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 38 

Abstract 39 

Strawberry uniformity is a complex trait, influenced by multiple genetic and 40 

environmental components. To complicate matters further, the phenotypic assessment 41 
of strawberry uniformity is confounded by the difficulty of quantifying geometric 42 
parameters ‘by eye’ and variation between assessors. An in-depth genetic analysis of 43 
strawberry uniformity has not been undertaken to date, due to the lack of accurate and 44 
objective data. Nonetheless, uniformity remains one of the most important fruit quality 45 
selection criteria for the development of a new variety. In this study, a 3D-imaging 46 

approach was developed to characterise berry uniformity. We show that circularity of 47 
the maximum circumference had the closest predictive relationship with the manual 48 
uniformity score. Combining five or six automated metrics provided the best predictive 49 
model, indicating that human assessment of uniformity is highly complex. Furthermore, 50 
visual assessment of strawberry fruit quality in a multi-parental QTL mapping population 51 
has allowed the identification of genetic components controlling uniformity. A “regular 52 

shape” QTL was identified and found to be associated with three uniformity metrics. The 53 
QTL was present across a wide array of germplasm, indicating a strong candidate for 54 
marker-assisted breeding. A greater understanding of berry uniformity has been 55 
achieved through the study of the relative impact of automated metrics on human 56 
perceived uniformity. Furthermore, the comprehensive definition of strawberry uniformity 57 
using 3D imaging tools has allowed precision phenotyping, which has improved the 58 

accuracy of trait quantification. This tool has allowed us to illustrate the use of advanced 59 
image analysis towards the breeding of greater uniformity in strawberry. 60 
 61 
 62 

Key Words 63 
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 65 

Introduction 66 

Strawberries (Fragaria x ananassa) are not true fruits. The red fleshy pseudocarp of a 67 
strawberry is formed from a swollen flower base or receptacle. The true fruits are, in 68 
fact, the achenes which develop from a whorl of carpels and together form an 69 
aggregate-accessory fruit. The viability of both carpels and pollen play an important role 70 
in the resulting uniformity of berries 1. Carpel position, density and viability dictate the 71 
shape, size and uniformity of a strawberry. Indeed, strawberry breeders have selected 72 

for high carpel densities in order to produce larger fruits 1. Simple, classical studies 73 
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which remove all or part of the achenes from undeveloped pseudocarps has led to a 74 
cessation in the auxin “swelling signal” in the area beneath each achene and thus 75 
uneven fruit development 2. In a similar fashion to achene removal, uneven pollination 76 
of the carpels, or absence of achene development, are the main causes of uneven 77 

pseudocarps 3. Uneven successful pollination can be caused by damage to flowers 78 
through high temperature, frost or precipitation 1. A late frost in spring could lead to 79 
carpel and other damage, resulting not only in malformation but also complete lack of 80 
strawberry development 1. Strawberry flowers have a variable proportion of viable 81 
carpels and anthers between flower orders, both within a plant and also between 82 
different cultivars 4,5. Indeed, primary fruit are more likely to be malformed due to the 83 

relatively lower quantities of viable anthers and pollen 6,7.  84 
 85 
In spite of the environmental factors known to influence uniformity, literature has shown 86 
that strawberry uniformity still has a large genetic component and can be improved 87 
through breeding 8,9. Indeed, where breeders have selected for increased uniformity 88 
within and among berries, improvements in uniformity were observed over time 8. 89 

Cultivars have been shown to differ in their susceptibility to misshapen fruit, indicating a 90 
significant genetic component controlling uniformity 1,8,10. For example, ‘Florida Elyana’ 91 
is susceptible to rain damage, disrupting carpel development and thus misshapen fruit 92 
leading to lower market value 9, similarly  ‘Camerosa’ has been noted as a cultivar 93 
which is particularly susceptible to misshapen fruit with ~4% of yields lost as a result of 94 
misshapes 10,11. By contrast, ‘Florida Radiance’ has high marketable yields and does 95 

not exhibit a high proportion of misshapen fruits 9. Breeders can influence the proportion 96 
of uniform strawberries through selecting- be it directly or indirectly- for 1) even 97 
allocation of viable carpels across the receptacle within the flower 2) ready access to 98 
pollen within flowers and 3) high fertility of carpels ensuring even successful pollination. 99 
 100 

Strawberry is an important fruit crop with a global market revenue of 21,171 million 101 

