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Abstract

Motivation:Temporal behavior is an essential aspect of all biological systems. Time series have been

previously represented as networks. Such representations must address two fundamental problems: (i)

How to create the appropriate network to reflect the characteristics of biological time series. (ii) How to

detect characteristic temporal patterns or events as network communities. General methods to detect

communities have used metrics to compare the connectivity within a community to the connectivity one

would expect in a random model, or assumed a known number of communities, or are based on the

betweenness centrality of edges or nodes. However, such methods were not specifically designed for

network representations of time series. We introduce a visibility-graph-based method to build networks

from different kinds of biological time series and detect temporal communities within these networks.

Results: To characterize the uneven sampling of typical experimentally obtained biological time series,

and simultaneously capture events associated to peaks and troughs, we introduce the Weighted Dual-

Perspective Visibility Graph (WDPVG) for time series. To detect communities, we first find the shortest

path of the network between start and end nodes to identify nodes which have high intensities. This

identifies the main stem of our community detection algorithm. Then, we aggregate nodes outside the

shortest path to the nodes found on the main stem based on the closest path length. Through simulation,

we demonstrate the validity of our method in detecting community structures on various networks derived

from simulated time series. We also confirm its effectiveness in revealing temporal communities in

experimental biological time series. Our results suggest our method of visibility graph based community

detection can be effective in detecting temporal biological patterns.

Availability: The methods of building WDPVG and visibility graph based community detection are available

as a module of the open source Python package PyIOmica (https://doi.org/10.5281/zenodo.3691912)

with documentation at https://pyiomica.readthedocs.io/en/latest/. The dataset and codes we used in this

manuscript are publicly available at https://doi.org/10.5281/zenodo.3693984.

Contact: gmias@msu.edu

1 Introduction

Longitudinal behavior is an inherent aspect of all biological systems, and

has been widely investigated in various contexts, such as systems biology

(Alon, 2006), metabolic pathway analysis (Berk et al., 2011), and, recently,

gene expression (Bar-Joseph et al., 2012). With the development of novel

technologies in sequencing, mass spectrometry and other omics, multi-

level biological time series are becoming easier to obtain. An important

example is provided by longitudinal data from personal health monitoring

devices. Recent studies have shown that omics time series have a wide

range of applications in personal health and precision medicine. Multi-

omics time series data can be used in precision health (Rose et al., 2019),

and have provided insights into the onset of type 2 diabetes mellitus

(Zhou et al., 2019) and lung development Ding et al. (2019). Omics time

series can also be used to monitor health events, changes in physiological

states (Piening et al., 2018; Stanberry et al., 2013) and in molecular

and medical phenotypes (Chen et al., 2012). The rapidly increasing
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availability of biological time series requires new methods to integrate

different types of data, analyze them, and interpret the results in a fast and

informative way. Many platforms for multi-biological and multi-omics

data integration have been developed, including software such as DAVID

(Sherman et al., 2009), Galaxy (Giardine et al., 2005) and GenePattern

(Reich et al., 2006), our recent frameworks MathIOmica (Mias et al., 2016)

and PyIOmica (Domanskyi et al., 2019), which incorporate time-series

categorization, and many more. Network-based methods have been shown

to be effective in transforming time series into graph objects and capturing

their characteristics, potentially allowing for faster learning approaches

(Yang and Yang, 2008; Zou et al., 2019).

Currently several methods exist for transforming time series to complex

networks. For example, complex networks have been constructed from

pseudo-periodic time series by Zhang and Small (2006), who used single

nodes to represent cycles, and introduced a correlation-based threshold to

link node pairs. Another effective and efficient approach is to consider time

series points as a series of sequential intensity bars that are then connected

based their inter-visibility to obtain a visibility graph (VG) representation

of the time series (Lacasa et al., 2008), which recently attracted great

interdisciplinary interest (Ahmadlou et al., 2010; Luque et al., 2011; Zhu

et al., 2014; Zou et al., 2014; Bhaduri and Ghosh, 2015). There are two

types of VG typically considered: (i) the Natural Visibility Graph (NVG)

and, (ii) the Horizontal Visibility Graph (HVG) (Luque et al., 2009).

