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Abstract 24 

 25 

With the ever-increasing quality and quantity of imaging data in biomedical research comes the 26 

demand for computational methodologies that enable efficient and reliable automated extraction 27 

of the quantitative information contained within these images. One of the challenges in providing 28 

such methodology is the need for tailoring algorithms to the specifics of the data, limiting their 29 

areas of application. Here we present a broadly applicable approach to quantification and 30 

classification of complex shapes and patterns in biological or other multi-component formations. 31 

This approach integrates the mapping of all shape boundaries within an image onto a global 32 

information-rich graph and machine learning on the multidimensional measures of the graph. We 33 

demonstrated the power of this method by (1) extracting subtle structural differences from visually 34 

indistinguishable images in our phenotype rescue experiments using the endothelial tube 35 

formations assay, (2) training the algorithm to identify biophysical parameters underlying the 36 

formation of different multicellular networks in our simulation model of collective cell behavior, 37 

and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule 38 

perturbations. 39 

 40 

  41 
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Author Summary 42 

 43 

In this paper, we present a methodology that is based on mapping an arbitrary set of outlines onto 44 

a complete, strictly defined structure, in which every point representing the shape becomes a 45 

terminal point of a global graph. Because this mapping preserves the whole complexity of the 46 

shape, it allows for extracting the full scope of geometric features of any scale. Importantly, an 47 

extensive set of graph-based metrics in each image makes integration with machine learning 48 

routines highly efficient even for a small data sets and provide an opportunity to backtrack the 49 

subtle morphological features responsible for the automated distinction into image classes. The 50 

resulting tool provides efficient, versatile, and robust quantification of complex shapes and patterns 51 

in experimental images. 52 

  53 
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Introduction 54 

 55 

Quantitative characterization of cell shapes and their organization within multicellular formations 56 

is critically important for many biomedical applications, including tissue engineering (Gupta et al. 57 

2009), phenotypic cell-based screening (Conrad et al. 2004, Viros et al. 2008), and testing 58 

platforms for drug discovery (Murphy et al. 2010, Zanella et al. 2010). However, broadly 59 

applicable and comprehensive morphometric analysis of complex geometries in imaging data 60 

remains a challenging task. Here we present an approach that allows for an efficient and precise 61 

extraction and classification of structural features in arbitrarily complex cellular patterns, including 62 

subtle variations that are difficult to decipher using visual inspection or a set of standard geometric 63 

measures.  64 

 65 

Currently, a number of methods have been developed for the analysis of morphological changes 66 

among individual cells (Carpenter et al. 2006, Selinummi et al. 2005, Tsygankov et al. 2014). 67 

Some targeted approaches for extracting structural features in specific applications have been also 68 

reported (Guidolin et al. 2004, Khoo et al. 2011, Lin et al. 2005, Nguyen et al. 1994), but there is 69 

still a need for a general methodology allowing for automated comparative analysis of complex 70 

multicellular formations. In particular, it is difficult to study the effects of a small perturbation in 71 

the extracellular environment on the collective behavior of many cells and the patterns resulting 72 

from their complex interactions (Chernaya et al. 2018). This problem is exacerbated when working 73 

with experimental systems that allow for a precise control of different physical conditions 74 

generating large and diverse sets of imaging data. To address this issue, we have developed a 75 

general approach, which automatically generates a rich set of interpretable features from images 76 
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of cellular structures. These features are computed using a mathematically precise mapping of the 77 

boundaries outlining all shapes in an image onto a global graphical structure. This graphical 78 

structure captures multiple features relating to the width of the cellular objects, the shapes and 79 

roughness of the boundaries, as well as the connectivity and density of the cell clusters across the 80 

image. Using these features, we can identify images with similar structures, cluster images into 81 

groups based on structural patterns, and use the image-level characteristics for regression tasks. 82 

With this approach, one can cluster and visualize the differences between multicellular patterns 83 

based on high-level features, while still retaining the ability to interpret and understand the features 84 

defining each image type.   85 

 86 

Unlike other graphical approaches which utilize morphological thinning (Boizeau et al. 2013, 87 

Carpentier et al. 2012, Guidolin et al. 2004) or rely on a heavily pruned skeleton (Grélard et al. 88 

2017, Ogniewicz and Kübler 1995, Rohde et al. 2008, Styner et al. 2003, Wearne et al. 2005, 89 

Xiong et al. 2010), ours exploits the exhaustive image-scale graph to capture both fine features on 90 

the boundary of the structures and coarse features of the objects’ shapes. Furthermore, this 91 

approach is not limited to only work on networked structures. One can use this method to 92 

characterize changes in patterns of isolated cells and cell clusters, dense cellular networks, or any 93 

mixture of such formations.  94 

 95 

As a testing system for our methodology, we first used an endothelial tube formation assay along 96 

with a computational model that simulates the formation of cellular patterns under controlled 97 

perturbations of the biomechanical properties of the cells. The tube formation assay is a useful in-98 

vitro tool to screen for treatments that affect early stages of vasculogenesis. Healthy vascular 99 
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endothelial cells cultured on Matrigel form dense cellular networks across the dish. Environmental 100 

or genetic perturbations can alter the resulting structure, leading to more irregular networks or 101 

completely isolated cell clusters. The standard approach to quantify these assays is to count the 102 

number of tubules (connections between cell clusters) or measure the percent coverage of a cellular 103 

network within a certain field of view (Arnaoutova and Kleinman 2010). While these approaches 104 

can be used to screen for treatments that are strongly pro- or anti-angiogenic, they are not precise 105 

enough to distinguish between more similar patterns.   106 

 107 

For experimental perturbation of collective cell behavior, we used knockdowns of the three CCM 108 

proteins, with and without treatment by a Rho-associated protein kinase (ROCK) inhibitor, H1152 109 