USD in 2015 12. Producing visually appealing strawberry fruit is one of the primary 102 

objectives in a strawberry breeding program 13. Shape uniformity is an essential trait of 103 
strawberry fruits due to the direct association with product quality and value 14. 104 
Increasing the uniformity of berries can increase the proportion of marketable fruit as 105 
berry irregularity is one of the primary imperfections leading to culling and reduced 106 

marketable yield 8.  107 
 108 
As there is no well-defined strawberry phenotyping guidelines for fruit uniformity, the 109 
current system at NIAB EMR relies on visual assessments, which are subjective and 110 
laborious. Unlike morphological traits such as length, volume and colour, which can be 111 
accurately measured manually in a low-throughput manner, uniformity assessment is 112 
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extremely subjective. As there is no quantitative method of generating phenotypic data 113 
for uniformity, the genetic determinants of strawberry uniformity are still unknown.  114 
 115 
Computer vision has shown great potential to quantify external fruit quality and 2D 116 

imaging has been successfully implemented to measure the shape and size of fruits 117 
such as strawberries 15, apples 16, watermelon 17, cherries 18 and mangos 19. Basic 118 
shape traits such as length, width, aspect ratio and volume, and more sophisticated 119 
traits such as elliptic Fourier descriptors 20 have been quantified and used to describe 120 
variation in fruit quality. 3D imaging has been successfully used for phenotyping the 121 
crop canopy 21,22 and root architecture 23,24, and a 3D strawberry phenotyping platform 122 

has been explored in our previous study 25. With the 3D point cloud reconstructed based 123 
on the Structure from Motion (SfM) method 26, basic size-related parameters have been 124 
measured in three dimensions allowing volume estimation with high accuracy 27. 125 
Compared with shape and size evaluation, uniformity is a multi-dimensional trait, 126 
therefore it is not possible to quantify through 2D image analysis with a single viewing 127 
angle. The application of 3D image analysis for phenotyping the external qualities of 128 

fruit has not been sufficiently explored, and the basic, previously characterised, shape- 129 
and size-related parameters are not adequate for understanding uniformity. 130 
 131 
Here the application of a 3D phenotyping platform allows us to investigate the genetic 132 
basis of strawberry uniformity. The 3D image analysis software leverages the previously 133 
developed platform 25 in order to define eight new external variables and investigate 134 

their importance on manual uniformity assessment. This method was applied to a multi-135 
parental strawberry mapping population in order to quantify the genetic components 136 
underpinning strawberry uniformity.  137 
 138 

 Materials and methods 139 

Plant material and experimental set-up 140 

A multi-parental strawberry population was generated through crossing 26 diverse 141 

cultivars and breeding lines to create a population of 416 genotypes made up of 26 142 
families each containing 16 individuals (Suppl. Figure 1). Progenitors were selected to 143 
represent diversity across multiple fruit quality traits. Twelve replicate runner plants 144 
were pinned down from each genotype into 9 cm square pots containing compost. 145 
Clonal plants were separated from parental plants and then placed in cold storage (-2 146 
oC) until the start of the experiment. Plants were potted into 2 L pots containing coir and 147 

fertigated at 1kg L-1 (rate: 10 seconds every 45 min) using Vitex Vitafeed (N:P:K, 148 
176:36:255). Blocks were horizontal intersections across the polytunnels. Due to the 149 
large scale of the experiment, replicate blocks were set up at three week intervals. A 150 
Natupol Koppert bumble bee hive was added into each polytunnel to assist even 151 
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pollination. Strawberries were picked when ripe into egg boxes. Boxes were labeled 152 
with QR codes to assist tracking of genotypes. Strawberry uniformity was scored on a 153 
scale from 1 (irregular) to 9 (uniform) with extensive training provided for all assessors. 154 
Strawberry shape was allocated into 9 categories: globose, globose-conic, conic, long-155 

conic, bi-conic, conic-wedge, wedge, square and miscellaneous. Manual uniformity 156 
scores were recorded in the field book app 28, the QR scanning feature allowed quick 157 
access to the correct entry form. 158 
 159 
Genotyping and Linkage map 160 

DNA was extracted for each genotype from unopened leaflets using the Qiagen DNeasy 161 

plant mini extraction kit. Genotyping was conducted using the Axiom® IStraw35 384HT 162 
array 29 (i35k). Crosslink was used to generate linkage maps- a program developed 163 
specifically for polyploid plant species 30. The map orders from 5 populations were 164 
combined to make the consensus map as detailed in the study of Harrison et al 31. 165 
Fragaria × ananassa chromosome number is denoted by 1-7 and the sub-genome 166 
number is represented by A-D as specified in 32.  167 

 168 
3D reconstruction 169 

The 3D imaging platform was a modified version of that developed by He et al. 25. 170 
Strawberry fruit were placed in the middle of a turntable, on a dark blue holder made by 171 
polymeric foam (38 mm x 19 mm x 19 mm; height, length and width). Unlike the 172 
previous study, a webcam (Logitech C920, Newark, CA, USA) was fitted at a height of 173 

