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1. Abstract 11 

Arterial Spin Labelling (ASL) is a non-invasive, non-contrast, perfusion imaging technique 12 
which is inherently SNR limited. It is, therefore, important to carefully design scan protocols 13 
to ensure accurate measurements. Many pseudo-continuous ASL (PCASL) protocol designs 14 
have been proposed for measuring cerebral blood flow (CBF), but it has not yet been 15 
demonstrated which design offers the most accurate and repeatable CBF measurements. In this 16 
work, a wide range of literature PCASL protocols, including single-delay, sequential and time-17 
encoded multi-timepoint protocols, and several novel protocol designs, which are hybrids of 18 
time-encoded and sequential multi-timepoint protocols, were first optimised using a Cramér-19 
Rao Lower Bound framework and then compared for CBF accuracy and repeatability using 20 
Monte Carlo simulations and in vivo experiments. It was found that several multi-timepoint 21 
protocols produced more confident, accurate, and repeatable CBF estimates than the single-22 
delay protocol, while also generating maps of arterial transit time. One of the novel hybrid 23 
protocols, HybridT1-adj, was found to produce the most confident, accurate and repeatable CBF 24 
estimates of all protocols tested in both simulations and in vivo (24%, 47%, and 28% more 25 
confident, accurate, and repeatable than single-PLD in vivo). The HybridT1-adj protocol makes 26 
use of the best aspects of both time-encoded and sequential multi-timepoint protocols and 27 
should be a useful tool for accurately and efficiently measuring CBF. 28 

2. Introduction 29 

Arterial spin labelling (ASL) MRI employs magnetically labelled arterial blood as an 30 

endogenous tracer which can be used to map cerebral blood flow (CBF) (Detre et al., 1992; 31 

Williams et al., 1992). The longitudinal magnetisation of upstream arterial blood is typically 32 

labelled by inversion and, after a delay for tracer inflow (Alsop and Detre, 1996), is imaged. A 33 

single image, or multiple images using different delays, can be acquired and, with the use of a 34 

control image and an appropriate signal model (Buxton et al., 1998), the local CBF can be 35 

estimated. 36 
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A consensus paper from the ISMRM Perfusion Study Group and the European ASL in 1 

Dementia consortium recommended using pseudo-continuous ASL (PCASL) labelling with a 2 

single-PLD (post labelling delay) protocol for clinical applications, due to the superior SNR of 3 

PCASL labelling and the robustness and simplicity of using a single-PLD (Alsop et al., 2015). 4 

The PLD must be set long enough to ensure complete arrival of the labelled blood across the 5 

whole brain, while being kept short enough to preserve SNR. This leads to brain regions with 6 

short arterial transit times (ATTs) having a sub-optimally long PLD, while any regions with 7 

unexpectedly long ATTs incorrectly appear hypoperfused. 8 

Sequential multi-PLD (Alsop and Detre, 1996) and multi-LD/PLD (label duration) 9 

(Borogovac et al., 2010; Johnston et al., 2015; Zhao et al., 2015) protocols can be used to 10 

sample the dynamics of the tracer signal, providing greater robustness of CBF estimates to 11 

variations in ATT across brain regions and subjects as well as generating potentially useful 12 

ATT maps (MacIntosh et al., 2012). However, it is often assumed that the reduction in data 13 

averaging when using multi-PLD protocols (required when acquiring multi-PLD data in a 14 

matched scan time with a single-PLD protocol) leads to a reduction in the precision of the 15 

multi-PLD CBF estimates (Alsop et al., 2015; Dai et al., 2017; Günther, 2007; Teeuwisse et 16 

al., 2014), which could outweigh the benefits of correcting for ATT effects. 17 

We recently demonstrated that a sequential multi-PLD PCASL protocol can be 18 

objectively optimised to maintain higher CBF accuracy across a wider range of ATTs than a 19 

single-PLD or evenly spaced multi-PLD protocol (Woods et al., 2019). This is due to an 20 

improved balance between early sampling of the tracer kinetics (which has higher SNR and 21 

benefits short ATT brain territories) with late sampling (which has lower SNR and benefits 22 

long ATT territories). So far, this optimisation framework has only been applied to sequential 23 

multi-PLD PCASL protocols with a fixed and unoptimised label duration. 24 
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Time-encoding of the PCASL preparation using a Hadamard encoding scheme has been 1 

proposed as a more efficient method for acquiring multi-PLD/LD ASL data, due to the noise 2 

averaging that occurs during the decoding process (Dai et al., 2013; Günther, 2007; Wells et 3 

al., 2010). However, this reduced noise may be counteracted by reduced ASL signal due to the 4 

use of shorter LDs for each sub-bolus (Guo et al., 2018). Multiple variations of the time-5 

encoded technique have been proposed in order to improve the SNR across the different time 6 

points (Teeuwisse et al., 2014), but so far the CBF accuracy of only fixed-LD time-encoded 7 

protocols have been compared with single-PLD and sequential multi-PLD/LD protocols and 8 

these protocols were not first optimised for CBF accuracy (Dai et al., 2013; Guo et al., 2018; 9 

Johnston et al., 2015). Therefore, the results of these comparisons may simply reflect the 10 

chosen protocol timings rather than the ultimate accuracy of each technique. 11 

In this work, we aimed to establish which PCASL approach can achieve the most 12 

accurate CBF measurements. We did this by investigating the relative CBF accuracy of a 13 

single-PLD protocol, a wide range of multi-timepoint PCASL protocol designs from the 14 

literature, and several novel protocol hybrid designs which are introduced in this study (Figure 15 

1). We first applied a previously developed optimisation framework (Woods et al., 2019) to 16 

the multi-timepoint protocol timings to ensure each protocol would optimally estimate CBF 17 

across an expected range of ATTs for healthy grey matter (GM) given the design constraints 18 

of each protocol. The CBF accuracy of these optimised protocols were then compared using 19 