(Chernaya et al. 2018). These knockdowns all negatively affect tube formation and lead to either 110 

small isolated cell clusters or sparse patterns with large tubules depending on the targeted protein. 111 

Inhibition of ROCK partially rescues tube formation, increasing both tubule count and coverage, 112 

although the resulting cellular networks appear much more disorganized compared to wild-type. 113 

Here we show that features from the shape-to-graph mapping can differentiate images from these 114 

experiments, including the cases when images do not seem to be distinguishable and explain the 115 

differences between these visually similar groups using the features extracted from the mapping. 116 

 117 

In addition to in-vitro assays, we utilized a simulated model that allowed us to generate a range of 118 

different multicellular patterns depending on two biomechanical characteristics: the stability of 119 

cell-cell contacts and the strength of cell-matrix adhesion (Chernaya et al. 2018). Altering these 120 

properties can create structures ranging from completely isolated cellular clusters to interconnected 121 

networks, all with varying densities. We apply our approach to predict the model parameters used 122 
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to generate each in-silico image, demonstrating that these features can capture the trends in the 123 

way cellular structures progressively change due to the controlled modulation of the biomechanical 124 

properties of the system. 125 

 126 

Finally, to show that our methodology is not limited to mesh-like cell formations characteristic to 127 

specific cell types, we applied it to completely different type of data from a large imaging set 128 

publicly available at the Broad Bioimage Benchmark Collection [BBBC022v1] (Gustafsdottir et 129 

al. 2013, Ljosa et al. 2012). Specifically, we analyzed confluent cultures of U2OS cells subjected 130 

to an extensive set of small molecule treatments. The global (image-scale) nature of our graph 131 

structure, which captures both the shapes of all individual cells and their relative spatial positioning 132 

in the field of view, allowed us to outperform the conventional shape metrics in terms of precision 133 

and sensitivity of the phenotypic classification.  134 

 135 

Collectively, the performed data analysis illustrated the power of our approach for both single cell 136 

and multicellular pattern characterization, capturing apparent and subtle geometric variations using 137 

a small set of images or a large high throughput scans, while providing a way to backtrack and 138 

interpret geometric features responsible for the classification outcome.  139 

  140 
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Results  141 

 142 

Shape-to-graph Mapping  143 

 144 

Our shape-to-graph mapping is a generalization of the Voronoi Diagram to accept the edges 145 

outlining a shape as inputs. The traditional Voronoi Diagrams only operate discrete sets of points 146 

such as in the default MATLAB algorithm (Aurenhammer 1991). Our algorithm is based on a 147 

sweep-circle method (Xin et al. 2013) modified to work with line inputs. The algorithm has 148 

𝑂(𝑛 log 𝑛)  complexity, where 𝑛  is the number of inputs, which scales linearly with image 149 

resolution provided the same image content. Thus, the first step in the processing pipeline is to 150 

take any binary images as an input, and output a graphical structure, which maps all piecewise 151 

linear boundaries in the image to a unique image-scale graph spanning both the foreground and 152 

background of the image (Fig. 1). 153 

 154 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.02.972786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.972786
http://creativecommons.org/licenses/by/4.0/


9 
 

Figure 1. An illustration of the shape-to-graph mapping. Algorithm input is a binary image with the 155 

foreground (value 1) shown in white and the background (value 0) shown in black. Algorithm output is an 156 

image-scale graph structure. The part of the graph in the foreground (defined later in the text as in-graph) 157 

is shown in blue, while the part in the background (out-graph) is shown in orange. 158 

 159 

Graph construction process 160 

 161 

A Voronoi diagram consists of vertices, which are the centers of the largest circles that can be 162 

packed within a given set of inputs, such that no input element lies within the circles. Thus each 163 

graph vertex is the center of a circle tangent to three or more input elements, while the graph edges 164 

are bisectors between two inputs. Our graph satisfies these definitions but presents a generalized 165 

version of the Voronoi Diagram, which is derived from inputs that can include both a set of points 166 

and a set of line segments. However, our main interest is an input of pixel-scale line segments 167 

forming the boundaries in a binary image.  168 

 169 

This graph can be constructed by searching through all circles tangent to any combination of three 170 

inputs, and removing circles which contain an input within it. However, this approach would have 171 

𝑂(𝑛3) complexity, where 𝑛 is the input size. Instead, we use a sweep-circle method, in which we 172 

compute the Voronoi diagram within an expanding circle centered at the origin. Each input 173 

generates a bisector with the sweep circle (Xin et al. 2013). Such bisector can be an ellipse for a 174 

point input or a parabola for a line input. When a new input enters the sweep circle, it’s bisector 175 

will intercept with another bisector within the sweep circle. The set of all bisector segments that 176 

are not contained within another bisector is referred to as the beachfront (Fig. 2). The interceptions 177 

between two arcs of the beachfront always lie on bisectors between the inputs, which trace  out 178 
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edges in the Voronoi diagram. To find the graph vertices, we only need to test inputs which have 179 

adjacent arcs on the beachfront. The ordering of arcs on the beachfront are stored within a red-180 

black balanced binary tree (Xin et al. 2013), therefore the position of a new point within the 181 

beachfront can be found with a binary search. Thus, the complexity with this approach scales as 182 