30 cm and horizontal distance of 25 cm away from the sample. QR codes on containers 174 
were scanned through the webcams allowing tracking of berries and automated labeling 175 
of image files. The imaging rig was placed inside a photography studio tent with 176 
constant LED illumination. The turntable rotated at a frequency of 50 seconds per full 177 
turn, and an image was captured every second. Six imaging platforms allowed 178 
concurrent imaging of replicate berries. The 3D reconstruction was implemented with 179 
Agisoft Photoscan (Agisoft, LLC, St. Petersburg, Russia), and in order to increase the 180 

accuracy and processing speed, all images were pre-processed by cropping to a 181 
smaller size (400 x 600 pixels). Background subtraction was achieved through arbitrary 182 
colour thresholding. The image processing software for webcam control and automated 183 
image pre-processing were written in C++ utilising the OpenCV Library 25,33.  184 
 185 
Data processing pipeline of phenotypic traits extraction 186 

Point cloud preprocessing 187 
In the preprocessing stage (Fig. 1), each point cloud model was converted from the 188 
colour space of RGB (Red, Green and Blue) to HSV (Hue, Saturation and Value). 189 
Arbitrary thresholding on the hue channel was used to remove the noise introduced in 190 
the reconstruction stage. The clean point cloud was translated to the origin of the 3D 191 
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coordinate system based on the distance between the moment of the point cloud and192 
the origin. By calculating the eigenvector associated with the largest eigenvalue of the193 
coordinates of points, a rotation matrix could be derived to represent the main194 
orientation of the point cloud, which can be used to rotate the point cloud with the main195 

orientation aligned with the z-axis. After rotation, the arbitrary threshold was applied196 
again on the hue channel in order to segment the strawberry body and blue holder from197 
the whole point cloud. The height of the holder was obtained by calculating the198 
difference between the maximum and minimum values of the holder point cloud on the199 
z-axis. As the original coordinate system generated by Structure from Motion (SfM)200 
method has an arbitrary scale, each point cloud model needed to be standardised by201 

the height of the holder, so that the sizes of all point clouds are comparable.  202 

 203 
Figure 1. Point cloud pre-processing for strawberry body extraction, translation to origin204 

of xyz coordinate system and size standardisation. 205 
 206 
Uniformity-related traits measurements 207 
Eight uniformity-related traits were calculated from the point cloud data of strawberry208 

body after preprocessing. These are: 209 
 210 
Coefficient of variation (CV) of side view areas (CV_A) and the ratio between211 
maximum and minimum side view area (Max_A/Min_A) 212 

All side views should be identical in a perfectly uniform strawberry. In order to eliminate213 
the heterogeneity introduced from the calyx and the holder, only the points within the214 

middle 50% of the body height of each point cloud were retained for analysis (Fig. 2). In215 
order to understand the heterogeneity of different side views of a point cloud, each point216 
cloud was rotated along the z-axis by 3.6° for 99 rotations, and after each rotation, the217 
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side view of the point cloud was projected onto the x-z plane in 2D (labelled in white). A 218 
convex hull was fitted to each projected image and the contour area was calculated. For 219 
area metrics, two traits were obtained; the CV of side view areas (CV_A) and the ratio 220 
between the maximum and minimum area (Max_A/Min_A). An ideal uniform strawberry 221 

will have a value of zero for CV_A and one for Max_A/Min_A.  222 
 223 
CV of principal orientations (CV_D) 224 

The major eigenvector indicating the main orientation was calculated by principal 225 
component analysis (PCA) for all 100 side view projected images, and the 226 
heterogeneity of the orientations of the projected images was quantified by calculating 227 

the CV of angles of the main orientation. Like CV_A, a perfectly uniform strawberry will 228 
have a value of zero for CV_D.  229 
 230 

 231 
Figure 2. Side view of strawberry body for the CV measurement of the area and 232 

principal orientations. Convex hulls are outlined in blue, and blue and green arrows 233 
indicate the principal orientations (a). Extraction of example slice images horizontal to x-234 
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y plane at the height of 20%, 40%, 60% and 80% of the total height. A minimum 235 
bounding box is fitted to each slice image (b). Sixteen patches of points labelled in 236 
different colours for curvature estimation (c). 237 
 238 
Aspect ratio of the minimum bounding box (L/W) 239 

A lateral slice image was obtained by identifying the intersection between the plane in 240 
parallel with the x-y plane and point cloud (Fig. 2b). Based on the values on the z-axis, 241 
100 evenly spaced slice images were obtained. The slice image with the largest contour 242 
was obtained by calculating the contour area of the convex hulls for all slice images. 243 
The main orientation of the contour was indicated by the major eigenvector of the PCA 244 

and the minimum bounding box was fitted to the slice images. The ratio between the 245 
length and width of the largest bounding box was derived and the ratio should be one 246 
for a perfectly uniform fruit. 247 
 248 
Circularity of the maximum circumference (CIR) 249 

