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Statement of Need

Provides a flexible framework to simulate biological pathways from a graph
structure based on a statistical model of gene expression.

Summary

Transcriptomic analysis is used to capture the molecular state of a cell or sample
in many biological and medical applications. In addition to identifying alterations
in activity at the level of individual genes, understanding changes in the gene
networks that regulate fundamental biological mechanisms is also an important
objective of molecular analysis. As a result, databases that describe biological
pathways are increasingly relied on to assist with the interpretation of results from
large-scale genomics studies. Incorporating information from biological pathways
and gene regulatory networks into a genomic data analysis is a popular strategy,
and there are many methods that provide this functionality for gene expression
data. When developing or comparing such methods, it is important to gain
an accurate assessment of their performance, with simulation-based validation
studies a popular choice. This necessitates the use of simulated data that
correctly accounts for pathway relationships and correlations. Here we present a
versatile statistical framework to simulate correlated gene expression data from
biological pathways, by sampling from a multivariate normal distribution derived
from a graph structure. This procedure has been released as the graphsim R
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package (https://github.com/TomKellyGenetics/graphsim) and is compatible
with any graph structure that can be described using the igraph package.

Introduction: inference and modelling of biologi-
cal networks

Network analysis of molecular biological pathways has the potential to lead to
new insights into biology and medical genetics [1, 2]. Since gene expression
profiles capture a consistent signature of the regulatory state of a cell [3-5],
they can be used to analyse complex molecular states with genome-scale data.
However, biological pathways are often analysed in a reductionist paradigm
as amorphous sets of genes involved in particular functions, despite the fact
that the relationships defined by pathway structure could further inform gene
expression analyses. In many cases, the pathway relationships are well-defined,
experimentally-validated, and are available in public databases [6]. As a result,
network analysis techniques could play an important role in furthering our
understanding of biological pathways and aiding in the interpretation of genomics
studies.

Gene networks provide insights into how cells are regulated, by mapping regu-
latory interactions between target genes and transcription factors, enhancers,
and sites of epigenetic marks or chromatin structures [1, 7]. Inference of these
regulatory interactions for genomics investigations has the potential to radically
expand the range of candidate biological pathways to be further explored, or to
improve the accuracy of bioinformatics and functional genomic analysis. A num-
ber of methods have already been developed to utilise timecourse gene expression
data [8, 7] using gene regulatory modules in state-space models and recursive
vector autoregressive models [9, 10]. Various approaches to gene regulation and
networks at the genome-wide scale have lead to novel biological insights [8, 11].
However, inference of regulatory networks has thus far relied on experimental
validation or resampling-based approaches to estimate the likelihood of specific
network modules being predicted [12, 13].

There is a need, therefore, for a systematic framework for statistical modelling
and simulation of gene expression data derived from hypothetical, inferred or
known gene networks. Here we present an R package to achieve this, where
samples from a multivariate normal distribution are used to generate normally-
distributed log-expression data, with correlations between genes derived from
the structure of the underlying pathway or gene regulatory network. This
methodology enables simulation of expression profiles that approximate the log-
transformed and normalised data from microarray and bulk or single-cell RNA-
Seq experiments. This procedure has been released as the graphsim R package to
enable the generation of simulated gene expression datasets containing pathway
relationships from a known underlying network. These simulated datasets can
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be used to evaluate various bioinformatics methodologies, including statistical
and network inference procedures.
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Figure 1: Simulated graph structures. A constructed graph structure used as an
example to demonstrate the simulation procedure in Figures 2 and 3. Activating links
are denoted by black arrows and inhibiting links by red edges. Inhibiting edges have
been highlighted in red.

Methodology and software

Here we present a procedure to simulate gene expression data with correlation
structure derived from a known graph structure. This procedure assumes that
transcriptomic data have been generated and follow a log-normal distribution
(i.e., log(X;;) ~ MV N(u, %), where o and ¥ are the mean vector and variance-
covariance matrix respectively, for gene expression data derived from a biological
pathway) after appropriate normalisation [14, 15]. Log-normality of gene ex-
pression matches the assumptions of the popular limma package, which is often
used for the analysis of intensity-based data from gene expression microarray
studies and count-based data from RNA-Seq experiments. This approach has
also been applied for modelling UMI-based count data from single-cell RNA-Seq
experiments in the DESCEND package [16].