Monte Carlo (MC) simulations, with a subset of protocols being compared in vivo. 20 

3. Theory 21 

3.1. Literature protocol designs 22 

The range of protocol designs investigated in this work are shown in Figure 1. The single-PLD 23 

and sequential multi-PLD, with a fixed LD, (Seqsingle-LD) protocol designs have been widely 24 
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used in the literature to estimate CBF only or both CBF and ATT, respectively (Alsop et al., 1 

2015; Alsop and Detre, 1996; Buxton et al., 1998; Dai et al., 2017; Gonzalez-At et al., 2000; 2 

Okell et al., 2013). Borogovac et al. (2010) suggested the use of multiple sequential LDs with 3 

a fixed PLD as a more SNR-efficient method for estimating CBF and ATT than fixed-LD 4 

multi-PLD methods, though this hypothesis was not tested. (Johnston et al., 2015) later 5 

demonstrated the use of both varying LDs and PLDs (referred to here as Seqmulti-LD) to estimate 6 

CBF and ATT, but this implementation did not use inversion pulses for background 7 

suppression (BGS), instead relying only on pre-saturation to facilitate T1 estimation from the 8 

ASL data, which may have affected the resulting CBF accuracy. In this study, we investigated 9 

both Seqsingle-LD (a single fixed LD with N PLDs) and Seqmulti-LD protocols (N LDs with N 10 

PLDs). 11 

Günther (2007) introduced time-encoded PCASL as an efficient method for generating 12 

multi-timepoint ASL data. The PCASL pulse train is split into M sub-boluses which vary 13 

between label and control conditions within each TR according to a predesigned encoding 14 

matrix (a Hadamard matrix being the most efficient encoding). The acquired data is then 15 

decoded using the same encoding matrix generating M perfusion weighted images which 16 

reflect the effective LD and PLD of each sub-bolus; for a Hadamard encoding of size (𝑀 +17 

1) × 𝑀 this results in a '(𝑀 + 1) 2⁄  decrease in noise SD (assuming additive white Gaussian 18 

noise) and a scan time reduction of (𝑀 + 1) (2 ∙ 𝑀)⁄  compared to a matched timing sequential 19 

control - tag experiment (Dai et al., 2013). 20 

The original time-encoded protocol used a fixed LD for all sub-boluses (Hadfixed). 21 

Several variations were introduced by (Teeuwisse et al., 2014), including the free-lunch 22 

(Hadfree-lunch) and T1-adjusted (HadT1-adj) protocols. In the T1-adjusted protocol, the encoded 23 

LDs are set such that the total ASL signal originating from each sub-bolus is equal at the time 24 
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of acquisition, thus accounting for the increased T1 decay experienced by earlier sub-boluses 1 

and so maintaining an approximately constant level of SNR after complete bolus arrival. The 2 

free-lunch protocol uses the same long LD and PLD for the first encoded bolus as a typical 3 

single-PLD protocol, with the remaining sub-boluses filling this long PLD. After decoding, 4 

similar data to the single-PLD experiment is generated from the first sub-bolus, with the 5 

remaining sub-boluses generating extra temporal data without an increase in scan time. Figure 6 

1 shows Hadfree-lunch with T1-adjusted LDs, but any scheme may be used. 7 

3.2. Hybrid protocol designs 8 

Here, we introduce a novel protocol design which is a hybrid of the time-encoded and 9 

sequential protocols. Rather than using a fixed final PLD after the time-encoded preparation 10 

and acquiring multiple averages, there are N final PLDs which sequentially vary for each repeat 11 

of the same encoding matrix, allowing increased flexibility of the decoded timepoints. This 12 

results in 𝑁 ∙ 𝑀 decoded timepoints (N final PLDs, M time-encoded sub-boluses). This design 13 

can trade-off the superior noise averaging of the time-encoding methods (larger encoding 14 

matrices result in more signal averaging) and the increased signal accumulation from longer 15 

LDs (typically achievable with smaller encoding matrices). We investigated the use of both 16 

fixed (Hybridfixed) and T1-adjusted (HybridT1-adj) time-encoded LDs with this protocol design. 17 

The Hybrid protocols were previously presented in abstract form (Woods et al., 2018). 18 

3.3. Variable-LD time-encoded and hybrid designs 19 

The time-encoded and hybrid protocols do not have to be restricted to the designs discussed 20 

above, i.e. fixed and T1-adjusted LDs. It is possible for the individual encoded LDs and final 21 

PLDs to be chosen arbitrarily. As an extension to the comparison of the protocols detailed 22 

above, we tested whether there is a more optimal time-encoded LD pattern than the existing 23 

literature designs by optimising a time-encoded protocol and a hybrid protocol where each LD 24 

in the encoding matrix could be adjusted separately, rather than according to a predefined 25 
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pattern. To increase the flexibility of the hybrid protocol even further, each of the N final PLDs 1 

was associated with a separate encoding matrix of M LDs, rather than repeating the same 2 

encoding matrix timings for each of the PLDs, leading to 𝑁 ∙ 𝑀 decoded timepoints with 𝑁 ∙ 𝑀 3 

separate LD and PLD pairs. These protocols are referred to as Hadvariable and Hybridvariable. 4 

4. Material and methods 5 

All optimisations, simulations and analysis, except CBF and ATT estimation, were performed 6 

using MATLAB (The MathWorks, Natick, MA). 7 

4.1. Protocol optimisation 8 

The multi-timepoint protocols described above were optimised for CBF accuracy, while 9 

treating ATT as a potentially confounding parameter, using a recently developed framework 10 