To construct a VG, we consider {s (tx) ; tx = 1, 2, 3, . . . , N} as

an N time point series in temporal ordering. The VG is obtained by

first representing the time series points as N nodes in a network, where

nodes i and j represent times ti and tj , with intensities s(ti) and s(tj)

respectively. Edges are constructed by joining nodes i, j if any other

intermediate time point tk , such as ti < tk < tj , has intensity s(tk) that

satisfies the following conditions for NVG and HVG respectively:

s(tk) < s(tj) + (s(ti)− s(tj))
tj − tk

tj − ti
NVG,

s(ti), s(tj) > s(tk) HVG.

(1)

Here, in the NVG formulation, an edge is added connecting nodes i and j

if any other time point tk , between ti and tj , has a corresponding intensity

s(tk) that lies below the line connecting s(ti) and s(tj) (i.e. there is a

direct line-of-sight between these peaks). The HVG has a simpler edge

construction condition: an edge is added connecting nodes i, j only if all

intermediate intensities s(tk) are less than both s(ti) and s(tj).

NVGs and HVGs are connected networks. The VG conserves the

structure of the time series in the graph topology (Lacasa et al., 2008).

However, the HVG original constructions do not account explicitly

for the potential effects of uneven time sampling or missing time

points. In the NVG such uneven sampling results in different visibility

of timepoints (changes in viewing angles in the construction), which

implicitly incorporates the effect of time distances, but without explicitly

weighting the edges the actual distance between nodes cannot be accounted

for. In realistic situations outside a laboratory setting, uneven sampling

occurs often. This may be due to technical limitations (for example

in mass spectrometry proteomics technical replicates may still sample

different proteins and lead to missing data and hence uneven sampling), or

limitations in subject participation (for example in clinical trials and human

subject research, the subjects’ work-dependent schedules may affect

their regular participation). These shortcomings limit the traditional VG

application in biological/medical time series analysis. Another limitation

of the traditional VG is the inability to simultaneously capture peaks and

troughs (points below the baseline). For example, the VG maps sinusoidal

and cosinusoidal time series to different graphs, but these two kinds of

time series should be considered equivalent up to a change of phase.

Another challenge in network representations of biological time series

is the lack of specific methods for detecting temporal communities. A

community is defined as a group of nodes, where the nodes within a

community are tightly connected, whereas the nodes between different

communities have loose connections (Girvan and Newman, 2002). Each

community in complex networks representing biological time series

thus identifies nodes with similar temporal behavior that are likely

to represent the same biological system status. One highly effective

approach for identifying communities is to compare the actual number of

intracommunity edges to what one would expect by a random placement

of the edges (Girvan and Newman, 2002; Clauset et al., 2004; Newman,

2006). This approach is based on the assumption of a random graph null

model. However, VGs cannot be considered as random graphs, even if

a VG is constructed based on a random time series. This is due to the

sequential nature of the nodes, the resulting connected graph, and the

underlying degree distribution (Luque et al., 2009).

In this investigation, we introduce the method of “weighted dual

perspective visibility graph” (WDPVG) for mapping time series to

complex networks. Our WDPVG approach considers uneven sampling

effects, and simultaneously captures peaks and troughs of time series.

Previously, VG edge weights have been assigned based on the arctangent

of ((sj − si)/(tj − ti)), which computes the “view angle” along the

direct line-of-sight connecting one intensity peak to another (Supriya et al.,

2016). Our method provides multiple choices for the edge weights: (i)

the Euclidean distance between nodes/intensity peaks, (ii) the tangent of

the view angle between two nodes, (iii)the time difference between time

points corresponding to connected nodes, or (iv) none. We then combined

the natural view perspective VG with the “reflected view perspective VG”

introduced in the methods below to create a complex network that can

capture both the positive and negative intensities changes. We note, that

this is the first time that Euclidean distance has been used for edge weights

in VGs, to the best of our knowledge.

