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Abstract

A central theme in ecological research is to understand how species interactions contribute to
community dynamics. Species interactions are the basis of parametric (model-driven) and nonpara-
metric (model-free) approaches in theoretical and empirical work. However, despite their different
interpretations across these approaches, these measures have occasionally been used interchangeably,
limiting our opportunity to use their differences to gain new insights about ecological systems. Here,
we revisit two of the most used measures across these approaches: species interactions measured
as constant direct effects (typically used in parametric approaches) and local aggregated effects
(typically used in nonparametric approaches). We show two fundamental properties of species
interactions that cannot be revealed without bridging these definitions. First, we show that the local
aggregated intraspecific effect summarizes all potential pathways through which one species impacts
itself, which are likely to be negative even without any constant direct self-regulation mechanism.
This property has implications for the long-held debate on how communities can be stabilized
when little evidence of self-regulation has been found among higher-trophic species. Second, we
show that a local aggregated interspecific effect between two species is correlated with the constant
direct interspecific effect if and only if the population dynamics do not have any higher-order direct
effects. This other property provides a rigorous methodology to detect direct higher-order effects in
the field and experimental data. Overall, our findings illustrate a practical route to gain further

insights about non-equilibrium ecological dynamics and species interactions.

Key-words: Higher-order Interactions, Interaction Matrix, Jacobian Matrix, Model-driven, Model-
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Introduction

Community ecology are built upon the idea that species interact either directly or indirectly with
other species (Abrams, 1987; Thompson, 2005; Morin, 2009; Vellend, 2016). Indeed, a central
theme in ecological research is to understand how species interactions contribute to community
dynamics (May, 1972; Pimm, 1982; Allesina and Tang, 2012; Fukami, 2015; Saavedra et al., 2017;
Chesson, 2018). Even macro-ecological studies that do not explicitly model species interactions
are built upon the idea of an existing balance among species interactions (Hubbell, 2005; Harte,
2011; Staniczenko et al., 2017). Thus, ever since Odum (Odum and Barrett, 2005), most ecologists
classify species interactions not by their mechanisms, but according to the effects produced on the
growth rate of populations (see Abrams 1987 for an extended discussion on this topic). Yet, this
simple definition has different measures and interpretations across theoretical and empirical studies

(Case, 2000), making necessary to understand how and when these measures can be linked.

In empirical and theoretical research, the effect of species interactions has been measured following
parametric (model-driven) and nonparametric (model-free) approaches (Sugihara, 1994; Turchin,
2003). While the parametric approach has been the cornerstone of quantitative ecology (Kingsland,
2015), the nonparametric approach has been increasingly adopted in empirical studies (Deyle et al.,
2016; Ushio et al., 2018; Cenci and Saavedra, 2019; Yu et al., 2020; Bray and Wang, 2020; Karakog
et al., 2020; Ushio, 2020). To explain the differences between the two approaches, we define them
using the most general population dynamics of S interacting species in the form of continuous

ordinary differential equations (the case for discrete difference equations is similar, see Case 2000),

dN;
dt

:Nifi(Nla"'vNS)a (1)

where N; is the abundance (or biomass) of species i, and f; is the per capita growth rate of species
i.

The parametric approach typically measures species interactions as constant direct effects (mecha-
nistic or phenomenological) between species (Case, 2000; Song et al., 2020), and completely relies
on knowledge about the governing population dynamics. The general formalism in the parametric

approach partitions the general population dynamics (Eqn. 1) as

e . inter-specific
intrinsic growth

=Ni( T+ agsi(N) +Zaijgij(Ni7Nj) + Z bijihijr(Niy Nj, Ni) +--+), (2)
J#i J#k;j kA

dnN;
dt

intraspecific

higher order
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with both pairwise and higher-order terms. The pairwise formalism of population dynamics has
been the basis of this approach. The pairwise formalism ignores the higher-order terms and
focus only on the pairwise terms, where r; represents the intrinsic growth rate of species i (no
density dependency), a;; represents the constant, direct, intraspecific (if ¢ = j) and interspecific
effect (if i # j), while s;(NV;) and g¢;;(N;, N;) represent the functional form of the intraspecific
and interspecific direct effects, respectively. These constant direct effects a;; can be the result of
indirect mechanisms depending on the level of resolution of the model (MacArthur and Levins,
1967; Abrams, 1987), while the functional forms g¢;;(N;, N;) are not restricted to be linear and
can incorporate non-additive effects (Billick and Case, 1994; Letten and Stouffer, 2019; Tilman,
1982). A classic example of the pairwise formalism is the Lotka-Volterra (LV) dynamics (Lotka,
1926; Volterra, 1926), where s;(N;) = N, ¢ij(N;, Nj) = N;j. The matrix A = {a;;} is called the
interaction matriz, encoding the strength of pairwise, constant, direct effects (note these effects can
be non-additive, see Billick and Case 1994). Regardless of which form of functional responses is
used, the sign pattern of the interaction matrix A is usually fixed and interpreted as the type of
pairwise direct effect, such as: mutualism, competition, predation, or null (Abrams, 1987; Callaway

et al., 2002; Chamberlain et al., 2014; Song et al., 2020).

Despite the popularity of the pairwise formalism, the parametric approach can also be applied
to a higher-order formalism of the general population dynamics (Eqn. 2; Billick and Case 1994;
Kleinhesselink et al. 2019). Higher-order effects correspond to constant direct effects among more
than two species (which is fundamentally different from other definitions such as indirect effects or
non-additive effects, see Billick and Case 1994). For example, focusing on the higher-order terms in
Eqn. 2, b;jj, represents the constant, direct, triple-wise effect. Similarly, h;ji(Ns, IN;, Ni) represents
the functional form of the triple-wise direct effect among species i, j, and k—representing the
constant change in the per capita growth rate of species ¢ under a small change in density of species
j and k (O’'Dwyer, 2018; Letten and Stouffer, 2019). Other higher-order direct effects (such as
quadruple-wise effect) can be similarly defined (Bairey et al., 2016). Note that the parametric
approach, regardless of the specific formalism, can be applied under the assumptions of equilibrium

and non-equilibrium dynamics (Case, 2000).

In turn, the nonparametric approach typically measures species interactions as the local (state-
dependent) aggregated (direct and higher-order) effects between two species. Different from the
parametric approach, the nonparametric one does not assume any particular governing population
dynamics (Sugihara and May, 1990; Ye et al., 2015). Because the local aggregated effect counts all
the pathways (including direct and higher-order effects) at a given point in time, it can only be

defined pairwise (Deyle et al., 2016; Ushio et al., 2018; Cenci and Saavedra, 2018b). That is, the
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nonparametric pairwise interaction between two species is measured as the change in the growth

rate of species ¢ under a small change in density of species j. Formally, this can be written as

dN;(t Ofi 4 L
7, 8N] ZaNj 7J1 o, - .7
Nz N> if 4 75 i

where the Kronecker delta d;; is 1 if i = j, 0 otherwise. The matrix J = {J;;} is called the Jacobian
matriz. Similarly, this approach can be applied to both equilibrium (May, 1972; Allesina and Tang,
2012) and non-equilibrium dynamics (Sugihara, 1994; Ushio et al., 2018; Cenci and Saavedra, 2019).
Note that under equilibrium dynamics, the Jacobian matrix has also been called the community

matriz (Levins, 1968; May, 1972; Case, 2000; Novak et al., 2016).