Visually, the circularities of the contours in horizontal slice images are high if the 250 

strawberry is uniform. Circularity (CIR) was calculated as previously described 34: 251 
 252 

C = 
���

��
 253 

Where A and p are the area and perimeter of the convex hull respectively. For each 254 
point cloud, the circularity was calculated for the slice image with largest contour area.  255 

 256 
Straightness of centre axis (STR) 257 

The coordinates of the centroids for each horizontal slice image can be located by 258 
calculating the moment of the contour. The centroids can be connected as a straight 259 
line for a uniform strawberry. The centroids were calculated for all the slice images 260 
within the middle 80% of the body height, and the straightness of the central axis was 261 
characterised by: 262 

 263 

STR = 
∑ ��
���

���

�
 264 

Where N (N = 80) is the number of slice images used for the analysis, di is the 265 
Euclidean distance between neighbouring slice images, and D is the Euclidean distance 266 

between the centroids of the top and bottom slice images.  267 
 268 
CV of curvature and the ratio between maximum and minimum curvatures 269 
(Max_C/Min_C) 270 

The principal curvature can be calculated for each point in the point cloud, which 271 
describes how much the curve deviates from a straight line at this point. It can be 272 

imagined that the 3D curve can be sliced orthogonally around the direction of normal in 273 
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to 2D curve, and the maximum curvature k1 and minimum curvatures k2 are the two 274 
principal curvatures for the 3D curve 35. The average curvature k, which is defined as 275 
the mean value of the magnitudes of principal curvatures in the two main directions was 276 
applied to quantify the curvature for a given point.  277 

 278 
As the curvature measurement is sensitive to noise, the point cloud surface of 279 
strawberry body was first smoothed by using Moving Least Squares (MLS) method 36, 280 
which could reconstruct a smooth surface from the noisy point cloud. Sixteen patches of 281 
the points were selected evenly from the points forming the largest slice in parallel with 282 
x-y plane (Fig. 2c). For each patch, the first half largest curvatures were averaged and 283 

used to represent the curvature of the patch. With the curvatures of all 16 patches, the 284 
CV of curvature (CV_C) and the ratio between maximum and minimum curvatures 285 
(Max_C/Min_C) were calculated. 286 
 287 
 288 
Statistical analysis 289 
Ordinal regression 290 

Statistical analysis was performed using R (version 3.5.1) and the Genstat statistical 291 
package (Version 13.0, VSN International Ltd. England). Differences in uniformity traits 292 
within each shape groups were distinguished using ANOVA and Tukey post-hoc test. 293 
Pearson coefficients of correlation were calculated between all proposed uniformity-294 
related traits. As the group labels are ordinal dependent variables, ordinal regression 295 

was used to evaluate the performances of all traits 37. Model fit was ascertained by 296 
using selection criterion values based on the Akaike Information Criterion (AIC) and the 297 
Bayesian Information Criterion (BIC). In general, a better model fit generates lower 298 
values for both AIC and BIC 38. In order to identify the optimal variable combination 299 
related to manual assessment, stepwise AIC and BIC methods were applied 39. The 300 
most significant variable was identified by comparing the criterion values of all models. 301 
Other variables were added successively and retained if the model fit was improved.  302 

 303 
Genetic Analysis 304 

The best linear unbiased estimate (BLUE) was calculated for all genotypes in order to 305 
correct for the influence of assessor, data and block. Linear mixed-effects models were 306 
generated for each phenotypic trait with and without covariates. Grand scores for each 307 
genotype were calculated using mixed models to account for significant covariates. 308 

 309 
Composite interval mapping 310 

Multiparental QTL mapping was conducted in R using package “mppR” 40. A 311 
permutation test determined the significance threshold 41. A two-step QTL analysis was 312 
implemented: the selection of cofactors was achieved through Simple Interval Mapping 313 
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(SIM) proceeded by a multi-QTL model search using composite interval mapping (CIM) 314 
42,43. As a multi-parent population CIM works on parent relationships. Therefore the 315 
‘CPEM0162’ x ‘Rumba’ cross was removed as it is not directly related through the 316 
parental cultivar network. All other crosses were interrelated and formed a single 317 

network (Sup. Figure 1). 318 

 319 

Results 320 

Characterisation of uniformity-related traits 321 

All the uniformity-related traits were calculated based on the point cloud, the mean 322 
values and the standard errors for each visual uniformity class are presented in Figure 323 
3. ANOVA results showed that significant differences were observed between uniformity 324 
classes for all traits (p < 0.001). The Pearson’s linear correlation coefficients were 325 
calculated between all traits, and strong correlations were found amongst 326 
Max_A/Min_A, L/W and CIR (Table 1). 327 