𝑂(𝑛 log 𝑛) with the number of inputs. For a more detailed, formal description of the sweep-circle 183 

algorithm, see (Xin et al. 2013). Constricted this way, each Voronoi vertex has three Voronoi edges 184 

Even in cases when the Voronoi vertex is equidistant to four or more inputs, such as the center of 185 

a regular polygon, multiple Voronoi vertices are created at the same position, each with a degree 186 

of three and a zero-length edge connecting them. 187 

 188 

Figure 2. Sweep-circle Voronoi algorithm for the graph construction. In this algorithm, a sweep circle 189 

(grey circle) expands from the center of the image (grey dot). Each input point (colored dots) forms a 190 

bisector (colored ellipses) with the expanding sweep circle. The beachfront is a set of all outer most portions 191 

(solid elliptical arcs) of these bisectors. The intersections between the ellipses (black dots) trace out 192 

Voronoi edges (blue lines). When two intersection points merge, pinching out a beachfront arc, a new 193 

Voronoi vertex is formed. 194 

 195 
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To extract the algorithm input from a binary image, we trace the boundaries along the half-pixel 196 

border separating the background and foreground pixels. This is different from the conventional 197 

tracing of boundaries along the pixel centers but ensures that a horizontal or vertical line of pixels 198 

will have the width of one, rather than zero, which allows us to include pixel-size features to the 199 

image analysis. (Fig. 3A-C) 200 

 201 

Figure 3. Boundary tracing. A. A simplified example of an input image. B. The conventional tracing of the 202 

boundary (implemented in MATLAB) along the centers of the pixels at the edge of a foreground object. C. 203 

Our algorithm traces the boundary directly along the lines separating the foreground and background 204 

pixels. D. An illustration of how the algorithm eliminates all boundary self-crossings by a small non-205 

disruptive off-diagonal shift (here the shift was exaggerated for the illustration purposes). 206 

 207 

If two boundary points overlap, such as when two foreground pixels are connected diagonally, 208 

these points are separated in the off-diagonal direction by a very small distance (we used 1/20 of 209 

the pixel size) to ensure that boundaries in the image never intersect or self-cross but 210 

unambiguously enclose the corresponding objects and holes (Fig. 3D).  211 
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Graph annotation 212 

 213 

All connected components in the foreground (objects) and background (holes) of the binary image 214 

are identified and assigned a unique numerical label. Boundaries are additionally categorized into 215 

two types: exterior boundaries that completely enclose a foreground object and interior 216 

boundaries that enclose a hole and, in turn, are enclosed by an object (Fig. 4A). Once the complete 217 

graph is contracted, we will refer to the part of the graph situated in the image foreground as in-218 

graph and the part in the image background as out-graph (Fig. 4B). 219 

 220 

Figure 4. A. Boundary annotation: exterior boundaries are shown in red, while interior boundaries are 221 

should blue. B. Overall graph annotation: in-graph is shown in red, while the out-graph is shown in cyan. 222 

 223 

Graph vertices that are equidistant to exactly two different boundaries form a sequence of vertices 224 

that we call bridges. Different bridges come together at graph vertices that are equidistant to three 225 

or more different boundaries and identified here as hubs (Fig. 5A). Additionally, a sequence of 226 

vertices that connect two looped bridges associated with the same boundary, which may occur 227 

when there is a hole within an extended protrusion of an object, is referred here as a connector. 228 

Identifying all bridges, hubs, and connectors allows us to partition the whole graph into non-229 
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overlapping subgraphs uniquely associated with each interior or exterior boundary (Fig. 5B). 230 

Extracting features from their subgraphs is central to our methodology. 231 

 232 

Figure 5. The key elements of the graph. A. All bridges (red), hubs (green), and connectors (blue) of the 233 

in-graph. B. Partitioning of the in-graph into subgraphs (shown with unique colors). Each non-overlapping 234 

subgraph is associated with exactly one interior or exterior boundary. 235 

Graph-based Feature Extraction  236 

 237 

Each vertex in the constructed graph represents the center of a circle inscribed within the object. 238 

A subgraph with no bridges, such as the graph within a single-boundary object with no holes or a 239 

hole with no objects inside, is a single tree with the root node being the center of the largest 240 

inscribed circle. Otherwise, a subset of vertices located on the graph bridges and connectors of the 241 

associated subgraph acts as a set of the roots, from which graph edges branch out towards the 242 

corresponding boundary (Fig. 6A,B). Constructed this way, each subgraph is outlined by the 243 

boundary on one side and by a continuous sequence of bridges and connectors on the other side. 244 

We will call this sequence of bridges and connectors the root path. Again, in case of objects with 245 

no holes, there are no bridges, and the root path is defined as the longest path to the boundary 246 
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which passes through the single root node. Based on this construction, we derive two primary 247 

metrics for each subgraph, which we call the width profile and the boundary profile. 248 

 249 

Figure 6. The primary graph metrics. A. An example of paths along the graph edges from the root path 250 

(magenta) to the tips of object protrusions. The inscribed circles (green) provide a measure for the width 251 

profile. The parts of the paths (blue) outside the circles provide a measure for the normalized boundary 252 

profile. B. An illustration of path (blue) branching from a root (green) to the boundary, so that each 253 

boundary point has an associated root node and a shortest path to this node along the graph edges. C. The 254 

resulting width profile showing the inscribed circle radii for every node on the root path. D. The resulting 255 

boundary profile before subtracting the radii of the corresponding root nodes (red) and after subtracting 256 

(blue). The colored points at the local maxima of the boundary profile correspond to the protrusion tips in 257 