Both measures have their own strengths and weaknesses: within parametric approaches, measures
have a mechanistic or phenomenological interpretation of a direct effect between species, but the
magnitude and dimension of such parametric measures are model-dependent (Cenci and Saavedra,
2018a; AlAdwani and Saavedra, 2019; Letten and Stouffer, 2019). Instead, within the nonparametric
approach, measures can be estimated directly from data (such as time series of species abundance)
with statistical methods, but they are often hard to be biologically interpreted (Sugihara and May,
1990; Ushio et al., 2018; Cenci et al., 2019). Additionally, regardless of the specific methods, the
two approaches hold different conceptualizations about how species interactions can be decomposed:
within the parametric approach, measures can be decomposed into intraspecific (the effect of a
species on itself), interspecific (the effect of a species on another), and higher-order interactions
(the effect of two or more species on another). In contrast, within the nonparametric approach,
measures can only be decomposed into intraspecific and interspecific interactions (Deyle et al., 2016;
Ushio et al., 2018; Cenci and Saavedra, 2018b). Yet, it remains unclear under what conditions
parametric and nonparametric views of species interactions tell a similar story, and what can be

learned when they do not coincide.

Importantly, even in equilibrium dynamics, the subtle but central differences in the measure of
species interactions between these two approaches have sometimes been a cause of confusion in
the literature (Lawlor, 1980; Abrams, 1981). Take the complexity-stability debate as an example,
one of the most controversial topics in theoretical and community ecology (May, 1972; McCann,
2000; Ives and Carpenter, 2007; Landi et al., 2018; Xu et al., 2019). As it has been shown (Logofet,
2005), much of the debate has been generated by aiming to generalize ecological dynamics and
species interactions under a nonparametric approach. However, the merger between parametric and
nonparametric approaches to species interactions in such a context is only possible under the (often

implicitly) assumption of a LV model and equal equilibrium states for all species (Haydon, 1994;
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Novak et al., 2016; Vazquez et al., 2007). While researchers have been increasingly recognizing
these assumptions in equilibrium dynamics (Berlow et al., 2004; Novak et al., 2016), it remains
unclear whether the two approaches can be transferable in non-equilibrium dynamics, and more

importantly, whether the transferability may reveal hidden ecological dynamics.

Here, we revisit and show how to bridge two of the most used measures of species interactions
across the parametric and nonparametric approaches. We show that bridging parametric and
nonparametric approaches present new ecological insights that cannot be revealed without this
bridging. Specifically, we study species interactions under three categories: intraspecific, interspecific,
and higher-order interactions. In the reminder, we begin by showing that the measures in parametric
and nonparametric approaches can be linked if and only if all species interactions are pairwise (i.e.,
no higher-order interactions present) regardless of the dynamics assumed. Next, we demonstrate that
interspecific interactions are more transferable across measures than intraspecific interactions. Next,
we show two applications by building on the differences between approaches. Finally, we discuss
how and when these measures can be combined to gain further insights about non-equilibrium

ecological dynamics and higher-order interactions.

The translucent mirror between measures

Intraspecific interactions

Under the parametric approach, a negative, constant, direct, intraspecific effect a;; is often considered
as self-requlation or intraspecific density dependence (Case, 2000). However, under the nonparametric
approach, the interpretation of the local aggregated intraspecific term J;; is more complicated.
For example, following the general parametric formalism defined in Eqn. (2), the elements of the

Jacobian matrix are defined as

0s; 99; oh;
Ji = rz+azz(sz+ BN +Na‘?\fj)+ Z bijk(thk+N a]\;k)—f‘ (4)
J#i J#ksj k#i
and when the system is at equilibrium, it reduces to
. i L Ohij
Jii = a;N, Z@N +Z z] g]+ Z bi]kNZ 8]\?k+ (5)

J#k;j,k#

Note that the notation for s;, g;x and h;;, in Eqn. 4 and thereafter has been simplified, but they
are still functions of the species abundances N. Therefore, regardless of the presence of higher-order

effects (whether b;;), are all zeros) or the system is at the equilibrium (N, dgi = 0), the term J;;
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measures the local aggregated effect across all the pathways under which species 7 can affect itself

(not only the direct self-loop from i to 7).

Hence, it is natural to ask what is the link between a;; and J;;. In general, a negative sign in Jj;
does not imply a constant direct self-regulation (a; < 0), and vice versa (Somorjai and Goswami,
1972; Haydon, 1994). This property can be easily illustrated using the logistic population dynamics

of a single species,
dn;
dt

= N;(ri + aiN;), (6)

where r; and a;; correspond to the intrinsic growth rate and the direct self-regulation of the single
species i, respectively. At the equilibrium (K; = N = —a;;/7;), the constant, direct, intraspecific
effect is given by a;;, which is interpreted as a constant self-regulation. In turn, from Eqn. (5) the

Jacobian Jj; equals r; + 2a;; N; = (1 — 2}]{\2 1), which is always positive when N; < K;/2, negative

otherwise. This implies that, in general, the interpretation of intraspecific interactions across the

parametric and nonparametric are not the same.

Then, when can J;; be transferable into a;;? If we require that the signs of a;; and J;; be the same,
we need the system at equilibrium following LV dynamics. The reasoning is that, no higher order
effects exist in LV dynamics (i.e. b;j; = 0) and the partial derivative of g;; with respect to N; is 0

(i.e. g% = g—lj\\g = 0), thus that the second and third terms on the right-side of Eqn. (5) vanish. If

we additionally require that a;; = J;;, then on top of the two previous requirements, we need all
equilibrium abundances to be exactly the same (May and Mac Arthur, 1972; Song and Saavedra,
2018). While it is not explicit, note that previous work (May, 1972; Coyte et al., 2015) on the

complexity-stability debate operates under these assumptions.

Interspecific interactions

Assuming that all direct effects are pairwise as described in Eqn. (2), the local, aggregated,

interspecific effect can be derived as

9gij . .
Jij = aijNiaN; (i # 7), (7)

which only includes the direct effect (functional form) g;; between species ¢ and j. Under this

assumption, J;; and a;;(¢ # j) always have the same sign because g?\g > 0 (biologically, this means

that effects are stronger with larger species abundances).
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Instead, assuming that constant direct interactions include higher-order effects as in Eqn. (2), the

Jacobian (the local aggregated effects) can be derived as

agz 8hzk
Ji = a NaNJ +k§jb”kN aNJ - (i # §), (8)

where J;; encodes not only the direct interspecific effects, but also the higher-order effects coming
from species other than species ¢ and j. Therefore, J;; can be interpreted as the local (state-
dependent) direct effect between species i and j if and only if all (parametric) direct effects are
pairwise. That is, under higher-order effects, there is no simple link between (parametric) a;; and
(nonparametric) J;; interspecific interactions. This also shows that the interspecific J;; (i # j) is

fundamentally different from the intraspecific J;;.