In order to simulate transcriptomic data, a pathway is first constructed as a
graph structure, using the igraph R package [17], with the status of the edge
relationships defined (i.e, whether they activate or inhibit downstream pathway
members). This procedure uses a graph structure such as that presented in
Figure la. The graph can be defined by an adjacency matrix, A (with elements
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A;j;), where
1 if genes ¢ and j are adjacent
Aij =

0 otherwise

A matrix, R, with elements R;;, is calculated based on distance (i.e., number of
edges contained in the shortest path) between nodes, such that closer nodes are
given more weight than more distant nodes, to define inter-node relationships.
A geometrically-decreasing (relative) distance weighting is used to achieve this:

1 if genes ¢ and j are adjacent
Rij =< (3)% if a path can be found between genes i and j
0 if no path exists between genes ¢ and j

where d;; is the length of the shortest path (i.e., minimum number of edges

traversed) between genes (nodes) i and j in graph G. Each more distant node
is thus related by % compared to the next nearest, as shown in Figure 2b. An
arithmetically-decreasing (absolute) distance weighting is also supported in the
package which implements this procedure:

1 if genes ¢ and j are adjacent
Rij=4q1~- #"j(g) if a path can be found between genes i and j
0 if no path exists between genes ¢ and j

Assuming a unit variance for each gene, these values can be used to derive a 3

matrix:
5, = {1 if =

pR;; otherwise

where p is the correlation between adjacent nodes. Thus covariances between
adjacent nodes are assigned by a correlation parameter (p) and the remaining
off-diagonal values in the matrix are based on scaling these correlations by
the geometrically weighted relationship matrix (or the nearest positive definite
matrix for ¥ with negative correlations).

Computing the nearest positive definite matrix is necessary to ensure that
the variance-covariance matrix could be inverted when used as a parameter in
multivariate normal simulations, particularly when negative correlations are
included for inhibitions (as shown below). Matrices that could not be inverted
occurred rarely with biologically plausible graph structures but this approach
allows for the computation of a plausible correlation matrix when the graph
structure given is incomplete or contains loops. When required, the nearest
positive definite matrix is computed using the nearPD function of the Matrix R
package [18] to perform Higham’s algorithm [19] on variance-covariance matrices.
The graphsim package gives a warning when this occurs.
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Illustrations

Generating a Graph Structure

The graph structure in Figure la was used to simulate correlated gene expression
data by sampling from a multivariate normal distribution using the R package
[20, 21]. The graph structure visualisation in Figure 1 was specifically developed
for (directed) iGraph objects in and is available in the and packages. The
plot_directed function enables customisation of plot parameters for each
node or edge, and mixed (directed) edge types for indicating activation or
inhibition. These inhibition links (which occur frequently in biological pathways)
are demonstrated in Figure 1b.

A graph structure can be generated and plotted using the following commands
in R:
#install packages required (once per machine)
install.packages("igraph")
if (! require("devtools") ){

install.packages("devtools")

library("devtools")

}
devtools::install_github("TomKellyGenetics/graphsim")

#load required packages (once per R instance)

library("igraph")

library("graphsim")

#generate graph structure

graph_edges <- rbind(c("A", ncn)’ C("B", ucn)’ C("C", "D"), C("D", "E"),

C("D", "F"), C("F", "G"), C(IIFII, IIIII), C("H", IIIH))
graph <- graph.edgelist(graph_edges, directed = TRUE)

#plot graph structure (Figure 1)

plot_directed(graph, state ="activating", layout = layout.kamada.kawai,
cex.node=3, cex.arrow=5, arrow_clip = 0.2)