(Woods et al., 2019). The original implementation of the optimisation algorithm iterated 11 

through each of the N PLDs of a multi-PLD protocol, and for each, performed a grid search for 12 

the PLD value which minimised the mean Cramér-Rao Lower Bound (CRLB) variance across 13 

ATTs, taking into account the number of averages realisable in a given scan time. The principal 14 

of the optimisation for each protocol considered in this work was the same, but due to the 15 

different sizes of the timing parameter spaces, the implementation was adapted in each case, 16 

as described in Supporting information text 1 - Protocol optimisation. For each protocol, the 17 

number of effective PLDs, NT, was optimised for by running the optimisation for a range of NT 18 

and selecting the protocol with the minimum cost. NT was constrained to ≤15 to ensure multiple 19 

averages at each PLD. 20 

The optimisation used a uniform ATT prior probability distribution with a 21 

representative GM range of 0.5 - 2 s for healthy volunteers (Alsop et al., 2015; Dai et al., 2017; 22 

Guo et al., 2018; Woods et al., 2019), sampled at 1 ms increments, with a 0.3 s linearly 23 

decreasing weighting beyond either end of the range to reduce edge effects. Since the 24 
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optimisation does not depend on CBF (Woods et al., 2019), a CBF point prior of 50 1 

mL/100g/min was used. The LD update grid searches were restricted to 0.1 s ≤ LD ≤ 1.8 s with 2 

25 ms increments, ensuring the minimum LD was greater than 100 ms, as suggested by 3 

(Teeuwisse et al., 2014), with the longest LD matching the recommended single-PLD LD of 4 

1.8 s (Alsop et al., 2015). The PLD update grid was 0.075 s ≤ PLD ≤ 2.3 s with 25 ms 5 

increments. Other settings included: single-shot readout with 638 ms of non-ASL time per TR 6 

(presaturation and readout); variable minimum TR (Wang et al., 2013) (where the TR is 7 

minimised for each timepoint); 5 minute scan duration. The CRLB was calculated using the 8 

standard CASL kinetic model from (Buxton et al., 1998), using the parameters in Table 1, 9 

assumed additive white Gaussian noise, as described in (Woods et al., 2019). The noise 10 

magnitude was calculated from preliminary in vivo data (noise SD of label and control data = 11 

1.3 × 10!" relative to M0). 12 

4.2. Monte Carlo simulations 13 

Monte Carlo simulations were performed to investigate the performance of the optimised 14 

protocols under ideal conditions where the ground truth is known. Simulated data were 15 

generated for each protocol using the standard CASL kinetic model (Buxton et al., 1998) with 16 

the parameters in Table 1 for ATTs between 0.5 - 2 s at 0.01 s increments. White Gaussian 17 

noise was added to 2000 replicas of the label and control (or encoded) data at each ATT sample, 18 

using the same noise magnitude as the protocol optimisations above. The noisy difference data 19 

at each timepoint was then decoded according to the encoding scheme for each protocol. The 20 

data were then fit, and the estimates compared, as described below. 21 

4.3. In vivo experiments 22 

4.3.1. Acquisition 23 

To investigate the relative performance of the protocols given in Table 2 in vivo, 10 healthy 24 

volunteers (5 female, mean age 30.7, range 24 - 40) were recruited and scanned under a 25 
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technical development protocol, agreed with local ethics and institutional committees, on a 3T 1 

Prisma system (Siemens Healthcare, Erlangen, Germany) with a 32-channel receive-only head 2 

coil. The Hadvariable and Hybridvariable protocols were not compared in vivo since they only led 3 

to marginal improvements in CBF accuracy during simulation (see Results 5.9). All scanning 4 

occurred during a single session for each subject (total scan duration ~50 minutes). Volunteers 5 

were asked to lie still and stay awake throughout the scan. A nature documentary was shown 6 

to help maintain alertness. 7 

The scan protocol included a 3-plane localiser and a 3D single-slab TOF angiography 8 

sequence used to position the PCASL labelling plane. A 3D T1-weighted MPRAGE sequence 9 

(1.5×1.5×1.5 mm3) was acquired for generating the brain and grey matter (GM) masks. Four 10 

calibration images were acquired with the same readout module as the PCASL data (see below) 11 

but with alternating in-plane phase encode direction to correct off-resonance distortions. 12 

Finally, the ASL scans were acquired in a pseudo-randomly permuted order for each subject 13 

to reduce the impact of physiological drift. 14 

ASL imaging parameters were: single-shot 3D gradient and spin-echo (GRASE) 15 

readout (Feinberg and Oshio, 1991; Günther et al., 2005), TE 28.5 ms, variable minimum TR, 16 

excitation flip-angle 90°, refocussing flip-angle 120° (He et al., 2018; von Samson-17 

Himmelstjerna et al., 2016), FOV 230×168×100 mm3, matrix 64×46×20, 20 acquired 18 

partitions, no parallel imaging acceleration, no slice-oversampling, centric partition ordering, 19 

bandwidth 2298 Hz/px, total readout duration 583 ms, spectrally-selective fat saturation. The 20 

imaging slab was placed in the transverse plane with the superior edge flush with the top of the 21 

brain. The excitation and refocussing pulse widths were 110 mm and 150 mm, respectively, to 22 

maximise the signal level within the nominal slab. Outer-volume suppression (OVS), using a 23 

cosine-modulated water suppression enhanced through T1 effects (WET) module (Golay et al., 24 
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2005; Ogg et al., 1994), was used to improve the slab profile, similar to (Günther et al., 2005). 1 

Readout, phase-encode, and 3D encode directions were anterior-posterior, right-left, and feet-2 

head, respectively. 3 

PCASL labelling was achieved using the parameters in Table 1 with the labelling plane 4 

positioned in the transverse plane bisecting the V3 section of the vertebral arteries (Okell et al., 5 