Learning from the differences between approaches

Debates on self-regulation and stability

Importantly, the differences between approaches (measures) can offer an opportunity to gain further
insights about non-equilibrium ecological dynamics and higher-order interactions without modeling
them (AlAdwani and Saavedra, 2019). For example, focusing on dynamics and building from the
classic complexity-stability debate (May, 1972), it is assumed that a community can be dynamically
stable only if most of the constant, direct, intraspecific terms are negative (a;; < 0), i.e., if “the
population of each species would by itself be stable” (May, 1972). This assumption comes from the
observation that dynamical stability requires that most of the local, aggregated, intraspecific terms
are also negative (J; < 0) (May, 1972; Yodzis, 1980; Sterner et al., 1997; Moore and de Ruiter,
2012; McCann, 2011; Barabds et al., 2017). Yet, there is few empirical evidence to support the
addition of direct self-regulation (a; < 0) for primary consumers and top predators (Pimm and

Lawton, 1977; Tilman, 1982; Chesson, 2013), which would make most systems unstable.

This apparent contradiction arises from the ill perception that a negative J;; requires a negative ay;.
However, recalling the link between J;; and a;; (Eqn. 4), J;; can be expressed in the absence of

self-regulation (a; = 0) as

09, Oh; . I
i+ 2 @i (9ij + Nigyt Jij L)+ 2 itk eti bigk (il + 55 ]k) + -+, if non-equilibrium ©
1
% 00 « Ohjj; . ye e
> i @i NG HN -+ 3 skt Digk N 61\};“ +- if equilibrium.

This implies that a negative J;; (in equilibrium and non-equilibrium dynamics) in a non-self-

regulated species i (i.e., a;; > 0) can arise in a broad class of nonlinear ecological dynamics simply
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by satisfying two conditions (Song et al., 2018): (1) a negative intrinsic growth rate (i.e., r; < 0),
and (2) at least one negative, constant, direct, interspecific effect (i.e., a;; < 0). Note that those
conditions do not apply to LV dynamics in equilibrium because of the linearity of the dynamics (i.e.

g%z = 0). Figure 1 shows a simple example in a 3-species food chain: both the consumer and the top

predator have no constant, direct self-regulation; yet they can exhibit negative, local, aggregated,
intraspecific effects. In contrast, the primary producer does have constant, direct self-regulation;
yet it does not always exhibit a negative, local, aggregated, intraspecific effect. Hence, apart (or
instead) of local aggregated self-regulation mechanisms, these (or other conditions) can be taken as

stabilization sources of ecological communities.

Detection of higher-order interactions

Ecology has seen the re-emergence of interests in higher-order interactions (Mayfield and Stouffer,
2017; Grilli et al., 2017; Levine et al., 2017). However, it remains challenging to convincingly detect
the presence of higher-order interactions in empirical data (Kleinhesselink et al., 2019; Letten and
Stouffer, 2019; Xiao et al., 2020). The different interpretations of J;; in the presence of higher-order
effects provide a new method to detect their existence. For example, it has been found that J;; can
change its sign across time in a community (Ushio et al., 2018). If we assume that the governing
population dynamics only consists of pairwise direct effects (Eqn. 2), then this result should be
interpreted as the change of the type of the constant, direct, interspecific effect (i.e., the sign of the
parameters in the governing population dynamics have to change). However, if we assume that the
governing population dynamics is fixed, then this result should be interpreted as the presence of
higher-order direct effects. Figure 2 shows a simple 3-species competing system with and without
higher-order direct effects that illustrates these points. Of course, the assumption relies on our
belief of how nature operates. For example, previous work (Ushio et al., 2018) has assumed that

the governing population dynamics is fixed, implying the presence of higher-order direct effects.

Discussion

Traditionally, the parametric and nonparametric approaches have considered different measures and
interpretations of species interactions. That is, species interactions are measured as constant-direct
and local-aggregated effects within the parametric and nonparametric approaches, respectively.
However, their interpretations have been occasionally used interchangeably (e.g., when describing
the stability conditions of an ecological community (May, 1972; Coyte et al., 2015)), limiting our

opportunity to use their differences to gain new insights about ecological systems. In this line, here
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we have provided a bridge between these two approaches (measures) and illustrated its utility. In
particular, we have shown three fundamental properties of species interactions. First, the local,
aggregated, intraspecific effect summarizes all potential pathways through which one species impacts
itself, which can be negative without any direct self-regulation mechanism (see Fig. 1). Second,
the local, aggregated, interspecific effect only measures the direct effect between two species if
and only if the population dynamics does not have any higher-order direct effects (see Fig. 2A-B).
Third, higher-order direct effects can be detected by studying changes of interaction signs within a

nonparametric approach (Figure 2C-D).

Species interactions are a multidimensional concept (Callaway et al., 2002; Nakazawa, 2020), which
naturally resulted in multiple definitions, ranging from mechanistically motivated characterizations
to highly phenomenological representations (White and Marshall, 2019). However, despite the fact
that these definitions are distinct mathematical entities, their construction implies that they must
be inherently linked given that they all describe properties of species interactions. Importantly,
most of the definitions can be classified as either parametric or nonparametric. The parametric
approach decomposes species interactions in biologically interpretable intraspecific, interspecific,
and high-order direct effects. In turn, the nonparametric approach decomposes species interactions
in computationally feasible intraspecific and interspecific aggregated effects. Therefore, instead of
linking specific definitions case-by-case, we have bridge these two approaches by focusing on their

high-level conceptual links.