A. 258 
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The width profile describes coarse variations in the subgraph’s width defined as the radii of the 259 

inscribed circles with the centers located at the vertices of the root path (Fig. 6C). When computed 260 

in background regions, this captures local variations in density. The boundary profile captures the 261 

size of any protrusion or bump which lies along the boundary. The boundary profile is computed 262 

by measuring the shortest distance along the subgraph edges from all points along the boundary to 263 

the corresponding root nodes. By using distances along the subgraph edges, we accurately 264 

characterize the size of these features even if the boundary is highly curved. To ensure that the 265 

boundary profile is not sensitive to the same variations in object size as the width profile, the 266 

boundary profile is normalized at each point by subtracting the radius on the inscribed circle with 267 

the center at the root node where the path to that boundary point begins (Fig. 6D). 268 

 269 

Because each boundary has a corresponding subgraph in both the in-graph and out-graph parts of 270 

the full graph, each boundary has a foreground and background width profile along with a 271 

foreground and background boundary profile. The only exception would be the most outward 272 

boundaries, for which out-graphs extend to infinity. To resolve this issue, we constrain the graph 273 

within the image by using the image boundary as the most outward boundary. 274 

 275 

Per-Image Structural Features 276 

 277 

In order to characterize or compare complex geometric structures such as multicellular patterns, 278 

per-boundary classification would be insufficient as we must consider the features of all 279 

boundaries to account for the overall structure of a pattern in an image. Thus we construct a set of 280 

per-image features derived from our graph-based per-boundary features. 281 
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 282 

To this end, we start with associating each boundary with 40 features, including distribution 283 

metrics for the width profile and boundary profile, along with the area and perimeter of each 284 

boundary. Half of the features computed for each boundary come from the corresponding in-graph 285 

and half from the out-graph. The full list of features is provided in the Supplemental Table 1. 286 

Next, we perform k-means clustering on the list of all boundaries across all provided images (Fig. 287 

7). This process creates a histogram of 𝑁 boundary types within each image. The goal of this 288 

clustering is to automatically differentiate boundaries based on a combination of their roughness, 289 

the size and shape of the enclosed objects and holes, and the relative separation of these objects 290 

and holes. This means that holes or objects with the same shape may lie in different clusters if the 291 

cellular structure around the hole is thicker or thinner, or if the object lies in a more or less dense 292 

region. The count or frequency of the boundary types in each image then serves as a per-image 293 

feature (Fig. 8). The specific interpretation of each boundary type depends on the nature of data 294 

presented in the images under investigation, but this is what ultimately allows us to understand 295 

differences in the structural organization of the patterns in imaging data sets, as we show in the 296 

next section.  297 

 298 
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Figure 7. Boundary type identification. We use 40 metrics extracted for each boundary from all the images 299 

in a given set and use k-means to associate each boundary with one of the 𝑁 classes. 300 

 301 

Figure 8. Per-image characterization. For each image, we extract the counts of boundaries that belong to 302 

each of 𝑁 boundary types, which were determined using k-means clustering on the 40 boundary features. 303 

Analysis of In-Vitro Tube Formations 304 

 305 

In this section we test the ability of our method to identify subtle structural difference in a small 306 

set of images from an in vitro endothelial tube formation assay (the experimental data has been 307 

previously published in (Chernaya et al. 2018)). The set includes images of the control cell (wild-308 

type HUVEC) and cells with knockdown (KD) of the three Cerebral Cavernous Malformation 309 

(CCM) proteins, CCM1 (or KRIT1), CCM2, and CCM3 (or PDCD10), which disrupts the integrity 310 

of multicellular mesh. In addition, the control and KD cells were treated with an inhibitor of Rho-311 
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associated protein kinase (ROCK), which was shown to be over-activated in CCM KD cultures 312 

(Chernaya et al. 2018). The treatment with the ROCK inhibitor H1152 partially rescues the wild-313 

type (WT) phenotype, although the resulting cellular patterns in the tube formation assay do not 314 

closely match the WT patterns. Previously, we showed that although the diseased and the H1152 315 

treated phenotypes are clearly different from the untreated WT phenotype, some treated cultures 316 

are indistinguishable from the treated WT cells both visually and based on the traditional 317 

geometric measures(Chernaya et al. 2018). Here we show that our shape-to-graph approach allows 318 

us to identify the distinguishing features in all the phenotypes, including the ones with subtle 319 

disparities that are not apparent upon visual inspection. The latter are of the main interest from the 320 

methodology testing perspective. 321 

 322 

For each of eight phenotypes (WT, CCM1, CCM2, CCM3, WTH1152, CCM1H1152, CCM2H1152, 323 

CCM3H1152), we used five representative fields of view (Fig. 9A). The boundaries were clustered 324 

into 12 boundary types using k-means clustering. The optimal number of boundary types was 325 

selected by performing 3-nearest neighbor classification on each image, where the class of each 326 

image was determined by the class corresponding to the three most similar boundary type 327 

histograms in the image set. Twelve clusters had a 90% classification accuracy (Supplemental 328 