We also provide a new VG community detection method, which is

based on shortest path calculations between VG nodes. Our method is

suitable for VGs as it does not depend on random graph null models, which

are commonly used in other widely used approaches, such as Newman’s

method (Newman, 2006). Briefly, as described below, we compute the

shortest path of the VG between start and end nodes as a main stem. The

nodes on the main stem are seeds for communities, and we then aggregate

nodes outside the shortest path to their most proximal seed nodes on the

main stem, where proximity is determined using graph path lengths.

We used various simulated time series to test our method effectiveness,

and demonstrated that our method has high tolerance for uneven sampling

and signal noise. Our comparison of our method to traditional community

detection methods, such as Girvan-Newman (Girvan and Newman, 2002)

and Louvain (Blondel et al., 2008), indicated that our approach is

more suitable for VGs. To show that our method can capture biological

processes we also applied it to several experimentally obtained time series,

longitudinal multi-omics data from blood components in prediabetics

(cytokines, glucose and haemoglobin A1c) (Zhou et al., 2019), saliva

omics data (mean gene expression) (Domanskyi et al., 2019) and signals

from wearable biosensors (radiation exposure) (Li et al., 2017).

The methods of building WDPVG and visibility graph based

community detection are available as a module of the open source Python

package PyIOmica(Domanskyi et al., 2019). The dataset and codes we

used as described below are available with a Python notebook, publicly

available online at https://doi.org/10.5281/zenodo.3693984.
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2 Materials and methods

2.1 Weighted dual perspective visibility graph (WDPVG)

The VG can characterize time series in terms of complex network theory

as it can inherit the structure properties of the time series data from which

it was created. VGs are robust to noise and not affected by the selection of

method parameters (e.g. cutoffs/thresholds) (Liu et al., 2015). VGs have

been widely applied in many fields (Supriya et al., 2016; Stephen et al.,

2015; Bezsudnov and Snarskii, 2014). However, as we discussed above,

the VG has two disadvantages: first, it does not consider the effect of

uneven sampling; second, it cannot capture the time series changes below

a zero baseline. Here we provide a new method, WDPVG, to overcome

these limitations that restrict VG applications to biological time series

analysis.

We use the following four steps to create WDPVGs, utilizing auxiliary

natural visibility graphs (NVGs).

Step 1: NVG construction. We create an NVG from time series

{s (tx) ; tx = 1, 2, 3, . . . , N} as it was described above by equation

1, using the NVG mapping criteria.

Step 2: Assign edge weights between two nodes. We have flexible

choices for the edge weight between two nodes, including no weight,

Euclidean distance (Equation 2), the tangent of the view angle (Equation

3), or the time difference (Equation 4):

wij =
√

(s(ti)− s(tj))2 + (ti − tj)2, (2)

wij =

∣

∣

∣

∣

s(ti)− s(tj)

ti − tj

∣

∣

∣

∣

+ 10−8, (3)

wij = |ti − tj |, (4)

where, wij represents the weight of the edge between nodes i and j, which

correspond time points ti and tj respectively, in time series {s (tx)}. In

equation 3, we added the offset 10−8 to account for the case s(ti) −

s(tj) = 0. The algorithm implementation details are available in the

documentation of the functions in PyIOmica. In this manuscript, we use

Euclidean distance between nodes as the edge weight.

After Step 2, We compute the adjacency matrix, A, of the normal

perspective NVG.

Step 3. Compute the reflected perspective NVG. We invert the time

series {s (tx)}, by reflecting across the time axis, i.e. for each s(ti) in

{s (tx)}, let s′(ti) = −s(ti), where we obtain the inverted time series

{s′ (tx)}. We then repeat Steps 1 and 2 for s′(tx) to get the reflected

perspective NVG and the adjacency matrix A′.