We hope this Forum paper can open a dialogue between the parametric and the nonparametric
approaches. The parametric approach has dominated community ecology (Kingsland, 2015), while
the nonparametric approach has recently received increasing attention in the past decade (Deyle
et al., 2016; Ushio et al., 2018; Cenci and Saavedra, 2019; Yu et al., 2020; Bray and Wang, 2020;
Karakog et al., 2020; Ushio, 2020). While both approaches have shaped our understanding of
ecological dynamics, little is known about when and how we can transfer the knowledge from
one approach to the other. Importantly, we have shown that the transferability is necessary and
provides a new perspective that each approach itself cannot offer. For example, the Achilles’
heel of the parametric approach is to evaluate whether the model has included enough details of
the system under investigation. Indeed, if we assume a pairwise formalism, while the system is
actually governed by a high-order formalism (Box 1), then we are likely to make false predictions
of the system (Letten and Stouffer, 2019). However, the computational methods emerging from
the parametric approach are difficult to distinguish (e.g., functional responses and higher-order
interactions) (AlAdwani and Saavedra, 2019). Yet, relying upon the computational feasibility of

the nonparametric approach (Martin et al., 2018; Deyle et al., 2016; Cenci and Saavedra, 2019), we
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may be able to distinguish the nature of species interactions acting on a system. Therefore, we
believe that a better understanding of both the measures and assumptions used across parametric
and nonparametric approaches can improve our knowledge of species interactions and ecological

dynamics in general.
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Parametric pairwise formalism
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Figure 1: Local, aggregated, intraspecific effects can be negative without a constant, direct, self-
regulation mechanism. Panel (A) shows a simple 3-level trophic chain with a primary producer
(bottom circle), a consumer (middle circle), and a top predator (top circle). These species are linked
by arrows showing the standard energy/biomass flow. Note that only the primary producer has
a constant direct self-regulation (typically used in parametric approaches), i.e., a1 < 0, whereas
azs = asz = 0. The governing equations describing the population dynamics of the 3-species trophic
chain are shown on the top. Panel (B) shows the local (state-dependent), aggregated, intraspecific
effects J;; (typically used in nonparametric approaches) when the trophic chain is governed by a type
IT functional response (parameters are taken from Ref. (Hastings and Powell, 1991)). Top predator
(J33) shows mostly negative, local, aggregated effects to itself; whereas both the consumer (J22)
and the primary producer (Ji1) show anti-correlated oscillatory sign patterns of local, aggregated
effects to themselves.
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Figure 2: Local, aggregated, interspecific effects and constant, direct effects have the same sign if
and only if all direct effects are pairwise based (i.e., absent of higher-order direct effects). Panels
(A)-(B): Three competing species are governed by Lotka-Volterra dynamics without any higher-order
direct effects (shown above panels; parameters adopted from Saavedra et al. 2017). Panel (A)
shows the time series of species abundances. Panel (B) shows the corresponding local, aggregated,
interspecific effects (typically used in nonparametric approaches) that species 2 and 3 have on
species 1, where both Ji3 and Ji2 are always negative. Panels (C)-(D): Three competing species are
governed by Lotka-Volterra dynamics with an added higher-order direct effect from species 2 and 3
on species 1 (highlighted in red; shown above panels). This formulation of higher-order effects is
conceptually inspired by Levine et al. 2017 and mathematically adopted from Letten and Stouffer
2019). Panel (C) shows the time series of species abundances, which exhibit similar patterns as the
model without higher-order interactions shown in Panel (A). However, Panel (D) shows that both
J12 and Ji13 change their sign, which are fundamentally different from the patterns shown in Panel

(B).
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\section*{Abstract}

A central theme in ecological research is to understand how species interactions contribute to community dynamics. Species interactions are the basis of parametric (model-driven) and nonparametric (model-free) approaches in theoretical and empirical work. However, despite their different interpretations across these approaches, these measures have occasionally been used interchangeably, limiting our opportunity to use their differences to gain new insights about ecological systems. 
Here, we revisit two of the most used measures across these approaches: species interactions measured as \textit{constant direct} effects (typically used in parametric approaches) and \textit{local aggregated} effects (typically used in nonparametric approaches). 
We show two fundamental properties of species interactions that cannot be revealed without bridging these definitions.
First, we show that the local aggregated intraspecific effect summarizes all potential pathways through which one species impacts itself, which are likely to be negative even without any constant direct self-regulation mechanism. This property has implications for the long-held debate on how communities can be stabilized when little evidence of self-regulation has been found among higher-trophic species.
Second, we show that a local aggregated interspecific effect between two species is correlated with the constant direct interspecific effect if and only if the population dynamics do not have any higher-order direct effects. This other property provides a rigorous methodology to detect direct higher-order effects in the field and experimental data. 
Overall, our findings illustrate a practical route to gain further insights about non-equilibrium ecological dynamics and species interactions.

% We show that these measures can be linked if and only if all species interactions are pairwise, demonstrate fundamental differences between inter and intraspecific interactions, and illustrate how and when these measures can be combined to gain further insights about non-equilibrium ecological dynamics and higher-order interactions.

% Overall, this \textit{Note} underlines the necessity to open a new dialogue about the measures of species interactions used across parametric and nonparametric approaches.

% Because there is an increasing amount of both empirical data and computational tools accelerating the use of nonparametric approaches, we believe that this \textit{Note} can open a new dialogue about the measures of species interactions used across parametric and nonparametric approaches, and how bridging them can improve our knowledge of species interactions and ecological dynamics.

\bigskip

\noindent {\bf Key-words:}  Higher-order Interactions, Interaction Matrix, Jacobian Matrix, Model-driven, Model-free, Non-equilibrium Dynamics

\clearpage

\section*{Introduction}

Community ecology are built upon the idea that species interact either directly or indirectly with other species \citep{Abrams1987,thompson2005geographic,morin2009community,vellend2016theory}. Indeed, a central theme in ecological research is to understand how species interactions contribute to community dynamics \citep{may1972will,pimm1982food,allesina2012stability,fukami2015historical,saavedra2017structural,Chesson2018updates}. Even macro-ecological studies that do not explicitly model species interactions are built upon the idea of an existing balance among species interactions \citep{hubbell2005neutral,harte2011maximum,staniczenko2017linking}. Thus, ever since Odum \citep{OdumBook}, most ecologists classify species interactions not by their mechanisms, but according to the effects produced on the growth rate of populations (see \citealt{Abrams1987} for an extended discussion on this topic). Yet, this simple definition has different measures and interpretations across theoretical and empirical studies \citep{Case2000guide}, making necessary to understand how and when these measures can be linked. 

In empirical and theoretical research, the effect of species interactions has been measured following parametric (model-driven) and nonparametric (model-free) approaches \citep{sugihara1994nonlinear,turchin2003complex}. While the parametric approach has been the cornerstone of quantitative ecology \citep{kingsland2015alfred}, the nonparametric approach has been increasingly adopted in empirical studies \citep{deyle2016tracking,ushio2018fluctuating,cenci2019non,yu2020varying,bray2020forecasting,karakocc2020diversity,ushio2020interaction}. To explain the differences between the two approaches, we define them using the most general population dynamics of $S$ interacting species in the form of continuous ordinary differential equations (the case for discrete difference equations is similar, see \citealt{Case2000guide}),
\begin{equation} \label{eqn.continuous.dynamics.general}
    \dv{N_i}{t} = N_i f_i(N_1,\ldots, N_S),
\end{equation}
where $N_i$ is the abundance (or biomass) of species $i$, and $f_i$ is the per capita growth rate of species $i$. 