2013). BGS was performed with a slab-selective WET presaturation module (Golay et al., 6 

2005; Ogg et al., 1994) immediately before the start of labelling and two optimally timed slab-7 

selective C-shaped FOCI pulses (µ = 1.5, β = 1349 s-1, Amax = 20, duration 10.24 ms) (Ordidge 8 

et al., 1996; Payne and Leach, 1997). The presaturation and inversion slabs were parallel to the 9 

labelling plane and covered the entire brain, with the inferior edge at the centre of the labelling 10 

plane. For each protocol, the inversion pulses were timed to null two T1 values (700 ms and 11 

1400 ms) 100 ms before excitation using the formula in (Günther et al., 2005). The inversion 12 

pulses were interleaved with the PCASL labelling when the optimal inversion times occurred 13 

during the labelling period, as in (Dai et al., 2012, 2010), leading to more uniform BGS across 14 

a range of timings (Supporting Information Figure S1). 15 

The calibration images were acquired using presaturation followed by a 10 s delay to 16 

allow controlled and near-complete magnetisation recovery before the 3D-GRASE readout. 17 

4.3.2. Preprocessing 18 

Preprocessing of the in vivo data was performed using tools from the FSL toolbox (Jenkinson 19 

et al., 2012). The ASL data were motion-corrected and registered to the mean calibration data 20 

with rigid-body registration using FLIRT (Jenkinson, 2002; Jenkinson and Smith, 2001), 21 

before correcting for susceptibility induced off-resonance geometric distortions using TOPUP 22 

(Andersson et al., 2003). Brain and GM masks were generated from the structural data using 23 

BET (Smith, 2002) and FAST (Zhang et al., 2001). These were transformed to ASL space after 24 
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image registration (Greve and Fischl, 2009) and had thresholds applied (brain mask 90%, GM 1 

mask 50% tissue partial volume). 2 

The edges of the brain-masked calibration image were eroded before being expanded 3 

using a mean filter and brain masked again to remove low-intensity voxels at the edge of the 4 

brain which can lead to erroneously high CBF values during the voxelwise calibration step. It 5 

was then smoothed (Gaussian kernel, σ = 2.5 mm) to improve SNR, as recommended (Alsop 6 

et al., 2015). 7 

The perfusion-weighted images were generated by pairwise subtracting or decoding the 8 

preprocessed ASL images. They were then calibrated prior to fitting to account for scaling 9 

factors by voxelwise dividing by the smoothed calibration image and the labelling efficiency 10 

and multiplying by the blood–brain partition coefficient (Table 1). 11 

4.4. Model fitting 12 

CBF and ATT were estimated identically for the simulated data and in vivo data using the 13 

variational Bayesian inference algorithm, BASIL (Chappell et al., 2009). In each voxel, this 14 

approach not only provides estimates of CBF and ATT but also uncertainty estimates in the 15 

form of the standard deviation of the marginal posterior distributions. The standard CASL 16 

kinetic model (Buxton et al., 1998) was used with the parameters in Table 1. Fitting was 17 

initialised with a coarse grid search for robustness (bounded by 0 ≤ CBF ≤ 200 mL/100g/min 18 

and 0 ≤ ATT ≤ 2.5 s, sampled every 1 mL/100g/min and 0.01 s). The BASIL fitting priors were 19 

noninformative to minimise bias in the resulting parameter estimates. Negative CBF and ATT 20 

estimates were set equal to zero. The single-PLD data was only fit for CBF with the ATT fixed 21 

at 1.3 s; this value was found to minimise the theoretical CBF bias across the ATT range 0.5 - 22 

2 s. The data was not averaged before fitting. 23 
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In vivo ground truth CBF and ATT estimates were generated by fitting the combined 1 

data from all protocols, similar to (Woods et al., 2019). To account for the different noise levels 2 

between protocols, BASIL was given 3 noise magnitudes to estimate in an approach similar to 3 

weighted NLLS fitting (Chappell et al., 2009). Three noise magnitudes were used because there 4 

were 3 categories of data with similar noise magnitudes after decoding: the non-time-encoded 5 

data (single-PLD and sequential protocols), the 8×7 Hadamard encoded protocols, and the 4×3 6 

Hadamard encoded hybrid protocols (see Results 5.1).  To investigate whether these ground 7 

truth estimates were biased towards certain protocols and whether modelling the 3 noise 8 

magnitudes is beneficial, ground truth estimates for the MC simulation data were identically 9 

generated with either 1 or 3 noise magnitudes. 10 

4.5. Comparison metrics 11 

The CBF estimates of each protocol were compared in three different ways for both simulation 12 

and in vivo data: (1) the marginal posterior probability distribution SDs output by BASIL were 13 

used as a measure of uncertainty in the CBF estimates (Chappell et al., 2009), and are sensitive 14 

to how well the kinetic model fits the data; (2) the root-mean-squared-error (RMSE) relative 15 

to the ground truth estimates were used as a measure of accuracy, incorporating both systematic 16 

bias and noise contributions, similar to (Woods et al., 2019); and (3) the test-retest RMSE for 17 

each scan was calculated by splitting the data into two 2.5 minute data sets and separately 18 

fitting each half, giving a measure of within-session repeatability, which is independent of any 19 

ground truth estimates or uncertainties derived from the fitting process. Note, for (3) the HadT1-20 

adj data were split into the first 4 and last 5 averages while the Hybridfixed errors could not be 21 

calculated because there were only 3 averages (see Table 2). 22 

4.6. In vivo analysis 23 

Only voxels within the GM masks were used in the analysis. To eliminate poorly fit ground 24 

truth data from the analysis, voxels with ground truth posterior SDs more than 3 times the inter-25 
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quartile range above the 75th percentile for either CBF or ATT were excluded (Tukey, 1977). 1 