Fig. S1).  329 
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 330 

Figure 9. Comparison of in-vitro tube formation assay structures with eight different phenotypes. A. The 331 

eight phenotypes resulted from WT and the knockdown of three CCM proteins, all with and without 332 

treatment by the ROCK inhibitor. Knockdown of the CCM proteins is associated with the disruption of the 333 

otherwise connected mesh. ROCK inhibitor leads to a more connected but still noticeably disorganized 334 

network. The scale bar is 200 μm. B. The first two principal components of each image’s boundary type 335 

histogram. Images of a similar type and appearance tend to have similar histograms. Here, the markers 336 

indicate the corresponding images in A.  C. Two images from WTH1152 and CCM1H1152 that appear visually 337 

similar but have significantly different boundary type counts. Boundaries that are responsible for the 338 

difference are highlighted in blue and cyan. The scale bar is 200 μm. D. The difference of the boundary 339 

type frequency histograms for CCM1H1152 and WTH1152. Boundary types 2 and 3 (Blue, orange) 340 

corresponding to small, isolated objects and small holes in wider locations in the network, appear 341 

significantly more often in CCM1H1152 formations as compared to otherwise similar WTH1152 structures. 342 

WTH1152 structures tend to have more of boundary type 10 (Green), which are medium sized holes with more 343 

bumps and protrusions extending into the hole. 344 
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 345 

Principal component analysis (PCA) was performed on the matrix of per-image boundary 346 

histograms. Generally, images of the same class group together and exist in space near images 347 

with similar structural features (Fig. 9B). Groups that are visually distinct, such as CCM3 cultures, 348 

which have several small cellular clusters, appear far from H1152-treated cultures with fully 349 

connected cell networks. Similarly, images with thicker structures, such as in CCM2H1152 cultures, 350 

appear further in principal component space from images with thinner structures, such as in 351 

CCM1H1152 and WTH1152 cultures. Visually similar structures of CCM1H1152 and WTH1152 (Fig. 9C), 352 

which both have many thin, disorganized connections, appear nearer to each other in principal 353 

component space. Significantly different boundary types between sets of images can be identified 354 

from the average boundary frequency histograms (Fig. 9D). This difference corresponds to an 355 

increased frequency of three boundary types: type 2 consists of the small isolated objects in regions 356 

of high density which appear more often in CCM1H1152 cultures (blue boundaries in Fig. 9C); type 357 

3 includes small holes in thick regions of the cellular structure, which also occur more frequently 358 

in  CCM1H1152 (orange boundaries in Fig. 9C); type 10 includes medium size holes, typically with 359 

more bumps or protrusions from the cellular network extending into the hole, which occurs more 360 

frequently in WTH1152
 samples (green boundaries in Fig. 9C). Descriptions of the boundary types 361 

can be determined by analyzing the distribution of the original boundary metrics within each type 362 

(Supplemental Fig. S2).  363 

 364 

 365 

 366 

 367 
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Analysis of Simulated Data 368 

 369 

We used a previously developed computational model of endothelial tube formation (Chernaya et 370 

al. 2018) to simulate 100 images of different cellular patterns corresponding to changes in two 371 

biomechanical characteristics of cell interaction. 372 

 373 

In this simulation model, each individual cell from a large group (hundreds to thousands) of cells 374 

sparsely distributed over the substrate surface is represented as an extendable half-ellipsoid with 375 

stochastically extending and retracting protrusions. Protrusions that extend downwards are 376 

responsible for cell-substrate interactions, while protrusions that extend sideways along the surface 377 

are responsible for cell-cell interactions. Cells form attachments when protrusions either reach 378 

deep enough into the substrate, or when it reaches another cell. Retraction of the attached 379 

protrusions leads to the cell movement, changes in cell shapes, and the buildup of the mechanical 380 

stress that can lead to the contact breakage. Ultimately, because of these cell-cell and cell-substrate 381 

interactions, the multicellular system evolves to form different patterns depending on the model 382 

parameters at the cell level. Two key parameters of interest here are the stability of cell-cell and 383 

cell-ECM adhesions. With properly selected values of the parameters, the model produces a dense 384 

cellular network closely resembling wild-type endothelial cells in our in-vitro tube formation assay. 385 

Reducing the values of each parameter leads to either a more sparse network or a number of 386 

isolated cell clusters, similar to the behavior of cell with the knockdown of CCM1 and CCM3. It 387 

is important to note here that even with a fixed set of parameters, the stochastic nature of protrusion 388 

dynamics and a random initial distribution of cells make the structures resulted in simulations vary; 389 

so that multiple patterns can be generated for the same phenotype similar to the experimental data. 390 
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As we vary the two parameters representing the stability of cell contacts, our simulations allow us 391 

to generate a sequence of cell formations with progressively changing structures (Fig. 10A). 392 

Variation in the stability of cell-cell contact, the parameter 𝜅𝑙𝑎𝑡  in the probability of contact 393 

breakage 𝑃𝑐𝑒𝑙𝑙−𝑐𝑒𝑙𝑙 = 1 − 𝑒𝑥𝑝(− 𝑙2 𝜅𝑙𝑎𝑡
2⁄ ), where 𝑙 is the extension of the contact spring in the 394 

model, has a strong impact on the boundary metrics. As this parameter is increased, cells go from 395 

forming completely isolated cell clusters to a completely interconnected network. This leads to an 396 

overall reduction in boundary types corresponding to isolated cell clusters, and a shift towards 397 

networked structures with medium to large sized holes. The other parameter, 𝜅𝑏𝑜𝑡𝑡  in the 398 

probability of cell-substrate contact breakage 𝑃𝑐𝑒𝑙𝑙−𝐸𝐶𝑀 = 1 − 𝑒𝑥𝑝(− 𝑙2 𝜅𝑏𝑜𝑡𝑡
2⁄ ), primarily affects 399 

the velocity of cell movement and the resulting density of the cell clusters. The way this parameter 400 

impacts the resulting structure depends on the network connectivity in the multicellular pattern, 401 

