and regulation of leukocyte 

activation. As for ME5, which is positively correlated with FEA#001, some biological 

processes related to the genetic material activity are significantly enriched, including 

nucleotide-excision repair and transcription-coupled nucleotide-excision repair (Figure 

5C). Representative GO terms enriched in other modules are shown in Figure S3. 
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These results further verify the findings in previous literature that MSI renders tumors 

immunogenic and is sensitive to immune checkpoint inhibitors[26]. 

 

DISCUSSION 

MSI testing can provide important information for clinical decision-making in a 

variety of cancers. However, the requirement of additional genetic or 

immunohistochemical tests limits its access to the general population. In this study, we 

developed a deep learning model which we termed Ensemble Patch Likelihood 

Aggregation (EPLA) to predict MSI status of CRC directly from histopathology 

images that are ubiquitously available in clinical practice, making it possible for every 

patient with a pathological diagnosis to receive an MSI evaluation. Furthermore, we 

propose the use of transfer learning for model fine-tuning in a different population, 

improving its generalizability. We also explored the model interpretability from the 

perspective of genome and transcriptome association, giving a molecular biological 

explanation of our model. 

In the development of a state-of-the-art method, Kather et al. proposed a deep-

learning based majority voting method to predict MSI from histology under the 

assumption that all patches contribute equally to the prediction of MSI status. Such 

assumptions may not be valid and could limit the prediction accuracy. In practice, 

although hundreds of patches are tiled from each WSI, most of them do not contribute 

much to the final prediction. In contrast, only a few key patches make the majority 

contribution. Our MIL-based model has the ability to automatically adjust the 

contribution of each patch to the overall WSI-level prediction in a learnable way by 
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giving key patches higher weights, resulting in higher performances over the DL-based 

MV method in terms of AUC, sensitivity, and specificity. 

In clinical practice, different data sets could be vastly different due to the 

disparities between patient populations and data acquisition processes, resulting in a 

large performance gap for AI algorithms. For example, in Kather’s study, an MSI 

classifier trained on TCGA, which is mainly made up of Western populations, and only 

achieved an AUC less than 0.70 in the KCCH cohort, a Japanese cohort[18]. 

Furthermore, the histology slides in TCGA-COAD are flash-frozen slides that utilize 

water crystallization during the freezing process, often resulting in an altered 

appearance of the tissue structure as compared to the FFPE slides used in Asian-CRC 

which provide more tissue structure clarity. This data difference could not be 

effectively eliminated by only color normalization, indicating that more advanced 

techniques, such as transfer learning, are necessary. As expected, EPLA showed a 

performance degradation in Asian-CRC by simply applying the model trained on 

TCGA-COAD, but the results improved significantly after transfer learning. It is of 

clinical significance that using only a minority of the new domain data for model fine-

tuning can already improve the AUC to a satisfactory level and further improvement 

can be expected if even more data were included, which proves that our model can be 

easily generalized to the complicated clinical environment, regardless of race, 

preparation techniques, and data acquisition techniques.  

Deep learning models are often criticized for their poor interpretability, especially 

in mission-critical applications, such as healthcare. Only those models with certain 

interpretability can be understood, verified, and trusted by clinicians in clinical 
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practice[30].  The genomic association between DNA repair pathways and MSI 

cancers, which is exquisitely sensitive to ICB, has been verified previously[31]. 

Moreover, MSI and its resultant TMB have been reported to underlie the response to 

PD-1 blockade immunotherapy[32, 33], and the INDEL mutation load is particularly 

associated with the extent of the response[26]. Despite advances in our understanding 

of MSI at the genomic level, the process and mechanisms at the transcriptomic level 

remain relatively understudied. Previous studies have described the molecular portrait 

of MSI from the perspective of gene expression level and suggest that the mutation 

events of the MMR pathway are responsible for the under-expression of its gene 

members[31]. Inspired by these discoveries, we confirmed the correlation between the 

pathological signatures of the model and these known biomarkers of MSI. In addition, 

we also observed a correlation with the expression level of immune pathways, a 

finding which is consistent with better prognosis and a more favorable response to ICB 

in MSI patients. 