 328 
Ordinal regression models were constructed for all variables and each variable 329 
independently. L/W was not significant due to the high correlation with other variables 330 
and CIR showed the best model fit with the lowest AIC and BIC values (Table 2). New 331 
variables were added sequentially to the model until no further improvement of the 332 
criterion value was observed. The AIC and BIC based stepwise selection methods 333 

showed inconsistent results (Table 3). The AIC based method showed the optimal 334 
criterion value with all variables except L/W and Max_C/Min_C, but BIC based method 335 
showed that STR could not improve the model fit.  336 
 337 
The influence of Shape on uniformity  338 

The shape of a strawberry influences the uniformity trait score. Bi-conic strawberries 339 
were seen to have high uniformity based on the area overlap measures (CV_A & 340 

Max_A/Min_A), L/W and CIR scores indicating bi-conic strawberries have consistently 341 
circular horizontal transects at the mid point. Whereas for curvature uniformity 342 
measures (CV_C & Max_C/Min_C) globose fruit are the most uniform and 343 
miscellaneous fruit the least (Data not shown). Both the manual uniformity score and 344 
CIR could discriminate miscellaneous shapes from the other shape categories (Figure 345 
4).  346 

 347 
QTL identification 348 

A total of 28 QTL were found to be associated with uniformity traits (Table 4). Of which 349 

25 were detected in more than one progenitor (Figure 5). Five focal SNP’s, on 350 
chromosome 2B and 5D were found to represent more than one trait (Table 4, Figure 351 
6). The same focal SNP AX.166521303 was identified as important region in 352 
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Max_A/Min_A, CV_A and CIR uniformity traits. Global adjusted R2 values for linear 353 
models were between 5.07 and 32.15 indicating the proportion of variation explained by 354 
identified QTLs (Table 5). All uniformity traits apart from CV_A were significantly 355 
affected by date of picking. CV_D had the largest broad sense heritability score of 38.4 356 

(Table 5).  357 
 358 

 359 
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Figure 3. Mean value and standard error of calculated uniformity-related traits by the360 

newly developed 3D image analysis software against defined uniformity scale based on361 
manual assessment. 362 

363 
Figure 4. CIR scores for each manually classified strawberry shape category. Letters364 

denote significant differences between categories. Error bars are standard errors of the365 
mean. 366 
 367 
Table 1. Pearson’s linear correlation coefficients among all uniformity-related traits. All368 

values are significant at p < 0.05 level. 369 

 CV_A Max_A/Min_A CV_D L/W CIR STR CV_C Max_C/Min_C

CV_A 1.00        

Max_A/Min_A 0.61 1.00       

CV_D 0.13 0.29 1.00      

L/W 0.54 0.90 0.27 1.00     

CIR -0.48 -0.85 -0.32 -0.85 1.00    

STR 0.12 0.26 0.06 0.26 -0.29 1.00   

CV_C 0.21 0.24 0.07 0.23 -0.25 0.15 1.00  
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Max_C/Min_C 0.17 0.20 0.15 0.17 -0.27 0.10 0.57 1.00 

 370 
 371 

Table 2. Summary of individual ordinal models and variable significance of ordinal 372 

model with all variables, towards prediction of manual assessment uniformity scores. * p 373 
< 0.05, ** p < 0.01, *** p < 0.001. 374 
 375 

Model LogLik AIC BIC Signif. codes 

CIR -1691.82 3401.65 3445.35 *** 

Max_A/Min_A -1707.44 3432.89 3476.85 *** 

L/W -1742.98 3503.96 3547.66  

CV_A -1790.55 3599.09 3642.79 *** 

CV_C -1824.20 3666.41 3710.11 *** 

Max_C/Min_C -1839.63 3697.25 3740.95 * 

CV_D -1857.94 3733.87 3777.57 *** 

STR -1861.85 3741.70 3785.39 * 

 376 
 377 
 378 
Table 3. Model comparison values for uniformity metrics, towards prediction of manual 379 

assessment uniformity scores based on AIC and BIC. 380 

Model 1 2 3 4 5 6 7 8 

CIR x x x x x x x x 

Max_A/Min_A  x x x x x x x 

L/W   x      

CV_A    x x x x x 

CV_C     x x x x 

Max_C/Min_C      x   

CV_D       x x 

STR        x 
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AIC 3401.65 3374.40 3374.29 3362.57 3302.01 3299.53 3291.87 3288.40 

BIC 3445.35 3422.95 3427.70 3415.97 3360.28 3362.65 3354.99 3356.38 

 381 

 382 

Supplementary Table 4. Focal SNPs representing strawberry uniformity QTL. The 383 
position of QTL is reported in Mb as scaled to the vesca version 4 genome 384 
 385 