but generally controls the density of the structure, with low values causing cells to form larger and 402 

more sparse clusters. 403 
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Figure 10. A. Nine representative images of multicellular formations out of 100 that were generated by 405 

varying two parameters: the strength of cell-ECM adhesion (vertical axis) and the stability of cell-cell 406 

contacts (horizontal axis). B. Variations of the two parameters result in visible changes in the boundary 407 

type histograms. 408 

 409 

We applied our shape-to-graph mapping to the 100 generated images, extracted the boundary 410 

features, and clustered boundaries to create a histogram of boundary types for each image. By 411 

plotting the boundary type histograms, we can see the trends in the boundary type distribution 412 

when the two parameters are varied (Fig. 10B) as described above. A multi-regression model was 413 

used to predict the log-transformed values of the two model parameters based on the count of each 414 

boundary type in each image (Fig. 11). If these parameters have a predictable impact on the 415 

resulting multicellular pattern, and if the shape-to-graph mapping captures features that properly 416 

reflect these changes, then this multi-regression model should be able to reproduce trends in the 417 

two model parameters purely from the structural aspects of the cell patterns in the resulting images. 418 

Indeed, our approach allowed us to predict the parameter values with high accuracy:  log-419 

transformed cell-cell adhesion had a mean average error of 0.2392 with values ranging from 5 to 420 

8 and a correlation coefficient of 0.9977, while log-transformed cell-ECM adhesion had a mean 421 

average error of 0.2782 and a correlation coefficient of 0.86695. Twelve boundary clusters were 422 

used based on cross validation performance. 423 
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 424 

Figure 11.  A linear regression model was trained to predict log-transformed model parameters from the 425 

boundary type histograms. The mean average error in predicting cell-cell adhesion was 0.2392, while 426 

predicting the strength of cell-ECM adhesion had the mean average error of 0.2782. 427 

 428 

Analysis of individual cells in a high throughput assay profiling small-molecules-induced cell 429 

cultures.  430 

 431 

In the previous sections we have focused on the analysis of complex multicellular formation with 432 

a mesh-like structures. However, our methodology is not limited to that particular type of data and 433 

can be adapted for the analysis of any images that can be segmented into the object(s) of interest 434 

and the background. To illustrate this statement, we applied our method to analyze individually 435 

segmented cells in a large publicly available image set with cell cultures subjected to phenotype 436 

perturbations by a variety of small molecules. We used image set BBBC022v1 , available from 437 

the Broad Bioimage Benchmark Collection (Ljosa et al. 2013). The original dataset consists of 438 
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fluorescent microscopy images of U2OS cells treated with one of over 1600 compounds. Five 439 

fluorescent channels were captured for each field of view. The dyes used for visualization included 440 

Hoechst 33342 (nuclei), concanavalin A (endoplasmic reticulum), SYTO 14 (nucleoli), phalloidin 441 

(actin), and WGA (Golgi complex). A CellProfiler (Carpenter et al. 2006) pipeline provided with 442 

the dataset was used to segment individual cells in each field of view via the watershed algorithm. 443 

The samples were split into 20 plates with 384 wells each. Nine fields of view were obtained for 444 

each well. 445 

 446 

In the previous sections, our analysis relied on the input images for the shape-to-graph algorithm 447 

in the form of binary masks, in which the extracted boundaries separated the cellular structure from 448 

the background. However, in the imaging data we use here, each cell is treated as an individual 449 

object, and therefore may share a boundary with either the background or other cells. This can 450 

cause some cell boundaries to overlap (Fig. 12A). To ensure cell boundaries do not overlap, we 451 

added a subpixel separation of the boundaries by shifting boundary points half-way from the 452 

previously defined half-pixel boundaries towards the corresponding pixel center (Fig. 12B). This 453 

means one-pixel wide objects are thinned to have a width of half a pixel, and a half-pixel size gap 454 

is enforced to appear between two touching objects. 455 

 456 
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Figure 12. A modified boundary tracing for individual cells in a tight cluster. A. With the previously 457 

described boundary tracing, boundaries of contacting cells will overlap. B. The tracing routine is modified 458 

to place boundary points halfway between the pixel center and our original half-pixel type tracing. This 459 

creates a half-pixel gap between bordering cells. C. Parts of the out-graph for each cell (orange) lies within 460 

this gap. Thus, the image out-graphs will include the out-graph nodes between all the contacting cells, 461 

effectively encoding the spatial distribution of the cells in the image. 462 

 463 

With this processing approach, the cells are presented as individual objects embedded in an image-464 

scale mesh-like background (Fig. 12C), so that the graph representation of the background (out-465 

graph) encodes the information about the positional organization of all the cells and degree of 466 

confluency of the whole cell culture.  467 

 468 

For our analysis, we selected 11 compounds which the authors identified as forming strong clusters 469 

based on their known mechanism of action and the 824 textural and morphological features they 470 

extracted for each image. These compound clusters include tubulin modulators (fenbendazole, 471 

oxibendazole, taxol) (Fig. 13A), modulators of neuronal receptors (fluphenazine, metoclopramide, 472 

procaine) (Fig. 13B), and structurally related cardenolide glycosides (digoxin, lanatoside C, 473 

peruvoside, neriifolin, digitoxin) (Fig. 13C). We also included control samples from the same 474 

assays (Fig. 13D). We investigated if we could predict these mechanisms of action utilizing the 475 

shape metrics derived from our shape-to-graph mapping. To this end, we extract the previously 476 

described set of measures for each object in each image. The mean and standard deviation of these 477 

per-cell metrics are computed across each well. To account for variance between plates, we 478 

subtracted the feature vector of each well by the median feature vector of the control wells in the 479 
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same plate. In the end, this resulted in 208 control wells, 12 samples of tubulin modulators, 12 480 

samples of neuronal receptor modulators, and 24 samples of structurally related cardenolides.  481 