This resulted in upper bounds on the ground truth posterior SDs of 2.9 mL/100g/min and 0.061 2 

s. Voxels were also excluded if the posterior SDs for any individual protocol were > 500 3 

mL/100g/min or > 50 s, which would suggest an extremely poor fit, perhaps arising from 4 

motion or other artefacts, and could bias the resulting comparison. This extremely poor fit 5 

criteria was also used for the MC simulation analysis. 6 

The comparison metrics were calculated on a voxelwise and subjectwise basis. 7 

Standard errors for the voxelwise metrics were calculated by bootstrap sampling (Efron, 1979) 8 

across the 10 subjects using 1000 samples, where the relevant statistical measure (mean SD, 9 

RMSE, or test-retest RMSE) was performed on each bootstrap sample. Each sample is a 10 

selection of 10 randomly chosen subjects, selected with replacement, meaning a given sample 11 

could contain multiple copies of the same subject’s data. The SDs generated from these 12 

bootstrap distributions reflect the variability in the voxelwise metrics due to the sampled 13 

subjects. This approach gives a more conservative standard error than would be calculated from 14 

the combined voxelwise data across subjects due to the large number of voxels. 15 

5. Results 16 

5.1. Optimised protocols 17 

The optimised timings for each protocol are shown in Table 2 and the predicted CBF SDs 18 

(CRLBs) are shown as a function of ATT in Figure 3. The results of the Hadvariable and 19 

Hybridvariable protocols are reported separately in Results 5.9 due to the marginal improvements 20 

achieved with these protocols. 21 

The increasing density of PLDs at later times in both sequential protocols (Seqsingle-LD 22 

and Seqmulti-LD - see Supplementary Table X) is similar to the CBF optimised multi-PLD 23 

protocol in (Woods et al., 2019) but differs here because a different ATT range and a 3D 24 
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readout were used. Due to the similarity with the Seqsingle-LD protocol timings, and the marginal 1 

improvement in predicted CBF errors, Seqmulti-LD was not used in further comparisons. A 4×3 2 

encoding came out as optimal for the Hadfixed protocol (15% lower average CBF CRLB SD 3 

than 8×7, see Supporting Information Figure S8 and Supporting Information Table S1), but 4 

due to the more common use of the 8×7 encoding and the large jump in the CBF error part way 5 

through the ATT range, the 8×7 protocol was used in further comparisons. The optimal Hadfree-6 

lunch protocol was an 8×7 encoding with 6 T1-adjusted LDs. 7 

5.2. In vivo CBF and ATT maps 8 

Figure 2 shows the spatial maps of the CBF and ATT estimates, their uncertainties (expressed 9 

as the SD of the posterior distribution), and the errors relative to the ground truth estimates for 10 

each tested protocol for a single representative subject. The CBF and ATT maps are shown for 11 

all subjects in Supporting Information Figure S2 and Supporting Information Figure S3. There 12 

is good agreement in broad spatial variations of both CBF and ATT between the protocols, 13 

demonstrating the overall consistency of the estimates. However, the error maps highlight the 14 

variation between protocols in over/under-estimating CBF and ATT. Particularly evident, is 15 

the effect that the assumed single-PLD ATT had on the single-PLD CBF errors: regions where 16 

the assumed ATT was an overestimate led to the CBF being underestimated, relative to the 17 

ground truth estimates.  18 

High uncertainties in the lower slice of the CBF and ATT SD maps can be seen in 19 

regions consistent with the known location of large arteries. Due to the presence of these 20 

elevated SDs in the single-PLD data, which has a long PLD of 2 s, it was assumed to be largely 21 

caused by signal dephasing of pulsatile flow during the GRASE readout, rather than 22 

macrovascular ASL signal. However, these large arteries may contain residual ASL signal for 23 

the protocols with short PLDs. High uncertainties can also be seen in the sagittal sinus and 24 
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from eye motion. These voxels were not included in the quantitative comparisons (see Results 1 

5.3). 2 

5.3. In vivo data selection 3 

There were a total of 79,211 voxels in the GM masks across all 10 subjects. Of these, 6.2% 4 

were excluded due to poor ground truth CBF and ATT fits (posterior SDs > 2.9 mL/100g/min 5 

or > 0.061 s) and a further 4.1% were excluded because there were extremely poor fits in one 6 

or more of the individual scans (posterior SDs > 500 mL/100g/min or > 50 s). 7 

Of the included voxels, 90% of the ground truth ATTs lay between 0.5 - 1.51 s (5th - 8 

95th percentiles, median = 0.97 s). Supporting Information Figure S4 shows, for a single 9 

subject, that the excluded voxels are mostly located where one would expect large arteries to 10 

be. For the included voxels, the mean grey matter CBF estimates were not significantly 11 

different across protocols on the subject level (Wilcoxon signed rank test), averaging at 57.17 12 

± 0.48 mL/100g/min (mean ± SD across protocols). 13 

5.4. Trends across ATTs 14 

The predicted CBF uncertainties (the CRLB SDs) for the literature protocols and novel hybrid 15 

protocols are shown in Figure 3(A, D) as a function of ATT for a fixed CBF of 50 16 

mL/100g/min. The single-PLD CBF uncertainties were flat across the ATT range because it is 17 

only dependent on the noise magnitude, which is assumed to be constant across all ATTs. The 18 

sharp changes in uncertainties across ATTs for the multi-timepoint protocols are where 19 

ATT=PLD or ATT=LD+PLD for one or more of the LD/PLD pairs. As the ATT increases, 20 

these discontinuities represent the transition of a data point to either no longer sampling the 21 

inflow section of the kinetic model (LD+PLD<ATT) or moving from the tracer decay portion 22 

of the model (ATT<PLD) to the inflow portion (ATT<LD+PLD<LD+ATT). Both cases result 23 

in an increase in the CBF uncertainty. 24 
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Of the literature protocols, Hadfree-lunch maintained the lowest uncertainties across most 1 

of the ATT range. HadT1-adj performed similarly to Hadfree-lunch at short ATTs, reflecting the 2 

similarity in the timings of their last 6 time-encoded LDs, but had much larger uncertainties at 3 