Step 4. Combine the normal perspective NVG and reflected perspective

NVG. For any pair of i, j, elements Aij and A′

ij have two possible

relationships: either Aij = A′

ij , or one of them is 0 but the other one

is non-zero. We can combine the A and A′ to get the WDPVG adjacency

matrix Ad by the following criteria:

Ad
ij = max {Aij , A

′

ij} (5)

If we use the HVG mapping criteria, i.e. s(ti), s(tj) > s(tk) ti <

tk < tj , instead of the NVG mapping criteria, we can obtain the weighted

dual perspective horizontal visibility graph.

It is important to note that in case that either we are not interested in

changes below the baseline, or that the intensities of the time series are all

non-negative, the normal perspective weighted VG is enough, and we do

not need to create a WDPVG.

2.2 Shortest path based community detection

The shortest path in a VG between the start node (corresponding to first

time point) and end node (corresponding to last time point) identifies a

bundle of nodes which have high intensities, and thus is the determining

factor for the entire network structure. This shortest path acts as a stem

for community identification in VG: Our method chooses the shortest path

between start node and end node in VG as the main stem, and each node

on this stem is a natural hub of a community, as described below.

Let nodes {vsi ; i = 1, 2, 3, . . . , k} be the k nodes on the shortest path

of start node and end node in a VG. {voj ; j = 1, 2, 3...m} are the nodes

outside the shortest path, where m = N − k. For any nodes vop in {voj },

we compare the shortest path length between vop and each node in {vsi }, to

identify the minimal path length value lpq and corresponding node vsq in

{vsi }. vop is then assigned to the community whose hub is vsq . If there are

more than one hub corresponding to the minimal value, we always choose

the "left" hub, which corresponds to the earlier time point, as the target

community’s hub. We then iterate through all nodes in {voj }, to get the

initial community structure.

Finally, we measure the shortest path length between any pairs of hubs,

i.e. the nodes in {vsi }, and if the shortest path length between them is less

than a chosen cutoff, ǫ, we then combine the two communities to obtain

the final community structure.

Normally, the minimal ǫ is the cutoff for which the network has

the same number of communities as the number of hubs. Similarly, the

maximal value of ǫ corresponds to the case where the whole network

becomes a single community. By changing the value of ǫ between

minimum and maximum, we can get the most stable community structure,

i.e. the number of communities stabilizes when iterating with increasingly

larger ǫ. Thus, we can optimize the community structure. In our algorithm,

we have provided the following options for cutoff selection: (i) with or

without cutoff, (ii) fixed cutoff, or (iii) automatically optimized cutoff

based on a plateau in number of communities as a function of ǫ. This

feature is unique to our method.

Another unique feature of our method is that we can choose the

direction of how the nodes are connected in the community construction.

Specifically, we can restrict the node vop in {voj } to only link to the

community with hub vsq for which the corresponding time point tq is

earlier than the time point tp corresponding to vop . This feature essentially

imposes a causality condition, where time points only depend on other

past time points, and not future ones. It is important to keep time order

in the community detection for characterizing biological time series from

living systems. We have allowed flexibility in the implementation of the

method, so the user can also choose node linking directions as earlier side,

later side or both sides - this may be required for systems where there is

time reversal symmetry.

Note that our method of shortest path based community detection may

be used not only for WDPVG, but also for all kinds of visibility graphs,

such as HVG and NVG.

Figure 1 provides a simple illustration of how our method works. A

simulated time series is created from a cosine wave signal mixed with 40

percent random noise (Figure 1 A). Then, we construct the weighted NVG

and the reflected perspective NVG in Figure 1 B and C. Afterwards, the

weighted dual natural visibility graph is created by combining the NVG

and the reflected perspective NVG (Figure 1 D). We use our community

detection method to the graph in Figure 1 E showing the communities

corresponding to the original time series.