The parametric approach typically measures species interactions as \textit{constant direct} effects (mechanistic or phenomenological) between species \citep{Case2000guide,Song_TREE}, and completely relies on knowledge about the governing population dynamics. The general formalism in the parametric approach partitions the general population dynamics (Eqn. \ref{eqn.continuous.dynamics.general}) as
\begin{equation}\label{eqn.continuous.dynamics.high.order}
    \dv{N_i}{t} = N_i( \overbrace{r_i}^{\text{intrinsic growth}} +  \underbrace{a_{ii}s_{i}(N_i)}_{\text{intraspecific}} + \overbrace{\sum_{j \neq i} a_{ij} g_{ij}(N_i, N_j)}^{\text{inter-specific}} + \underbrace{\sum_{j \neq k; j, k \neq i} b_{ijk} h_{ijk}(N_i, N_j, N_k)+\cdots}_{\text{higher order}}),
\end{equation}
with both pairwise and higher-order terms. The pairwise formalism of population dynamics has been the basis of this approach. The pairwise formalism ignores the higher-order terms and focus only on the pairwise terms, where $r_i$ represents the intrinsic growth rate of species $i$ (no density dependency), $a_{ij}$ represents the constant, direct, intraspecific (if $i=j$) and interspecific effect (if $i \neq j$), while $s_{i}(N_i)$ and $g_{ij}(N_i, N_j)$ represent the functional form of the intraspecific and interspecific direct effects, respectively. These constant direct effects $a_{ij}$ can be the result of indirect mechanisms depending on the level of resolution of the model \citep{MacArthur1967,Abrams1987}, while the functional forms $g_{ij}(N_i, N_j)$ are not restricted to be linear and can incorporate non-additive effects \citep{billick1994higher,letten2019mechanistic,tilman1982resource}. A classic example of the pairwise formalism is the Lotka-Volterra (LV) dynamics \citep{lotka1926elements,volterra1926fluctuations}, where $s_{i}(N_i) = N_i$, $g_{ij}(N_i,N_j) = N_j$. The matrix $\mathbf{A} = \{a_{ij}\}$ is called the \textit{interaction matrix}, encoding the strength of pairwise, constant, direct effects (note these effects can be non-additive, see \citealt{billick1994higher}). Regardless of which form of functional responses is used, the sign pattern of the interaction matrix $\mathbf{A}$ is usually fixed and interpreted as the type of pairwise direct effect, such as: mutualism, competition, predation, or null \citep{Abrams1987,callaway2002positive,chamberlain2014context,Song_TREE}.

Despite the popularity of the pairwise formalism, the parametric approach can also be applied to a higher-order formalism of the general population dynamics (Eqn. \ref{eqn.continuous.dynamics.high.order}; \citealt{billick1994higher,kleinhesselink2019mechanisms}). Higher-order effects correspond to constant direct effects among more than two species (which is fundamentally different from other definitions such as indirect effects or non-additive effects, see \citealt{billick1994higher}). For example, focusing on the higher-order terms in Eqn. \ref{eqn.continuous.dynamics.high.order}, $b_{ijk}$ represents the constant, direct, triple-wise effect. Similarly, $h_{ijk}(N_i, N_j, N_k)$ represents the functional form of the triple-wise direct effect among species $i$, $j$, and $k$---representing the constant change in the per capita growth rate of species $i$ under a small change in density of species $j$ and $k$ \citep{o2018whence,letten2019mechanistic}. Other higher-order direct effects (such as quadruple-wise effect) can be similarly defined \citep{bairey2016high}. Note that the parametric approach, regardless of the specific formalism, can be applied under the assumptions of equilibrium and non-equilibrium dynamics \citep{Case2000guide}.

In turn, the nonparametric approach typically measures species interactions as the \textit{local} (state-dependent) \textit{aggregated} (direct and higher-order) effects between two species. Different from the parametric approach, the nonparametric one does not assume any particular governing population dynamics \citep{sugihara1990nonlinear,ye2015equation}. Because the local aggregated effect counts all the pathways (including direct and higher-order effects) at a given point in time, it can only be defined pairwise \citep{deyle2016tracking,ushio2018fluctuating,cenci2018uncertainty}. That is, the nonparametric pairwise interaction between two species is measured as the change in the growth rate of species $i$ under a small change in density of species $j$. Formally, this can be written as
\begin{equation} \label{eqn.Jacobian}
    J_{ij}(t) = \pdv{(\dv{N_i(t)}{t})}{N_j} =  N_i \pdv{f_i}{N_j} + \delta_{ij} f_i =  \begin{cases}
      N_i \pdv{f_i}{N_i} + f_i, & \text{if}\ i=j \\
      N_i \pdv{f_i}{N_j}, & \text{if}\ i\neq j
    \end{cases},
\end{equation}
where the Kronecker delta $\delta_{ij}$ is 1 if $i=j$, 0 otherwise. The matrix $\mathbf{J} = \{J_{ij}\}$ is called the \textit{Jacobian matrix}. Similarly, this approach can be applied to both equilibrium \citep{may1972will,allesina2012stability} and non-equilibrium dynamics \citep{sugihara1994nonlinear,ushio2018fluctuating,cenci2019non}. Note that under equilibrium dynamics, the Jacobian matrix has also been called the \textit{community matrix} \citep{Levins1968,may1972will,Case2000guide,novak2016characterizing}.

Both measures have their own strengths and weaknesses: within parametric approaches, measures have a mechanistic or phenomenological interpretation of a direct effect between species, but the magnitude and dimension of such parametric measures are model-dependent \citep{Cenci_PRE,AlAdwani_interactions,letten2019mechanistic}. Instead, within the nonparametric approach, measures can be estimated directly from data (such as time series of species abundance) with statistical methods, but they are often hard to be biologically interpreted \citep{sugihara1990nonlinear,ushio2018fluctuating,cenci2019regularized}. Additionally, regardless of the specific methods, the two approaches hold different conceptualizations about how species interactions can be decomposed: within the parametric approach, measures can be decomposed into intraspecific (the effect of a species on itself), interspecific (the effect of a species on another), and higher-order interactions (the effect of two or more species on another). In contrast, within the nonparametric approach, measures can only be decomposed into intraspecific and interspecific interactions \citep{deyle2016tracking,ushio2018fluctuating,cenci2018uncertainty}. Yet, it remains unclear under what conditions parametric and nonparametric views of species interactions tell a similar story, and what can be learned when they do not coincide.
%Yet, it remains unclear whether these different interpretations of species interaction can be bridged, and whether this bridge can provide new insights about ecological dynamics and species interactions in general.