#generate parameters for inhibitions
state <- ¢(1, 1, -1, 1, 1, 1, 1, -1, 1)
#plot graph structure with inhibitions (Figure 2)

plot_directed(graph, state=state, layout = layout.kamada.kawai,
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cex.node=3, cex.arrow=5, arrow_clip = 0.2)

Generating a Simulated Expression Dataset

The correlation parameter of p = 0.8 is used to demonstrate the inter-correlated
datasets using a geometrically-generated relationship matrix (as used for the
example in Figure 2¢). This ¥ matrix was then used to sample from a multivariate
normal distribution such that each gene had a mean of 0, standard deviation
1, and covariance within the range [0, 1] so that the off-diagonal elements of
3 represent correlations. This procedure generated a simulated (continuous
normally-distributed) log-expression profile for each node (Figure 2e) with a
corresponding correlation structure (Figure 2d). The simulated correlation
structure closely resembled the expected correlation structure (X in Figure 2c)
even for the relatively modest sample size (N = 100) illustrated in Figure 2.
Once a gene expression dataset comprising multiple pathways has been generated
(as in Figure 2e), it can then be used to test procedures designed for analysis
of empirical gene expression data (such as those generated by microarrays or
RNA-Seq) that have been normalised on a log-scale.

The simulated dataset can be generated using the following code:

#adjacency matrix

adj_mat <- make_adjmatrix_graph(graph)

#relationship matrix

dist_mat <- make_distance_graph(graph_test4, absolute = FALSE)
#sigma matrix directly from graph

sigma_mat <- make_sigma_mat_dist_graph(graph, 0.8, absolute = FALSE)
#show shortest paths of graph

shortest_paths <- shortest.paths(graph)

#generate expression data directly from graph

expr <- generate_expression(100, graph, cor = 0.8, mean = 0, comm = F,
dist = TRUE, absolute = FALSE, state = state)

#plot adjacency matrix

heatmap.2(make_adjmatrix_graph(graph), scale = "none", trace = "none",
col = colorpanel(3, "grey75", "white", "blue"),
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Figure 2: Simulating expression from a graph structure. An example of a
graph structure (a) that has been used to derive a relationship matrix (b), ¥ matrix
(c) and correlation structure (d) from the relative distances between the nodes. Non-
negative values are coloured white to red from 0 to 1. This ¥ matrix has been used
to generate a simulated expression dataset,of 100 samples (coloured blue to red from
low to high) via sampling from the multivariate normal distribution. Here genes with
closer relationships in the pathway structure show higher correlation between simulated
values.


https://doi.org/10.1101/2020.03.02.972471
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.972471,; this version posted March 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
#plot relationship matrix
heatmap.2(make_distance_graph(graph_test4, absolute = FALSE),

scale = "none", trace = "none\", col = bluered(50),

colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
#plot sigma matrix
heatmap.2(make_sigma_mat_dist_graph(graph, 0.8, absolute = FALSE),

scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))
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Figure 3: Simulating expression from graph structure with inhibitions. Sim-
ulating expression from graph structure with inhibitions.}} An example of a graph
structure (a), that has been used to derive a relationship matrix (b), ¥ matrix (c), and
correlation structure (d), from the relative distances between the nodes. These values
are coloured blue to red from —1 to 1. This has been used to generate a simulated
expression dataset of 100 samples (coloured blue to red from low to high) via sampling
from the multivariate normal distribution. Here the inhibitory relationships between
genes are reflected in negatively correlated simulated values.
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Figure 4: Simulating expression from a biological pathway graph structure.
Simulating expression from graph structure with inhibitions.}} The graph structure
(a) of a known biological pathway, the TGF-3 receptor signaling activates SMADs
(R-HSA-2173789), was used to derive a relationship matrix (b), ¥ matrix (c) and
correlation structure (d) from the relative distances between the nodes. These values
are coloured blue to red from —1 to 1. is has been used to generate a simulated
expression dataset of 100 samples (coloured blue to red from low to high) via sampling
from the multivariate normal distribution. Here modules of genes with correlated
expression can be clearly discerned.
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expr <- generate_expression(100, graph, cor = 0.8, mean = O,
comm = FALSE, dist =TRUE, absolute = FALSE, state = state)