2.3 Simulation

We used simulated time series to evaluate our method. We illustrate

here three types of time series: cosine, square, and saw-tooth wave

signals. Then we added different intensity random noise to each of
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A

B

C

B

Reflected Perspective Natural Visibility Graph

Natural Visibility Graph

Time Series
D

E

Dual Perspective Natural Visibility Graph

Community Structure Network Graph

Fig. 1. Illustration of the construction of weighted perspective visibility graph and

community structure based on the shortest path length community detection method. A is

the simulated time series cosine signal with 40 percent noise in intensity. We construct the

weighted NVG and reflected NVG, where the edge weights are based on Euclidean distance.

Edge connections of NVG and reflected NVG are illustrated in B and C respectively. The

dual weighted perspective visibility graph is created by combining NVG and reflected NVG,

as shown in D, where the links with red color come from NVG, and the blue links come

from the reflected NVG. Using our shortest path length based community detection method,

we can find the community structure of the time series, as shown in E. The time points in

the same community are encircled by a blue outline, and the color of the nodes represents

the signal intensity. The time series separates into two communities that capture the cosine

signal’s periodicity.

these signals to test the tolerance of the community detection to noise.

We also randomly removed different percentages of time points from

these time series to check the robustness to missing data and the

resulting uneven sampling. We then built the WDPVG for these time

series, and detected communities using our method. The results of

our method were compared to traditional community detection methods

such as the Louvain method, which is a widely used method of fast

greedy optimization of modularity (Blondel et al., 2008), and the

Girvan–Newman hierarchical method which is based on centrality notions

(Girvan and Newman, 2002). The Louvain method was implemented using

the Python python-louvain package, (https://github.com/taynaud/python-

louvain). The Girvan-Newman method is available in NetworkX, which

is the most popular open source network analysis package in Python

(Hagberg et al., 2008).

2.4 Experimental biological time-series applications

We also compared the results of our method to the Louvain and Girvan-

Newman methods when applied to several experimentally acquired

biological datasets. These datasets used are summarized below.

Saliva Set (DS1). We used a saliva RNA-sequencing dataset we

generated, that was obtained from a clinical trial monitoring individualized

response to the standard 23-valent pneumococcal polysaccharide vaccinate

(PPSV23). The saliva was sampled from a healthy individual. We

had first carried out a 24-hour hourly sampling to establish a normal

physiological state baseline. Then, we repeated with another 24-hour

hourly sampling that also included vaccination with pneumococcal vaccine

(PPSV23) to assess response to the vaccine. The vaccine was administered

approximately 3.5 hours following the first hourly sample. Approximately

7 hours after vaccination, the individual reported having a fever that lasted

about 4 hours. Here, we analyzed the differences between the two 24

hour periods: (i) the first 24 hours hourly sampling (Sal1(t)) and (ii) the

24 hours hourly sampling that included vaccination (Sal2(t)). We then

constructed the paired difference time series ∆, where for each timepoint

i for each gene α, ∆αSal(ti) = Sal2α(ti) − Sal1α(ti). We carried out

a categorization into groups and subgroups of gene expression based on

these data (see online Python notebook, and previous discussion using

PyIOmica (Domanskyi et al., 2019; Mias et al., 2016; Mias and Zheng,

2020)). For a given subgroup of genes, we constructed the mean time

series across the members of this subgroup. We then built the WDPVG

and compared the different temporal community detection methods results

on this time series (see also online Python notebook for code and data at

https://doi.org/10.5281/zenodo.3693984).

Diabetes Set (DS2). The second dataset came from personal multi-

omics profiling data (e.g. including blood measurements of A1C, fasting

glucose and selected immune cytokines etc.) from individuals with Type

2 diabetes mellitus at its earliest stage (Zhou et al., 2019). As an example,

we chose one individual’s A1C, fasting glucose and selected immune

cytokines data from the rich dataset, as reported by the authors. These

time series include 14 time points with different healthy condition. We

constructed the VG from the time series and detected the communities,

to assess whether our method can capture the physiological status of the

subject for these time series.