Importantly, even in equilibrium dynamics, the subtle but central differences in the measure of species interactions between these two approaches have sometimes been a cause of confusion in the literature \citep{lawlor1980structure,abrams1981comparing}. Take the complexity-stability debate as an example, one of the most controversial topics in theoretical and community ecology \citep{may1972will,mccann2000diversity,ives2007stability,landi2018complexity,xu2019review}. As it has been shown \citep{logofet2005stronger}, much of the debate has been generated by aiming to generalize ecological dynamics and species interactions under a nonparametric approach. However, the merger between parametric and nonparametric approaches to species interactions in such a context is only possible under the (often implicitly) assumption of a LV model and equal equilibrium states for all species \citep{haydon1994pivotal,novak2016characterizing,vazquez2007species}. While researchers have been increasingly recognizing these assumptions in equilibrium dynamics \citep{berlow2004interaction,novak2016characterizing}, it remains unclear whether the two approaches can be transferable in non-equilibrium dynamics, and more importantly, whether the transferability may reveal hidden ecological dynamics.

Here, we revisit and show how to bridge two of the most used measures of species interactions across the parametric and nonparametric approaches. We show that bridging parametric and nonparametric approaches present new ecological insights that cannot be revealed without this bridging. Specifically, we study species interactions under three categories: intraspecific, interspecific, and higher-order interactions. In the reminder, we begin by showing that the measures in parametric and nonparametric approaches can be linked if and only if all species interactions are pairwise (i.e., no higher-order interactions present) regardless of the dynamics assumed. Next, we demonstrate that interspecific interactions are more transferable across measures than intraspecific interactions. Next, we show two applications by building on the differences between approaches. Finally, we discuss how and when these measures can be combined to gain further insights about non-equilibrium ecological dynamics and higher-order interactions.

\section*{The translucent mirror between measures}

\subsection*{Intraspecific interactions}

Under the parametric approach, a negative, constant, direct, intraspecific effect $a_{ii}$ is often considered as \textit{self-regulation} or \textit{intraspecific density dependence} \citep{Case2000guide}. However, under the nonparametric approach, the interpretation of the local aggregated intraspecific term $J_{ii}$ is more complicated. For example, following the general parametric formalism defined in Eqn. (\ref{eqn.continuous.dynamics.high.order}), the elements of the Jacobian matrix are defined as
\begin{eqnarray} \label{eqn.intra.specific}
    J_{ii} &=& r_i + a_{ii} (s_{i} + N_i \pdv{s_{i}}{N_i}) + \sum_{j \neq i} a_{ij} (g_{ij} + N_i \pdv{g_{ij}}{N_i}) + \sum_{j \neq k; j, k \neq i} b_{ijk} (h_{ijk}+  N_i\pdv{h_{ijk}}{N_i}) + \cdots.
\end{eqnarray}
and when the system is at equilibrium, it reduces to 
\begin{eqnarray} \label{eqn.intra.specific.equilibrium}
    J_{ii}^* &=& a_{ii}N_i^* \pdv{s_{i}}{N_i} + \sum_{j \neq i} a_{ij} N_i^* \pdv{g_{ij}}{N_i} + \sum_{j \neq k; j, k \neq i} b_{ijk} N_i^* \pdv{h_{ijk}}{N_i} + \cdots.
\end{eqnarray}
Note that the notation for $s_i$, $g_{ik}$ and $h_{ijk}$ in Eqn. \ref{eqn.intra.specific} and thereafter has been simplified, but they are still functions of the species abundances $N$. Therefore, regardless of the presence of higher-order effects (whether $b_{ijk}$ are all zeros) or the system is at the equilibrium ($N_i^*, \dv{N_i}{t}=0$), the term $J_{ii}$ measures the local aggregated effect across all the pathways under which species $i$ can affect itself (not only the direct self-loop from $i$ to $i$).

Hence, it is natural to ask what is the link between $a_{ii}$ and $J_{ii}$. In general, a negative sign in $J_{ii}$ does not imply a constant direct self-regulation ($a_{ii}<0$), and vice versa \citep{somorjai1972relationship,haydon1994pivotal}. This property can be easily illustrated using the logistic population dynamics of a single species,
\begin{equation}
    \dv{N_i}{t} = N_i(r_i + a_{ii} N_i),
\end{equation}
where $r_i$ and $a_{ii}$ correspond to the intrinsic growth rate and the direct self-regulation of the single species $i$, respectively. At the equilibrium ($K_i=N_i^*=-a_{ii}/r_i$), the constant, direct, intraspecific effect is given by $a_{ii}$, which is interpreted as a constant self-regulation. In turn, from Eqn. (\ref{eqn.intra.specific.equilibrium}) the Jacobian $J_{ii}$ equals $r_i+2a_{ii}N_i=r_i(1-\frac{2N_i}{K_i})$, which is always positive when $N_i<K_i/2$, negative otherwise. This implies that, in general, the interpretation of intraspecific interactions across the parametric and nonparametric are not the same.

Then, when can $J_{ii}$ be transferable into $a_{ii}$? If we require that the signs of $a_{ii}$ and $J_{ii}$ be the same, we need the system at equilibrium following LV dynamics. The reasoning is that, no higher order effects exist in LV dynamics (i.e. $b_{ijk}=0$) and the partial derivative of $g_{ij}$ with respect to $N_i$ is $0$ (i.e. $\pdv{g_{ij}}{N_i} = \pdv{N_j}{N_i} = 0$), thus that the second and third terms on the right-side of Eqn. (\ref{eqn.intra.specific.equilibrium}) vanish. If we additionally require that $a_{ii} = J_{ii}$, then on top of the two previous requirements, we need all equilibrium abundances to be exactly the same \citep{may1972niche,song2018will}. While it is not explicit, note that previous work \citep{may1972will,coyte2015ecology} on the complexity-stability debate operates under these assumptions. 

\subsection*{Interspecific interactions}

Assuming that all direct effects are pairwise as described in Eqn. (\ref{eqn.continuous.dynamics.high.order}), the local, aggregated, interspecific effect can be derived as
\begin{eqnarray}
    J_{ij} &=& a_{ij} N_i \pdv{g_{ij}}{N_j} \ (i \neq j),
\end{eqnarray}
which only includes the direct effect (functional form) $g_{ij}$ between species $i$ and $j$. Under this assumption, $J_{ij}$ and $a_{ij} (i \neq j)$ always have the same sign because $\pdv{g_{ij}}{N_j}>0$ (biologically, this means that effects are stronger with larger species abundances). 
% Yet, a general constraint on $g_{ij}(N_i, N_j)$ is that $\pdv{g_{ij}(N_i, N_j)}{N_j}$ has to be positive (i.e., the larger the abundance, the larger the effect). 

Instead, assuming that constant direct interactions include higher-order effects as in Eqn. (\ref{eqn.continuous.dynamics.high.order}), the Jacobian (the local aggregated effects) can be derived as
\begin{eqnarray}
    J_{ij} &=& a_{ij} N_i \pdv{g_{ij}}{N_j} + \sum_{k \neq i, j} b_{ijk} N_i \pdv{h_{ijk}}{N_j}+\cdots \ (i \neq j),
\end{eqnarray}
where $J_{ij}$ encodes not only the direct interspecific effects, but also the higher-order effects coming from species other than species $i$ and $j$. Therefore, $J_{ij}$ can be interpreted as the local (state-dependent) direct effect between species $i$ and $j$ \textit{if and only if} all (parametric) direct effects are pairwise. That is, under higher-order effects, there is no simple link between (parametric) $a_{ij}$ and (nonparametric) $J_{ij}$ interspecific interactions. This also shows that the interspecific $J_{ij}$ ($i \neq j$) is fundamentally different from the intraspecific $J_{ii}$.