Marker Names Chromosome Pos Mb 
log

10 

p 

value 
R
2 Trait 

AX.89804099 3B 96.3 3.29 6.9 Visual Uniformity 

AX.123357183 2D 63.1 4.07 3.81 Max_C/Min_C 

AX.166513757 4B 239.6 3.03 5.05 Max_C/Min_C 

AX.166523206 4D 272.0 3.89 4.03 Max_C/Min_C 

AX.166514922 5D 1.8 3.02 9.9 Max_C/Min_C 

AX.89886024 5D 36.8 3.32 2.87 Max_C/Min_C 

AX.166525020 6B 34.4 3.49 7.59 Max_C/Min_C 

AX.166526040 7B 47.5 3.07 2.71 Max_C/Min_C 

AX.166521293 2B 60.7 3.74 6.41 CV_C 

AX.166519032 2C 183.5 3.04 5.07 STR 

AX.166521303 2B 63.1 3.29 9.41 CIR 

AX.89791395 4B 130.4 3.17 2.71 CIR 

AX.166509340 4C 241.7 3.00 2.37 CIR 

AX.89890707 5C 212.2 3.11 1.86 CIR 

AX.166526395 7C 228.6 3.81 3.95 CIR 

AX.89873861 1A 139.7 3.73 5.27 L/W 

AX.123357666 3B 303.6 3.35 3.42 L/W 

AX.89829301 4D 182.3 3.03 2.06 L/W 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.01.972190doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.972190
http://creativecommons.org/licenses/by-nc-nd/4.0/


AX.166524494 5B 103.6 3.25 3.83 L/W 

AX.89791880 5D 123.7 3.52 1.46 L/W 

AX.89792701 5D 182.0 3.61 10.64 L/W 

AX.166503621 2C 266.2 3.89 2.19 CV_D 

AX.166504095 3A 149.5 4.10 2.8 CV_D 

AX.166525754 6C 74.7 3.25 3.58 CV_D 

AX.166521303 2B 63.1 4.55 15.08 Max_A/Min_A 

AX.89791880 5D 123.7 4.22 3.11 Max_A/Min_A 

AX.166506309 5D 150.8 3.16 2.48 Max_A/Min_A 

AX.166523943 5D 233.9 3.42 4.47 Max_A/Min_A 

AX.166521303 2B 63.1 3.86 6.28 CV_A 

AX.89788547 5D 40.9 3.61 5.8 CV_A 

 386 
Table 5. Broad sense heritability scores for each automated uniformity trait, the 387 
influence of block and date of assessment on the trait measured. The number of QTL 388 
and the coefficient of determination associated with combined QTL. 389 
 390 

Trait Heritability 
Significance 

of Block 
Significance 

of Date 
GxE 

Number of 

QTL 
R2 R2 adj 

STR 21.70 *** *** *** 1 5.07 4.63 

CIR 22.00 *** *** *** 5 21.2 19.3 

CV_D 38.40 *** *** *** 3 9.35 8.05 

CV_A 19.95 NS NS *** 2 12.13 11.29 

CV_C 24.63 *** *** *** 1 6.41 5.97 

L/W 19.20 *** ** *** 6 24.77 22.59 

Max_C/Min_C 16.70 NS * NS 7 32.15 29.85 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.01.972190doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.972190
http://creativecommons.org/licenses/by-nc-nd/4.0/


Max_A/Min_A 22.70 ** *** *** 4 23.1 21.62 

Uniformity 8.00 NS *** *** 1 6.9 6.46 

 391 
 392 
 393 

 394 
 395 
Figure 5. Effect sizes associated with each QTL in each of the 26 progenitors; blue396 
colour is associated with lower uniformity and red colour is associated with higher397 
uniformity. 398 
 399 
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400 
 401 
Figure 6. Location of QTL on the octoploid consensus map scaled to the Fragaria402 
vesca ‘version four’ genome. Horizontal grey lines represent istraw 35k axiom array403 
markers  404 
 405 
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 406 
Supplementary Figure 1. A network of crosses conducted to generate the407 
multiparental mapping population used in this study. Cultivars are represented by408 
circles, families are represented by lines. 409 
 410 

411 
(a) 412 

he 
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413 
(b) 414 

 415 

416 
(c) 417 

Supplementary Figure 2. Manhattan plots of (a) Max_A/Min_A, (b) L/W and (c) CIR. 418 
 419 
 420 