Radiation Exposure Set (DS3). Finally, we analyzed a radiation

exposure time series dataset from wearable biosensors (Li et al., 2017).

The data collected were hourly personal radiation exposure, assessed by a

wearable biosensor for more than 100 days. We chose one day spans (24

hours, from 12 am to 11 pm) as the natural time window. We then analyzed

separately four days when the individual of this study had flight activity,

and the radiation reported on these days was higher than non-flight days.

We then applied our methods to assess if we can detect the radiation events

as community structures.

3 Results

3.1 Simulation

To investigate whether our method captures periodic features we simulated

well defined periodic time series. We compared our path-length based

method (PL) with two widely used community detection method, the

Louvain method (LN) (Blondel et al., 2008) and the Girvan–Newman

method (GN) (Girvan and Newman, 2002). Figure 2 shows the signal

intensity and communities for the cosine and square wave signals’ time

series (top and bottom, respectively). The communities our method

detected matched exactly with the signal periods. The Louvain method

also captured precise periodic features in the square wave signal, where

it assigned communities corresponding to half periods. However, the

Louvain method obtained some unmatched results in the case of the cosine

signal time series. Finally, the Girvan–Newman method obtained coarser

results compared to the other two methods.

In addition, Figure 3 shows results on the tolerance to noise and

missing data for cosine wave (Figure 2A-D), square wave (Figure 2E-

H), and saw-tooth wave signals(Figure 2I-L). Compared to the Louvain

and Girvan–Newman methods, our method displays higher tolerance in

either situation of noisy signals or uneven sampling. Whenever we added

noise from 20 percent to 80 percent, or additionally removed time points

from 10 percent to 40 percent, our method still captured the periodic

changes. To the contrary, the results of the two traditional methods

were irregular, with coarsely defined communities and multiple nodes

in communities unmatched with the corresponding signal’s period. Even

though the Louvain method worked well in the perfect square wave signal

time series (e.g. without noisy and uneven sampling), the method showed

low tolerance to noise or time point removal.
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Fig. 2. The intensity and communities of cosine (top) and square wave (bottom) signal

time series. The communities obtained by our method (PL), Louvain method (LN) and

Girvan–Newman method (GN) are presented with color bars, with time points in same

community having the same color. The communities obtained with our method on both

cosine and square wave time series are capturing the signal periods. The Louvain method

works better on the square wave signal but worse on the cosine signal. The Girvan-Newman

method captures the periods of the two time series with some errors at the boundaries.

3.2 Experimental biological time-series applications

We then applied our method to the experimentally acquired biological time

series summarized in the method section above. First we used our method

to detect communities from the saliva omics monitoring experiment, DS1.

We chose genes signals from the data displaying autocorrelation at lag 1

(simulation adjusted p-value < 0.01), and calculated the average across

the signals for each time point. The average signal intensity is shown in

Figure 4 A top. We then built the WDPVG from this signal and we obtained

temporal communities using the different methods in Figure 4 A bottom.

The community structure was found to reflect the four physiological states

over the 24 hours: (i) pre-vaccination baseline, (ii) post-vaccination to

fever onset, (iii) fever onset to resolution, (iv) post vaccination baseline.

The PL method showed better separation of the periods corresponding

to the physiological state of the subject. The LN and GN methods also

performed well, displaying, however, some mixing of timepoints.

The analysis of the Type 2 diabetes dataset, DS2, focused on results

previously reported (see Figure 6B in Zhou et al. (2019)). The data included

signals of A1C, fasting glucose and selected immune cytokines. There

are no negative values in the dataset, so we built a normal perspective

NVGs from each entry, and obtained the community structures. Figure 4

B top left shows the heatmap of standardized reported intensities (i.e. the

results of (Zhou et al., 2019), with the communities structures heatmaps,

shown for PL, LN and GN methods as well in Figure 4 B respectively. The

community structures detected for DS2 reflect the change of time series

intensities changes. We note that our community detection method does

not require standardization of the raw data. From the figure we see that

the community changes capture the status changes in each signal, while

effectively filtering out the noise in the data. The PL method results overall

better reflect the duration of the different physiological states, as compared

to the LN and GN methods.