\section*{Learning from the differences between approaches}

\subsection*{Debates on self-regulation and stability}

Importantly, the differences between approaches (measures) can offer an opportunity to gain further insights about non-equilibrium ecological dynamics and higher-order interactions without modeling them \citep{AlAdwani_interactions}. For example, focusing on dynamics and building from the classic complexity-stability debate \citep{may1972will}, it is assumed that a community can be dynamically stable only if most of the constant, direct, intraspecific terms are negative ($a_{ii}<0$), i.e., if  ``the population of each species would by itself be stable'' \citep{may1972will}. This assumption comes from the observation that dynamical stability requires that most of the local, aggregated, intraspecific terms are also negative ($J_{ii}<0$) \citep{may1972will,yodzis1980connectance,sterner1997enigma,moore2012energetic,mccann2011food,barabas2017self}. Yet, there is few empirical evidence to support the addition of direct self-regulation ($a_{ii}<0$) for primary consumers and top predators \citep{pimm1977number,tilman1982resource,chesson2013species}, which would make most systems unstable. 

This apparent contradiction arises from the ill perception that a negative $J_{ii}$ requires a negative $a_{ii}$. However, recalling the link between $J_{ii}$ and $a_{ii}$ (Eqn. \ref{eqn.intra.specific}), $J_{ii}$ can be expressed in the absence of self-regulation ($a_{ii} = 0$) as 
\begin{eqnarray}
    J_{ii} = \begin{cases}
    r_i + \sum_{j \neq i} a_{ij} (g_{ij} + N_i \pdv{g_{ij}}{N_i}) + \sum_{j \neq k; j, k \neq i} b_{ijk} (h_{ijk}+  \pdv{h_{ijk}}{N_i}) + \cdots,& \text{if non-equilibrium}\\
    \sum_{j \neq i} a_{ij} N_i^* \pdv{g_{ij}}{N_i} + \sum_{j \neq k; j, k \neq i} b_{ijk} N_i^* \pdv{h_{ijk}}{N_i} + \cdots,              & \text{if equilibrium}.
\end{cases} 
\end{eqnarray}
This implies that a negative $J_{ii}$ (in equilibrium and non-equilibrium dynamics) in a non-self-regulated species $i$ (i.e., $a_{ii}\geq 0$) can arise in a broad class of nonlinear ecological dynamics simply by satisfying two conditions \citep{song2018guideline}: (1) a negative intrinsic growth rate (i.e., $r_i<0$), and (2) at least one negative, constant, direct, interspecific effect (i.e., $a_{ij}<0$). Note that those conditions do not apply to LV dynamics in equilibrium because of the linearity of the dynamics (i.e. $\pdv{g_{ij}}{N_i} = 0$). Figure \ref{fig.intra} shows a simple example in a 3-species food chain: both the consumer and the top predator have no constant, direct self-regulation; yet they can exhibit negative, local, aggregated, intraspecific effects. In contrast, the primary producer does have constant, direct self-regulation; yet it does not always exhibit a negative, local, aggregated, intraspecific effect. Hence, apart (or instead) of local aggregated self-regulation mechanisms, these (or other conditions) can be taken as stabilization sources of ecological communities.

\subsection*{Detection of higher-order interactions}

Ecology has seen the re-emergence of interests in higher-order interactions  \citep{mayfield2017higher,grilli2017higher,levine2017beyond}. However, it remains challenging to convincingly detect the presence of higher-order interactions in empirical data \citep{kleinhesselink2019mechanisms,letten2019mechanistic,xiao2020higher}. The different interpretations of $J_{ij}$ in the presence of higher-order effects provide a new method to detect their existence. For example, it has been found that $J_{ij}$ can change its sign across time in a community \citep{ushio2018fluctuating}. If we assume that the governing population dynamics only consists of pairwise direct effects (Eqn.~\ref{eqn.continuous.dynamics.high.order}), then this result should be interpreted as the change of the type of the constant, direct, interspecific effect (i.e., the sign of the parameters in the governing population dynamics have to change). However, if we assume that the governing population dynamics is fixed, then this result should be interpreted as the presence of higher-order direct effects. Figure \ref{fig.inter} shows a simple 3-species competing system with and without higher-order direct effects that illustrates these points. Of course, the assumption relies on our belief of how nature operates. For example, previous work \citep{ushio2018fluctuating} has assumed that the governing population dynamics is fixed, implying the presence of higher-order direct effects.

\section*{Discussion}

Traditionally, the parametric and nonparametric approaches have considered different measures and interpretations of species interactions. That is, species interactions are measured as constant-direct and local-aggregated effects within the parametric and nonparametric approaches, respectively. However, their interpretations have been occasionally used interchangeably (e.g., when describing the stability conditions of an ecological community \citep{may1972will,coyte2015ecology}), limiting our opportunity to use their differences to gain new insights about ecological systems. In this line, here we have provided a bridge between these two approaches (measures) and illustrated its utility. In particular, we have shown three fundamental properties of species interactions. First, the local, aggregated, intraspecific effect summarizes all potential pathways through which one species impacts itself, which can be negative without any direct self-regulation mechanism (see Fig.~\ref{fig.intra}). Second, the local, aggregated, interspecific effect only measures the direct effect between two species if and only if the population dynamics does not have any higher-order direct effects (see Fig.~\ref{fig.inter}A-B). Third, higher-order direct effects can be detected by studying changes of interaction signs within a nonparametric approach (Figure~\ref{fig.inter}C-D). 

% Ecology was born with the very idea that species interact with others.
% The goal of this \textit{Note} is to start a dialogue between the parametric and nonparametric approaches.

Species interactions are a multidimensional concept \citep{callaway2002positive,nakazawa2020species}, which naturally resulted in multiple definitions, ranging from mechanistically motivated characterizations to highly phenomenological representations \citep{white2019should}. However, despite the fact that these definitions are distinct mathematical entities, their construction implies that they must be inherently linked given that they all describe properties of species interactions. Importantly, most of the definitions can be classified as either parametric or nonparametric. The parametric approach decomposes species interactions in \textit{biologically interpretable} intraspecific, interspecific, and high-order direct effects. In turn, the nonparametric approach decomposes species interactions in \textit{computationally feasible} intraspecific and interspecific aggregated effects. Therefore, instead of linking specific definitions case-by-case, we have bridge these two approaches by focusing on their high-level conceptual links.