The nature of AI models has limitations in our model. The performance of deep 

learning models largely depends on the size and quality of the training set. We still 

need to expand the training data to improve the accuracy and generalizability of the 

model. Although the model has been verified in TCGA and an Asian cohort 

respectively, a large prospective clinical trial is necessary before we can deploy it as a 

routine MSI testing method in clinical practice. 
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Conclusions 

In this study, we developed a model which we termed Ensemble Patch Likelihood 

Aggregation (EPLA) for MSI prediction directly from pathological images without the 

need for genetic or immunohistochemical tests. Using these images allows the evaluation 

of MSI status in many more patients than was previously possible. Through the model, 

we identified five pathohistological imaging signatures to predict the MSI status. The 

reliability of the model was verified in two independent cohorts and the interpretability of 

the model was illustrated by exploring the correlation between the pathological signatures 

and genomic and transcriptomic characterizations. Ongoing work is attempting to further 

validate our model in large-cohort, prospective clinical trials.  
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Figure Legends 1 

Figure 1. Overview of the Ensemble Patch Likelihood Aggregation (EPLA) model. 2 

A WSI of each patient was obtained and annotated to highlight the regions of carcinoma (ROIs). 3 

Then, patches were tiled from ROIs, and the MSI likelihood of each patch was predicted by 4 

ResNet-18, during which a heat map was shown to visualize the patch-level prediction stage. 5 

Next, PALHI and BoW pipelines integrated the multiple patch-level MSI likelihoods into a WSI-6 

level MSI prediction value, respectively. Finally, ensemble learning combined the results of the 7 

two pipelines and made the final prediction of the MSI status. 8 

Figure 2. Validation of the EPLA and comparison with DL-based MV in the TCGA cohort. 9 

(A) Representative heat maps of MSI and MSS cases at the patch-level prediction stage. Color 10 

bars show the MSI likelihood of each patch. (B) Receiver operating characteristic (ROC) curves 11 

of EPLA and DL-based MV. The P value is calculated by the Wald test. (C) A heat map of 12 

representative discrepant cases between EPLA and DL-based MV. (D) Summary of EPLA and 13 

DL-based MV. DL-based MV is re-implemented from a voting-based model in Ref.18. The last 14 

line of the table summarizes the performance of the original DL-based MV model.18 15 

Figure 3. Generalization performance of the EPLA in an Asian cohort. 16 

(A) Summary of the performance of EPLA in Asian-CRC with or without transfer learning. 17 

When using transfer learning, 10% of cases from Asian-CRC were used for model fine-tuning. 18 

(B) The ROC curve of EPLA in the Asian-CRC using transfer learning with 10% of cases for 19 

model fine-tuning. (C) ROCAUCs of the model in Asian-CRC with increasing proportions of 20 

cases for model fine-tuning. 21 

Figure 4. Identification and genomic correlation analysis of top pathological signatures. 22 
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(A) Importance ranking of the top ten pathological signatures extracted from EPLA. (B) 1 

Boxplots of the five pathological signatures between MSI and MSS groups. Significance values: 2 

**** P < 0.0001. (C) Heat map with unsupervised clustering showing the correlation between 3 

genomic landscape and top pathological signatures in each patient. Each column corresponds to a 4 

patient in the TCGA-COAD cohort. All continuous variables are normalized to a range of 0 to 1. 5 

INDEL: insertion-deletion, TMB: tumor mutation burden, MMR: mismatch repair, DDR: DNA 6 

damage response and repair, and HRD: homologous recombination deficiency. 7 

Figure 5. Correlation between WGCNA-identified modules and top pathological signatures. 8 

(A) Weighted gene co-expression network analysis (WGCNA) identifies gene modules with 9 

highly synergistic changes. Relationships among the modules are shown in a dendrogram. (B) 10 

Each column corresponds to one of the top five pathological signatures, and each row is one of 11 

the 24 modules identified by WGCNA. The heat map shows Spearman's rank correlation 12 

coefficients for each pair of modules and pathological signatures, where a transition from red to 13 

blue represents positive to negative correlations. (C) Significantly-enriched Gene Ontology terms 14 

of ME5, ME8, and ME13. The dotted lines indicate the level with an adjusted P value of 0.05. 15 
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