Finally, we applied our method to four separately days’ radiation

exposure measurements from DS3. We show the four separate day results

with high radiation exposure changes (when the individual was traveling

by flight on these days) in Figure 4 C. The community structures of

these four days all capture the radiation exposure changes, acting as an

adverse event detector. Again, the PL method is more concordant with the

radiation exposure timeframes overall, without mixing of timepoint in the

communities.

4 Conclusion

We have introduced new methods to characterize graphs derived from time

series through the application of VGs. We have introduced WDPVGs that

combine normal perspective and reflected perspective visibility graphs,

so that the peaks and troughs of a time series can be simultaneously

represented. The WDPVGs also take into account uneven sampling effects

through weight assignments to the edges. The WDPVG approach thus

produces a graph that captures well the characteristics of the underlying

time series.

We have also developed a new method to detect communities of VG.

Our VG community detection method is based on the graphs geometry

and considers the shortest path from the start node to the end node. The

method does not assume a random graph null model. This makes the

method advantageous and more appropriate for all kinds of VGs (e.g.

NVG, HVG or WDPVG), because VGs cannot be compared to random

graphs due to the sequential nature of time points.

The several simulated time series we used to test our WDPVG and

VG community detection methods supported their validity. Our methods

also showed high tolerance for uneven sampling and signal noise. Our

PL community detection method showed robustness to noise compared

to traditional community detection methods such as the Louvain and

Girvan–Newman methods. Overall, the results suggest that our approach

is better suited for community detection within VGs.

The application of our method to experimental biological datasets

gave examples of how the method may be used to identify temporal

communities that correspond to biological states (e.g. physiological state

of a subject, changes in molecular measurements due to vaccination,

or detection of radiation exposure). The method has great potential not

only for detecting the boundaries of biological temporal states, but for

medical implementation in detecting potential adverse medical events from

temporal measurements.
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Fig. 4. Results of our visibility graph based community detection method applied to experimental biological datasets. A shows the results of applying different methods to an individual’s

saliva omics time series before and after their vaccination, over a 24 hour period. The time series indicates average gene expression for a subset of genes with autocorrelated behavior. The

VG nodes’ color in A bottom represents the intensities of the time series, and nodes belonging to the same detected community are framed by a blue border. The communities correspond

well to the four physiological subject states of biological significance: prior to vaccination, after vaccination, a post vaccination fever period and resolution, post fever relative recovery.

B The standardized intensities of A1C, fasting glucose and selected immune cytokines time series from a subject with Type 2 diabetes (B top left) and their community structure (Bleft)

are shown for different methods. The data are ordered temporally from left to right, and physiological states are indicated per timepoint as one of H (healthy), S (stress), Ax (antibiotic

regiment) and Im (immunization) states. For the experimental data, warm colors indicate higher and colder colors lower intensities respectively. In the methods’ results, nodes belonging

to the same community are depicted with the same color bar. The communities structure reflects the changes in physiological state that result from molecular intensity differences. C The

radiation intensity data from wearable biosensors in four separate days including flight activity are shown. The red disc indicates that the radiation was recorded during the airport carry-on

luggage check. Stars represent radiation monitored during flight timepoints. Again, nodes in the same community are indicated with the same color in the horizontal bars. The PL community

structures during each of these four days indicate the periods of varying radiation exposure, and correctly identify the onset of the exposure.

Zou, Y. et al. (2014). Long-term changes in the north-south asymmetry

of solar activity: a nonlinear dynamics characterization using visibility

graphs. Nonlinear Processes in Geophysics, 21(6), 1113–1126.

Zou, Y. et al. (2019). Complex network approaches to nonlinear time

series analysis. Physics Reports, 787, 1–97.

.CC-BY-NC 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.973263doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.973263
http://creativecommons.org/licenses/by-nc/4.0/