We hope this \textit{Forum} paper can open a dialogue between the parametric and the nonparametric approaches. The parametric approach has dominated community ecology \citep{kingsland2015alfred}, while the nonparametric approach has recently received increasing attention in the past decade \citep{deyle2016tracking,ushio2018fluctuating,cenci2019non,yu2020varying,bray2020forecasting,karakocc2020diversity,ushio2020interaction}. While both approaches have shaped our understanding of ecological dynamics, little is known about when and how we can transfer the knowledge from one approach to the other. Importantly, we have shown that the transferability is necessary and provides a new perspective that each approach itself cannot offer. For example, the Achilles' heel of the parametric approach is to evaluate whether the model has included enough details of the system under investigation. Indeed, if we assume a pairwise formalism, while the system is actually governed by a high-order formalism (Box 1), then we are likely to make false predictions of the system \citep{letten2019mechanistic}. However, the computational methods emerging from the parametric approach are difficult to distinguish (e.g., functional responses and higher-order interactions) \citep{AlAdwani_interactions}. Yet, relying upon the computational feasibility of the nonparametric approach \citep{martin2018reverse,deyle2016tracking,cenci2019non}, we may be able to distinguish the nature of species interactions acting on a system. Therefore, we believe that a better understanding of both the measures and assumptions used across parametric and nonparametric approaches can improve our knowledge of species interactions and ecological dynamics in general.

% The fundamental advantage of the parametric approach is the biological interpretability. 
% For example, building upon the mechanistic-motivated functional forms, the inferred interactions clearly represents some process (e.g. \cite{uricchio2019priority}). Importantly, regardless of the specific method (phenomenological, mechanistic, etc.) However, the biological interpretability strongly depends on the parametric model, 
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\begin{figure}[H]
    \centering
    \includegraphics[width =.8 \textwidth]{intra_nonequilibrium.pdf}
    \caption{Local, aggregated, intraspecific effects can be negative without a constant, direct, self-regulation mechanism. Panel (A) shows a simple 3-level trophic chain with a primary producer (bottom circle), a consumer (middle circle), and a top predator (top circle). These species are linked by arrows showing the standard energy/biomass flow. Note that only the primary producer has a constant direct self-regulation (typically used in parametric approaches), i.e., $a_{11}<0$, whereas $a_{22}=a_{33}=0$. The governing equations describing the population dynamics of the 3-species trophic chain are shown on the top. Panel (B) shows the local (state-dependent), aggregated, intraspecific effects $J_{ii}$ (typically used in nonparametric approaches) when the trophic chain is governed by a type II functional response (parameters are taken from Ref. \citep{hastings1991chaos}). Top predator ($J_{33}$) shows mostly negative, local, aggregated effects to itself; whereas both the consumer ($J_{22}$) and the primary producer ($J_{11}$) show anti-correlated oscillatory sign patterns of local, aggregated effects to themselves.
    }
    \label{fig.intra}
\end{figure}
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\begin{figure}[H]
    \centering
    \includegraphics[width = \textwidth]{Fig2.pdf}
    \caption{Local, aggregated, interspecific effects and constant, direct effects have the same sign if and only if all direct effects are pairwise based (i.e., absent of higher-order direct effects). Panels (A)-(B): Three competing species are governed by Lotka-Volterra dynamics without any higher-order direct effects (shown above panels; parameters adopted from \citealt{saavedra2017structural}). Panel (A) shows the time series of species abundances. Panel (B) shows the corresponding local, aggregated, interspecific effects (typically used in nonparametric approaches) that species 2 and 3 have on species 1, where both $J_{13}$ and $J_{12}$ are always negative. Panels (C)-(D): Three competing species are governed by Lotka-Volterra dynamics with an added higher-order direct effect from species 2 and 3 on species 1 (highlighted in red; shown above panels). This formulation of higher-order effects is conceptually inspired by \citealt{levine2017beyond} and mathematically adopted from \citealt{letten2019mechanistic}). Panel (C) shows the time series of species abundances, which exhibit similar patterns as the model without higher-order interactions shown in Panel (A). However, Panel (D) shows that both $J_{12}$ and $J_{13}$ change their sign, which are fundamentally different from the patterns shown in Panel (B).
    }
    \label{fig.inter}
\end{figure}
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%     \caption{Caption}
%     \label{fig.strong.weak.pattern}
% \end{figure}

% \end{linenumbers}
\end{spacing}

% \clearpage
% \renewcommand{\thepage}{S\arabic{page}}
% \setcounter{page}{1}

% \begin{appendix}
% \begin{center}
%     {\LARGE Supplementary Information for} \\
% \vspace{0.2 in}
% {\Large \bf Bridging the parametric and nonparametric meanings of \\species interactions}
% \end{center}
% \thispagestyle{empty}



% Here we establish the link between intraspecific direct effect $a_{ii}$ and aggregated effect $J_{ii}$. For simplicity, we only consider the population dynamics where all direct effects are pair-wise (similar arguments can be extended to higher-order direct effect).

% First we study the conditions under which the signs of $a_{ii}$ and of $J_{ii}$ are the same. Note that $a_{ij}$ and $b_{ijk}$ can freely change. The first possibility is that species are not interacting with other species, i.e. $g_{ij} \equiv 0, \forall i, j$. Then the problem is reduced to the logistic equation discussed in the text, where the signs are the same if and only if species abundance is large than the half of the carrying capacity. The second possibility is that species are interacting with other species. If the system is at non-equilibrium, then $g_{ij}+N_i \pdv{g_{ij}}{N_i}$ is generically non-zero, and we may change the sign of $J_{ii}$ by reversing the sign of $a_{ij}$. If the system is at equilibrium, then we require $\pdv{g_{ij}}{N_i} \equiv 0, \forall j$.

% Then we study the conditions under $a_{ii} = J_{ii}$. Considering Lotka-Volterra dynamics at equilibrium, it is equivalent to $J_{ii} = J_{ii}N_i$, i.e. $N_{i} = 1, \forall i$. 

% Assuming all direct effects to be pairwise \citep{lotka1926elements,volterra1926fluctuations}, the general population dynamics (Eqn.~\ref{eqn.continuous.dynamics.general}) can be written as
% \begin{equation}\label{eqn.continuous.dynamics.pairwise}
%     \dv{N_i}{t} = N_i(\underbrace{r_i}_{\text{intrinsic growth}} +  \underbrace{a_{ii}s_{i}(N_i)}_{\text{intraspecific}} + \underbrace{\sum_{j \neq i} a_{ij} g_{ij}(N_i, N_j)}_{\text{interspecific}}),
% \end{equation}

% Note that an alternative measure of the parametric pairwise interaction strength is $\pdv{f_i}{N_j}$ \citep{carrara2015inferring,xiao2017mapping}, biologically interpreted as the change in the per capita growth rate of species $i$ under a small change in density of species $j$. However, this measure has received less attention as it is more difficult to estimate given its time-varying and model-sensitive properties.
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