ATT > 1.7. Seqsingle-LD maintained similar uncertainties across the ATT range to Hadfree-lunch 4 

and HadT1-adj. Hadfixed had the highest predicted CBF uncertainties across most of the ATT 5 

range. All the multi-timepoint protocols had reduced uncertainties at short ATTs compared to 6 

the single-PLD protocol but were worse at longer ATTs. 7 

Both hybrid protocols achieved lower predicted CBF uncertainties at almost all ATTs 8 

relative to their non-hybrid analogues. The HybridT1-adj protocol also maintained a lower 9 

uncertainties than the other multi-timepoint protocols at almost all ATTs and had lower 10 

uncertainties than the single-PLD protocol for most of the distribution. 11 

The median CBF uncertainties from the MC simulations (the marginal posterior 12 

probability distribution SDs from the Bayesian fitting) are shown in Figure 3(B, E) and follow 13 

the trends of the predicted uncertainties extremely closely, validating the expected performance 14 

of each protocol under ideal conditions. The CBF uncertainty discontinuities are visible but are 15 

more gradual due to the blurring effect of noise on ATT estimation. 16 

The in vivo median CBF posterior uncertainties (Figure 3(C, F)) exhibit similar relative 17 

performance for each protocol, but there is a general decrease in the uncertainties at longer 18 

ATTs for all protocols compared to the predicted and simulation CBF uncertainties. This is 19 

thought to be due to the correlation between ATT and receive coil SNR (shorter ATTs are 20 

generally found closer to the centre of the brain where the SNR is lower - see Discussion 6.3). 21 

Similar jumps in the uncertainties can be seen, especially for the Hadfixed protocol. 22 
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5.5. Uncertainty: mean posterior distribution SD 1 

The mean MC simulation and in vivo voxelwise CBF posterior SDs across all ATTs, which 2 

represents the average uncertainty in the CBF estimates, are shown in Figure 4. The simulation 3 

results are shown with both the uniform ATT distribution and weighted by the measured in 4 

vivo ATT distribution. 5 

Of the literature protocols, Hadfree-lunch had the lowest simulation CBF uncertainty 6 

across both the uniform and the in vivo ATT distributions, including single-PLD (4% lower 7 

for the uniform ATT distribution). Across all the protocols, HybridT1-adj had the lowest 8 

simulation CBF uncertainty (13% and 9% lower mean posterior SD than single-PLD and 9 

Hadfree-lunch, respectively, for the uniform ATT distribution). 10 

The in vivo results are similar to the uniform ATT distribution simulation results but 11 

much more closely match the simulation uncertainties when they are weighted by the in vivo 12 

ATT distribution. The upweighting of shorter ATTs found in vivo led to several differences 13 

including single-PLD having worse CBF uncertainty than all protocols except Hadfixed and the 14 

performance of HadT1-adj being improved relative to Hadfree-lunch and Seqsingle-LD. In vivo, HadT1-15 

adj had the lowest average CBF uncertainty of the literature protocols (16% and 4% lower mean 16 

posterior SD than single-PLD and Hadfree-lunch, respectively), while HybridT1-adj maintained the 17 

lowest average CBF uncertainty of all the protocols in all cases (24% and 14% lower than 18 

single-PLD and Hadfree-lunch, respectively, in vivo). 19 

The subjectwise data for all three comparison metrics are shown in Supporting 20 

Information Figure S5 and demonstrate similar trends to the voxelwise comparisons, though 21 

with fewer significant differences between protocols due to the lower statistical power of these 22 

comparisons. 23 
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5.6. Accuracy: RMSE relative to ground truth 1 

Figure 5 shows the simulation and in vivo voxelwise RMSEs, which represents a measure of 2 

accuracy in the CBF estimates, including both systematic bias and precision, with a lower 3 

RMSE meaning a protocol was more accurate. As for the posterior SDs, Hadfree-lunch had the 4 

best simulation CBF accuracy of the literature protocols in the simulations (18% lower RMSE 5 

than single-PLD), but HadT1-adj had the best accuracy in vivo (40% and 5% lower RMSE than 6 

single-PLD and Hadfree-lunch, respectively). Over all the protocols, HybridT1-adj had the best CBF 7 

accuracy in both simulation (24% and 7% lower RMSE than single-PLD and Hadfree-lunch, 8 

respectively, for the uniform ATT distribution) and in vivo (47% and 15% lower RMSE than 9 

single-PLD and Hadfree-lunch, respectively). The accuracy of single-PLD is poorer relative to the 10 

multi-timepoint protocols than in the uncertainty comparison due to the bias caused by 11 

assuming a fixed ATT, which is estimated in the ground truth data and multi-timepoint 12 

protocols. 13 

Supporting Information Figure S6 demonstrates that the ground truth CBF estimates 14 

generated with one noise magnitude have a clear bias towards the single-PLD and Seqsingle-LD 15 

protocols, whereas the ground truth estimates generated using three noise magnitudes 16 

underestimate the RMSEs for all protocols by a similar amount, effectively removing the 17 

relative bias between protocols in the comparison. 18 

5.7. Repeatability: test-retest RMSE 19 

The mean MC simulation and in vivo test-retest voxelwise CBF RMSEs are shown in Figure 20 