 482 

Figure 13. Images from the U2OS dataset. Red channel is phalloidin, blue is Hoechst 33342, and green is 483 

WGA. A) Example image from the untreated group. B) Image of cells treated with taxol from the tubulin 484 

modulators group. C) Image of cells treated with metoclopramide from the modulator of neuronal receptors 485 

group. D) Image of cells treated with digoxin from the structurally related cardenolide glycosides group. 486 

 487 

Once the metrics were extracted, each plate was individually held-out, and a decision tree trained 488 

on the wells in the remaining 19 plates were used to predict the held-out well labels. Shape-to-489 

graph features had a mean 𝐹1  score of 0.916 (defined as 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, where 𝑟𝑒𝑐𝑎𝑙𝑙 =490 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
), while the original 491 

published shape features (Gustafsdottir et al. 2013) had an 𝐹1 score of 0.826. Notably, the shape-492 

to-graph mapping had much better performance on the ‘Modulators of Neuronal Receptors’ 493 
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category, with a class 𝐹1 score of 0.769 versus 0.455 for the original shape features (Fig. 14) and 494 

each class appears to form tighter, more distinct clusters with the new features (Supplemental Fig. 495 

S3). This treatment is the one which most strongly resembles the control dataset, but the cells tend 496 

to be much less dense relative to the control wells. This reduced density is captured in the out-497 

graph radius metrics for each cell (Supplemental Fig. S4). 498 

 499 

Figure 14. Held-out plates were classified with a decision tree trained on the remainder of the dataset. The 500 

new metrics derived with our approach tends to have better classification accuracies, especially for the 501 

control class and the modulator of neuronal receptors (NRM). Mean 𝐹1 score is 0.916 with the graph 502 

derived metrics, and 0.826 with the CellProfiler shape metrics. 503 

 504 

Graphical User Interface 505 

 506 

We have created a graphical user interface (GUI) to provide readers with a quick and easy way to 507 

try our shape-to-graph mapping on their own data (Fig. 15A). The GUI can be used to generate 508 

and display the shape-to-graph mapping for individual images. The user can cycle through all the 509 
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boundaries in the image and visualize their width and boundary profiles. A table of values of the 510 

forty measures for each boundary is also displayed. 511 

 512 

Additionally, a graphical user interface is provided to generate boundary types from multiple 513 

images (Fig. 15B). The user can choose a number of boundary classes and inspect each image 514 

from the imported set with its boundaries colored according to the class they were automatically 515 

assigned based on the features from the shape-to-graph mapping (which can also be displayed). 516 

These visualizations are accompanied with (1) a color-coded histogram showing the boundary type 517 

distribution in the current image, (2) a t-SNE plot of the boundaries across all images, and (3) a 518 

plot of two user-selected principal components calculated based on the boundary type histograms 519 

across all the images. The point corresponding to the current image is highlighted in the PCA plot. 520 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.02.972786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.972786
http://creativecommons.org/licenses/by/4.0/


31 
 

 521 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.02.972786doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.972786
http://creativecommons.org/licenses/by/4.0/


32 
 

Figure 15. Two Graphical User Interfaces for demonstrating the graph construction and analysis. A. GUI 522 

for illustrating the shape-to-graph approach and the key concepts such as subgraph, in- and out-graphs, 523 

and the width and boundary profiles. The user can cycle through the boundaries and see the 40 metrics 524 

extracted for each boundary. B. GUI for processing multiple images. Boundaries are automatically 525 

clustered and colored according to a user-specified number of boundary types. The bottom graphs are the 526 

frequency of boundary types in the current image, a t-SNE of all the boundaries calculated by their features 527 

and colored by their resulting class, and a PCA plot of all the images derived from their boundary type 528 

histograms. 529 

 530 

Discussion 531 

 532 

In this paper we introduced a methodology for extracting, quantifying, and classifying structural 533 

features of an arbitrarily complex pattern in a segmented image. The methodology is based on a 534 

mathematically defined mapping of all boundaries in the binary image onto a global graph. The 535 

graph preserves all the information specified by the boundaries but also provides an efficient and 536 

precise way of defining meaningful metrics for further processing. We illustrated the power of this 537 

approach by analyzing experimental images of human umbilical vein endothelial cells forming 538 

multicellular patterns with different levels of connectivity depending on genetic (ccm1, ccm2, 539 

ccm3 knockdowns) and biochemical (Rho kinase inhibition) perturbations. We showed that all the 540 

visually distinguishable patterns could be reliably grouped in different classes using principal 541 

component analyses of boundary types that were defined based on a large set of graph measures. 542 

We also showed that our method is sensitive enough to identify subtle differences in visually 543 

similar patterns. More importantly, after classification, the geometric features that made such 544 

differentiation possible can be backtracked for further analysis or verification. Thus, our method 545 
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allows not only for statistical quantification of pattern characteristics but also for the discovery of 546 

structural features that are not apparent from visual inspection. This is particularly important for 547 

research projects that aim to determine not only ‘which’ class of patterns a particular image 548 

belongs to, but also ‘why’ it is so in term of intuitively understandable geometric features.  549 