Discussion 421 

We report for the first time a robust method to measure strawberry uniformity and apply422 
this technique to generate genetic markers for uniformity traits. Several studies have423 

attempted to quantify strawberry fruit shape using 2D images with neural networks 44,424 
3D imaging 45 and by machine learning15. However, none of these studies investigated425 
berry uniformity. Unlike the aforementioned studies, who measure a relatively small426 
number of genotypes intensively, we have implemented a high throughput imaging427 
platform across a large population to facilitate genetic analysis of the trait. Although428 
strawberry shape has received greater attention in the literature, berry uniformity is a429 

more important trait for a breeder to improve (Personal communication, Abigail430 
Johnson).  431 
 432 
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In current strawberry breeding practice, there is no widely accepted criteria for 433 
quantifying uniformity due to the difficulty of defining a multidimensional trait. Here, the 434 
manual strawberry uniformity scale has been designed by NIAB EMR breeders. As 435 
such, the absence of a straightforward definition, has meant that it has not been 436 

possible to study the genetic components controlling strawberry uniformity in the past. 437 
To overcome this, we have used 3D image analysis to define the parameters underlying 438 
a breeder’s perception of strawberry uniformity. The original 3D strawberry phenotyping 439 
system 25 could accurately measure basic size-related traits. In this study, the point 440 
cloud analysis software was further developed to quantify strawberry uniformity through 441 
eight proposed metrics. By comparing with the manual scale, the image processing 442 

pipeline has demonstrated an objective method of characterising strawberry uniformity 443 
components.  444 
 445 
Quantifying berry uniformity 446 

Circularity of the maximum circumference (CIR) of strawberries showed the best 447 
predictive ability for manual uniformity scores based on the ordinal regression model fit, 448 

when studying individual variables alone. A completely misshapen fruit with a severely 449 
undulating fruit surface will score a value of 1 for manual assessments, and these 450 
completely misshapen fruits were the easiest category to identify by eye, as they were 451 
clearly distinct from regular shapes. A low CIR value appears to represent the 452 
undulating misshapen and “miscellaneous” fruit (Figure 4 & 6). Miscellaneous berries 453 
are the most undesirable fruit shape category therefore it is highly beneficial to select 454 

against them. When multiple traits are combined to describe uniformity, the best fitting 455 
model required the combination of CIR, CV_A and Max_A/Min_A, CV_D and CV_C. 456 
The five factors required for optimal model construction indicate that there are multiple 457 
uniformity components influencing the manual uniformity score.  458 
 459 
Misshapen fruit QTL 460 

One of the QTL represented by the focal marker AX.166521303 on chromosome 2B 461 

was found to be associated with CIR, this QTL was also associated with CV_A and 462 
Max_A/Min_A, each of which were found in the best fitting model used to describe the 463 
manual uniformity score. The focal SNP AX.166521303 was found to be present and 464 
significant in six progenitors and had an effect size of 9.14% on CIR. Therefore, this 465 
marker is a good candidate for marker assisted breeding in selection against completely 466 
mis-shapen and irregular strawberries. Furthermore, this work has highlighted a region 467 

of interest for further study to pinpoint the causative allele associated with reduced 468 
uniformity. Dissecting the contribution of genetic and environmental components 469 
believed to underpin strawberry uniformity; susceptibility to heat stress, carpel and 470 
pollen viability, achene position, size and distribution1 may help to further elucidate the 471 
mechanism of uniformity segregating in the multiparental population.  472 
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 473 
Uniformity trait selection 474 

The trait L/W shows little improvement on the overall combined trait model fit due to the 475 
high correlation with other traits including Max_A/Min_A and CIR, but it was still a good 476 

predictor of uniformity based on the model fit when studying individual variables alone. 477 
AIC and BIC based stepwise feature selection showed disagreement on the selection of 478 
the STR parameter. The difference between calculating AIC and BIC is that AIC does 479 
not account for the sample size, so when sample number is large, BIC applies larger 480 
penalty for complex models and leads to a simpler model 46. However, this study does 481 
not aim to identify the optimal feature combination to develop prediction model related 482 

to manual uniformity evaluation, but develop a new image based quantification to 483 
replace the manual scale, because the ground-truth data are subjective and as such 484 
any large bias can reduce the robustness of model development. Moreover, the manual 485 
scale cannot be considered a comprehensive assessment as the parameter STR 486 
cannot be visually evaluated by eye. However, it must be said that if a trait cannot be 487 
detected by the human eye, then it is not a valuable trait for a strawberry breeder to 488 

select upon. 489 
 490 
Limitations of the system 491 

The 3D point cloud analysis software is independent of the imaging acquisition system, 492 
and the uniformity-related traits can be extracted automatically in a high-throughput 493 
manner. However, the imaging collection throughput was 50 seconds per fruit and the 494 