6. A lower test-retest RMSE means a protocol was more repeatable. Note, a further 2.4% of 21 

the in vivo GM voxels were excluded from this comparison because one or more of the 2.5 22 

minute scans had CBF or ATT posterior SDs > 500 mL/100g/min or > 50 s, suggesting very 23 

poor fits. 24 
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The simulation results reflect those of the uncertainty metric, with Hadfree-lunch having 1 

the best repeatability of the literature protocols (3% lower test-retest RMSE than single-PLD 2 

for the uniform ATT distribution) while HybridT1-adj had the best repeatability overall (7% and 3 

4% lower test-retest RMSE than single-PLD and Hadfree-lunch, respectively, for the uniform ATT 4 

distribution). This again demonstrates that more robust CBF estimates can be obtained with 5 

certain multi-timepoint protocols than a single-PLD protocol, in this case using a metric which 6 

is not reliant on uncertainty estimates from the fitting algorithm nor any estimated ground truth. 7 

As before, there were differences due to the shorter average ATTs seen in vivo than 8 

were simulated, causing the in vivo single-PLD CBF repeatability to be worse relative the 9 

multi-timepoint protocols. Another result also only seen in vivo was that Seqsingle-LD had the 10 

best repeatability of all the protocols (RMSE = 7.00±0.24 mL/100g/min), better than HybridT1-11 

adj (RMSE = 7.13±0.82 mL/100g/min). However, the subjectwise analysis, shown in 12 

Supporting Information Figure S5(C), demonstrates that there was one subject with much 13 

higher CBF test-retest RMSE for HybridT1-adj than the other subjects. There was an average 14 

GM CBF increase of 10 mL/100g/min between the two halves of the HybridT1-adj scan for this 15 

subject, possibly due to a change in subject alertness (Clement et al., 2018). After removing 16 

this subject from the comparison, HybridT1-adj had the best CBF repeatability across all 17 

protocols (test-retest RMSE = 6.33±0.41 ml/100g/min: 28% and 15% lower than single-PLD 18 

and Hadfree-lunch, respectively) while the Seqsingle-LD RMSE was relatively unaffected (7.01±0.27 19 

mL/100g/min) (see Supporting Information Figure S9). 20 

5.8. Arterial transit time 21 

Although the protocols were not optimised for ATT accuracy, the results of the ATT 22 

comparisons are briefly described here. The in vivo voxelwise measures of ATT uncertainty, 23 

accuracy, and repeatability are shown in Supporting Information Figure S7 and demonstrate 24 
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that the time-encoded and hybrid protocols all have more confident, accurate, and repeatable 1 

ATT estimates than Seqsingle-LD. HadT1-adj had the lowest uncertainty, while HadT1-adj and 2 

HybridT1-adj both had the highest accuracy and best repeatability. 3 

5.9. Hadvariable and Hybridvariable Protocols 4 

The optimal Hadvariable and Hybridvariable protocol timings are given in Table 2 and the MC 5 

simulation uncertainties are shown in Figure 7. The Hadvariable timings and uncertainties are 6 

similar to those of the Hadfree-lunch protocol, though the average uncertainty is slightly lower for 7 

Hadvariable. Similarly, the optimised Hybridvariable protocol only provided a small reduction in 8 

uncertainty relative to HybridT1-adj. These results suggest that the constraints of the Hadfree-lunch 9 

(with T1-adjusted LDs) and HybridT1-adj protocols are near optimal within their respective class 10 

of protocols, making them attractive protocol designs due to the reduced optimisation 11 

complexity resulting from their timing constraints. For these reasons, Hadvariable and 12 

Hybridvariable were not included during the in vivo comparison. 13 

6. Discussion 14 

In this study, a wide range of PCASL protocol designs were optimised for CBF accuracy, using 15 

a previously developed Cramér-Rao Lower Bound algorithm, and their CBF estimates 16 

compared using Monte Carlo simulations and in vivo experiments, which were in good 17 

agreement. The CBF estimates were compared with: (1) the standard deviation of the marginal 18 

posterior probability distributions from the fitting algorithm as a measure of uncertainty; (2) 19 

the RMSEs of the estimates relative to the ground truth estimates as a measure of accuracy, 20 

which includes both random variability and systematic biases; and (3) the RMSEs of the test-21 

retest estimates as a measure of repeatability. 22 

It was demonstrated that the HybridT1-adj protocol had the most confident, most accurate 23 

and most repeatable CBF estimates of all the tested protocols, including the single-PLD 24 
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protocol. This highlights the benefit of generating multi-timepoint ASL data from both time-1 

encoded LDs and sequential PLDs. This hybrid method benefitted from the longer LDs 2 

possible with a smaller encoding matrix, but still achieved a time-decoding noise reduction 3 

factor of 2 and maintained a sufficiently well sampled range of unique PLDs due to the use of 4 

multiple sequential PLDs. 5 

These results also highlight that, even though the multi-timepoint protocols have lower 6 

SNR at each timepoint compared to the single-PLD protocol, some can achieve more accurate 7 

CBF estimates on average across a range of ATTs. This is because the noise in multi-timepoint 8 

data is essentially averaged across the data during the fitting process, resulting in similar noise 9 

averaging to the single-PLD protocol, but with data that more effectively samples the signal 10 

curve across the range of ATTs. 11 

Of the protocol designs from the literature, the Hadfree-lunch design with T1-adjusted LDs 12 

was found to have CBF estimates that were more confident, accurate, and repeatable than the 13 

other literature designs for the uniform ATT distribution used in the simulations. Due to the 14 

shorter average ATTs witnessed in vivo, however, the HadT1-adj protocol outperformed Hadfree-15 

lunch. It was seen in simulation that Seqsingle-LD produced similarly confident, accurate, and 16 

repeatable CBF estimates on average to HadT1-adj. This suggests that the averaging benefit from 17 

time-decoding for HadT1-adj is similar to the benefit of longer LDs and more flexible PLDs for 18 