#plot simulated expression data

heatmap.2(expr, scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

#plot simulated correlations

heatmap.2(cor(t(expr)), scale = "none", trace = "none", col = bluered(50),
colsep = 1:length(V(graph)), rowsep = 1:length(V(graph)))

The simulation procedure (Figure 2) can similarly be used for pathways containing
inhibitory links (Figure 3) with several refinements. With the inhibitory links
(Figure 3a), distances are calculated in the same manner as before (Figure 3b)
with inhibitions accounted for by iteratively multiplying downstream nodes by —1
to form modules with negative correlations between them (Figures 3¢ and 3d). A
multivariate normal distribution with these negative correlations can be sampled
to generate simulated data (Figure 3e).

The simulation procedure is also demonstrated here (Figure 4) on a pathway
structure for a known biological pathway (from reactome R-HSA-2173789) of
TGF-5 receptor signaling activates SMADs (Figure 4a) derived from the Re-
actome database version 52 [6]. Distances are calculated in the same manner
as before (Figure 4b) producing blocks of correlated genes (Figures 4c and 4d).
This shows that multivariate normal distribution can be sampled to generate sim-
ulated data to represent expression with the complexity of a biological pathway
(Figure 4e). Here SMAD7 exhibits negative correlations with the other SMADs
consistent with it’s functions as as an “inhibitor SMAD” with competitively
inhibits SMAD/.

These simulated datasets could then be used for simulating synthetic lethal
partners of a query gene within a graph network. The query gene was assumed
to be separate from the graph network pathway and was added to the dataset
using the procedure in Section [methods:simulating_ SL]. Thus I can simulate
known synthetic lethal partner genes within a synthetic lethal partner pathway
structure.

Summary and discussion

Biological pathways are of fundamental importance to understanding molecular
biology. In order to translate findings from genomics studies into real-world
applications such as improved healthcare, the roles of genes must be studied
in the context of molecular pathways. Here we present a statistical framework
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to simulate gene expression from biological pathways, and provide the package
in to generate these simulated datasets. This approach is versatile and can
be fine-tuned for modelling existing biological pathways or for testing whether
constructed pathways can be detected by other means. In particular, methods
to infer biological pathways and gene regulatory networks from gene expression
data can be tested on simulated datasets using this framework. The package
also enables simulation of complex gene expression datasets to test how these
pathways impact on statistical analysis of gene expression data using existing
methods or novel statistical methods being developed for gene expression data
analysis.

Computational details

The results in this paper were obtained using R 3.6.1 with the igraph 1.2.4.1
Matrix 1.2-17, matrixcalc 1.0-3, and mvtnorm 1.0-11 packages. R
itself and all dependent packages used are available from the Com-
prehensive R Archive Network (CRAN) at https://CRAN.R-project.

org/. The graphsim and plot.igraph packages presented can be
installed  from  https://github.com/TomKellyGenetics/graphsim  and
https://github.com/TomKellyGenetics/plot.igraph  respectively. These

functions can also be installed using the igraph.extensions library at
https://github.com/TomKellyGenetics/igraph.extensions which includes other
plotting functions used. This software is cross-platform and compatible with
R installations on Windows, Mac, and Linux operating systems. The package
GitHub repository also contains Vignettes with more information and examples
on running functions released in the R package. The package (graphsim 0.1.2)
meets CRAN submission criteria and will be released.
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a) TGF-B activates SMADs (b) Relationship matr
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(c) 2 (covariance matrix)
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(e) Simulated expression data (log scale)
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(a) Inhibiting pathway structure (b) Relationship matrix
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(d) Simulated correlation
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(e) Simulated expression data (log scale)
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(a) Activating pathway structure (b) Relationship matrix
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(c) 2 (covariance matrix) (d) Simulated correlation
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(e) Simulated expression data (log scale)
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(a) Activating pathway structure

(b) Pathway structure with inhibitions
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