3D reconstruction has to be performed separately, which limits use to pre breeding 495 
experiments as opposed to use as a breeders tool. Due to the occlusion from the 496 
viewing angles, the strawberry nose cannot be fully reconstructed especially for globose 497 
shaped fruit, which decreases the accuracy of STR measurements and also limits the 498 
study on automated shape classification. To increase the throughput and accuracy of 499 
3D phenotyping, it is necessary to further develop the hardware with multiple cameras 500 
to allow more viewing angles or a structured light based imaging system with a robotic 501 

arm, and also integrate the hardware driver with 3D reconstruction software. The 502 
current point cloud image analysis software was able to characterise many key external 503 
traits which are important for strawberry breeding, however, the measurement of other 504 
parameters such as achene density must be investigated through an improved 505 
phenotyping platform in future studies.   506 
 507 
Genetic Control of Fruit Quality  508 

Papers detailing strawberry fruit quality QTL report genetic alleles associated with 509 
multiple fruit quality traits including fresh weight, metabolites, external colour and 510 
firmness 29,47,48, however, there are currently no papers which report QTL associated 511 
with strawberry uniformity. Here, we provide a phenotyping platform which has 512 
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facilitated the assessment of the genetic components underlying strawberry uniformity 513 
for the first time. The use of a multi-parental population has allowed the study of a 514 
diverse set of germplasm and has ensured that resulting QTL to have a greater 515 
relevance for breeders when compared to alleles identified in bi-parental studies. 516 

Overall, 25 of the QTL were found to have an effect on uniformity in more than one of 517 
the 26 progenitors indicating that there has been limited linkage decay between the 518 
causal allele and marker, and that the relationships have been maintained across 519 
generations. Furthermore, the QTL on chromosome 2B was observed three times 520 
across different uniformity traits, such traits are only partially correlated and thus 521 
describe discrete components, as such this allele can be seen to play a major role in 522 

uniformity. 523 
 524 
Genetic control of strawberry fruit shape 525 

Unlike uniformity the mechanism controlling fruit shape has been studied extensively in 526 
the wild strawberry; Fragaria vesca and may act as a surrogate model for the cultivated 527 
octoploid strawberry Fragaria x ananassa. In F. vesca, fruit shape is primarily controlled 528 

by phytohormones 49,50. Auxin increases the width of fruit and by contrast gibberellic 529 
acid (GA) increases the length of a strawberry whereas Abscisic acid (ABA) down 530 
regulates both Auxin and GA and thus reduces fruit expansion 49,50. GA deficient Vesca 531 
mutants were found to have a “short” or globose berry shape, which, through the 532 
application of GA to the berry, could be restored to result in a “long” or long conic fruit 533 
shape 50.  534 
 535 

It is clear that breeders wish to select for greater berry uniformity however the 536 
confounding relationship between shape and uniformity must also be considered. For 537 
example, square, wedge and wedge-conic strawberries may have high 2D symmetry 538 
but not 3D symmetry. UK breeders primarily aim to select for conic or long conic fruit 539 
whereas globose, square, wedge and miscellaneous berries are classified as 540 
undesirable and biconic, globose-conic and conic-wedge fruit are seen as acceptable 541 

shapes (Personal Communication, Abigail Johnson). Here we provide an objective 542 
measure (CIR) that can be used to discriminate the least desirable berries - 543 
miscellaneous or misshapen berries and select for regular fruit shapes.  544 
 545 
Heritability of Uniformity 546 

Broadsense heritability scores were between 16.70 and 38.40 for automated uniformity 547 

metrics indicating a greater genetic component than that associated with manual 548 
uniformity (8.00). These values indicate the proportion of variation segregating in the 549 
study population, however improvement in the heritability may also be caused, in part, 550 
by more accurate phenotypic measurements. In particular, high heritability was 551 
observed for CV_D which indicates the angle of a strawberry related to whorl of carpels 552 
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(Figure 4) is under strong genetic control. Date of picking was seen to have a significant 553 
impact on all uniformity metrics apart from CV_D which had a large genetic component. 554 
The high significance of date indicates the developmental environmental conditions has 555 
a significant impact on strawberry uniformity. Extreme temperatures were observed 556 

during the experiment which may have caused the significance of date. All traits apart 557 
from CV_C showed a significant genotype by environment interaction indicating that 558 
genotypes were responding differently to heat stress. Misshapen fruit have been found 559 
to have a greater proportion of small underdeveloped achenes following exposure 560 
extreme temperatures during embryo development 51,52.  561 
 562 
Here we provide a comprehensive dissection of the traits underlying strawberry uniformity and 563 
show that the visual perception of a strawberry can be represented by 5 metrics. The generation 564 
of an objective measure of uniformity has allowed the assessments of genetic components in a 565 
multi-parental breeding population. We show uniformity has a strong genetic component that 566 
can be improved by breeding and identify genetic components controlling uniformity that are 567 
present across a wide array of germplasm. 568 
 569 
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