 550 

As another illustration of the strength of our method, we analyzed a set of images generated with 551 

a simulation model with two control parameters responsible for the structural organization of the 552 

multicellular patterns. We showed that after training the algorithm with a subset of images, it could 553 

accurately predict the parameters used for the image generation. It is important to notice that the 554 

stochastic nature of cell-cell interactions in the model creates a variability of patterns in different 555 

simulations even with the same parameters, which can be interpreted as a noise in the data. Despite 556 

this variability, we achieved the correlation coefficients between the predicted and the actual 557 

values of the two control parameters as high as 0.9977 and 0.86695. This result shows that a 558 

biological characteristic influencing the geometry of an observed structure or pattern can be 559 

accurately quantified/predicted directly from the images once the algorithm is trained with a few 560 

images for which this characteristic was measured. One of the applications of such quantification 561 

would be an investigation of the transition dynamics between the known biological states (e.g. 562 

predicting the onset of a diseased phenotype).  563 

 564 

Our methodology works for any binary images. Because we construct the graph for both 565 

foreground and background, the extracted features characterize the geometry of individual objects, 566 

connectivity in networked structures, as well as the relative organization of isolated objects. This 567 

fact makes our method highly versatile and generally applicable. We illustrated this statement 568 
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reanalyzing a subset of previously published data set from a high throughput assay profiling small-569 

molecule-induced U2OS cell cultures (Gustafsdottir et al. 2013). We used the same processing 570 

pipeline as in the original study but apply the geometric features from our shape-to-graph mapping. 571 

By comparing a combined metric of precision and sensitivity, the 𝐹1 score, we showed that our 572 

graph representation of the image content provides an improvement in classification performance 573 

of 10% for the three major mechanisms-of-action clusters and 40% for the cluster that differs the 574 

least from the wild type cultures. Saying that, it is important to notice that the initial, pre-processing 575 

step of segmentation is critical and the presented method can be only as accurate as allowed by the 576 

quality of microscopy and the segmentation routine.  577 

 578 

 579 

Materials and Methods 580 

 581 

Cell culture  582 

 583 

Human umbilical cord endothelial cells HUVEC (Lonza, Walkersville, MD) were maintained in 584 

EGM-2 medium (Lonza) at 37°C/5% CO2 and passaged every 3 to 4 days for up to 6 passages at 585 

a 1:5 sub-culturing ratio. For tube formation experiments, 4.5-5x103 cells were plated into each 586 

well of angiogenesis µ-slides (ibidi, Fitchburg, WI) coated with 10 µl of growth factor reduced 587 

phenol red-free Matrigel (Corning, Corning, NY), and incubated for up to 18 hrs.  588 

 589 

Microscopy 590 

 591 
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For endothelial tubule formation imaging, cells plated on Matrigel were incubated with 592 

CellMask™ Green Plasma Membrane Stain (Invitrogen, Carlsbad, CA) for 15 min at 37°C. The 593 

media was changed to phenol-free EGM-2 supplemented with 2% FBS and growth factors 594 

(PromoCell GmbH). Images were acquired using PerkinElmer UltraVIEW VoX spinning disk 595 

confocal microscope (PerkinElmer, Waltham, MA). Image processing and analysis were 596 

performed using ImageJ software (NIH). Images in Figure 9 represent a 1.2 mm by 1.2 mm areas. 597 

With the plating density of ~ 400 cells per mm2, there is ~600 cells in each image.   598 

 599 

Gene expression knockdown 600 

 601 

To achieve knockdown of CCM protein expression, cells were infected with PLKO.1 vector based 602 

lentiviruses carrying shRNAs for human krit1 (RHS4533-EG889), ccm2 (RMM4534-EG216527), 603 

and pdcd10 (RHS4533-EG11235) genes (Dharmacon, Lafayette, CO). Lentiviral particles, 604 

prepared and purified by VectorBuilder technical service group (VectorBuilder, Santa Clara, CA) 605 

were added to EGM-2 media supplemented with 8µ/mL polybrene for 48 hrs. Transduced cells 606 

were selected through their resistance to puromycin added to the growth media in the concentration 607 

of 2.5 µg/ml. Expression knockdown was measured by real-time PCR with TaqMan gene 608 

expression assays. Phenotypic experiments were conducted between 6 and 10 days after infection. 609 

 610 

Image Preprocessing 611 

 612 

Simulated images in vector format were rendered at 1024x1024 resolution. By design, the model 613 

generates binary images with all interacting cells and their protrusions being the foreground of the 614 
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image. All holes smaller than 100 pixels were automatically filled. Multiple fields of view were 615 

sampled from experimental images of tube formation at a fixed resolution of 690x690 pixels. The 616 

images were segmented with a simple threshold followed by manual corrections to under 617 

segmented tubules. Cellular debris below 50 pixels in size were automatically removed.  618 

 619 

Boundaries were extracted from each binary image. Linear pixel-size segments that connect 620 

boundary points serve as the input to the shape-to-graph mapping algorithm. Rather than defining 621 

boundary points at the center of each pixel at the edge of an object, points on the boundary were 622 

placed on the half-pixel border between an object and the background. This ensures that any object 623 

within the boundary has a non-zero area and any protruding part of an object has a non-zero width.  624 

When operating on label images, boundaries are extracted from the largest four-connected 625 

components for each label. Boundary points are placed half-way between the center of the pixel 626 

and the half-pixel edge used for binary images. This creates a half-pixel sized gap between objects 627 

which share a boundary, and any objects which are one pixel wide will have a width in the Voronoi 628 

diagram of 0.5px. 629 
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