Seqsingle-LD. It is also apparent that the use of fixed-LDs in time-encoded PCASL is a sub-19 

optimal design for CBF estimation. 20 

6.1. Protocol optimisation 21 

This study was restricted to protocols optimised solely for CBF accuracy. It is also possible to 22 

simultaneously optimise for CBF and ATT accuracy (Owen et al., 2016; Sanches et al., 2010; 23 

Santos et al., 2010; Woods et al., 2019; Xie et al., 2008) but we chose to focus on CBF 24 
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estimation for two reasons: 1) CBF is often the main parameter of interest with knowledge of 1 

ATT predominantly being used to correct ATT related biases in the CBF estimates, and 2) 2 

optimising for only one parameter makes interpretation of the final protocols and their relative 3 

parameter estimation accuracy simpler. However, there is nothing to prevent the optimisation 4 

framework being used to also, or solely, optimise for ATT accuracy (Woods et al., 2019). 5 

The optimised Seqmulti-PLD protocol included only one LD shorter than 1.8 s, suggesting 6 

that it is not optimal to use short LDs with short PLDs for CBF estimation for the investigated 7 

ATT range, a technique previously used in the literature (Johnston et al., 2015; Zhao et al., 8 

2015). It also does not appear optimal to perform multi-timepoint acquisitions by only varying 9 

the LD (Borogovac et al., 2010). 10 

The single-PLD protocol used in this study was not optimised using the CRLB 11 

framework, as used for the multi-timepoint protocols. Use of this framework would maximise 12 

the protocol's average SNR, likely resulting in a PLD shorter than the longest expected ATT, 13 

which is in contrast with the recommended approach (Alsop et al., 2015) and could have 14 

resulted in potentially large CBF underestimation in regions where ATT>PLD (Guo et al., 15 

2018). Future work could investigate the tradeoff between accuracy and precision of the single-16 

PLD protocol with a shorter PLD in comparison to the best performing multi-timepoint 17 

protocols presented in this study. 18 

The standard time-encoded protocols were relatively simple and fast to optimise, due 19 

to the reduced dimensionality of the timing parameter space enforced by the design constraints. 20 

This contrasts with the sequential and hybrid protocols which must be iteratively optimised, 21 

and therefore take more time; the Seqmutli-LD, Hadvariable, and Hybridvariable protocols also 22 

required many random initialisations to avoid local minima. The standard time-encoded 23 

protocols might, therefore, make ideal candidates for real-time protocol optimisation since they 24 
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can be quickly adjusted during a scan to better match patient specific ATT information 1 

generated from preceding TRs (Xie et al., 2010). 2 

Hadamard-encoding schemes were used for the time-encoded protocols because these 3 

provide the most efficient encodings. However, they can only be of size (rows×columns) 4 

2k×(2k-1), for k=1,2,4,6,8,10,…. Less efficient encodings may provide more flexibility in the 5 

protocol timings and could be explored with the same optimisation framework used in this 6 

work. 7 

6.2. Choice of ATT prior 8 

A uniform ATT prior distribution of 0.5 - 2 s was chosen based on the ATT range seen in 9 

(Woods et al., 2019), which used a similar labelling plane placement. However, the in vivo 10 

ATTs in this study were generally shorter, with 95% of the ground truth ATTs ≤1.51 s. This 11 

may be due in part to the use of a visual stimulus to maintain subject alertness, which can lead 12 

to a reduction in ATTs in the visual cortex (Qiu et al., 2010), a region which typically has 13 

longer ATTs than other GM brain regions (Dai et al., 2017). 5.2% of the voxels had ATTs <0.5 14 

s, which was outside the optimised ATT range. However, if these voxels are excluded from the 15 

analysis, the results are similar and the conclusions remain unchanged (results not shown). 16 

Flow crushing gradients were also not used here, which have been shown to increase the 17 

measured ATTs across the brain (Dai et al., 2017), though the spoiler gradients sandwiching 18 

the GRASE refocussing pulses will have caused some flow crushing (Günther et al., 2005). 19 

Since resting ASL scans do not typically use a visual stimulus and vascular crushing is not 20 

currently recommended for clinical scans (Alsop et al., 2015), it is likely an ATT prior range 21 

of 0.5 - 1.8 s is sufficient for protocol optimisation for young healthy volunteers. However, a 22 

range of 0.5 - 2 s may be more appropriate if vascular crushing is used or for older populations 23 

(Dai et al., 2017). 24 
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6.3. Variable noise across ATT 1 

There was a gradual increase in the in vivo CBF posterior distribution SDs at shorter ATTs 2 

compared to the simulations, which assumed equal noise across all ATTs. One explanation is 3 

that shorter ATTs are generally located closer to the middle of the brain and so further from 4 

the head-coil receive elements than longer ATTs. This could result in an SNR level that was 5 

negatively corelated with ATT. Another explanation is that shorter ATTs are in regions closer 6 

to larger upstream arteries and so experience greater signal variability due to cardiac pulsation. 7 

To test the hypothesis that the CBF posterior SDs vary with ATT, the voxelwise 8 

temporal noise, σ, was calculated from the calibrated in vivo single-PLD control images by 9 

taking the SD across repeats. A linear model, σ(ATT) = 𝑎 ∙ ATT + 𝑏, was fit to these data from 10 

all subjects using the ground-truth ATT estimates and the "fit" function in MATLAB using 11 

bisquare weights, which is robust to outliers. The fitted parameters were 𝑎 = −4.28 × 10!# s-12 

1 and 𝑏 = 20.29 × 10!# with the model explaining 58% of the variance (𝑅$ = 0.58), 13 

indicating there is increased noise in the control images at locations with shorter ATTs. 14 

This noise model was used in additional MC simulations, similar to those described in 15 

the Methods section, after being rescaled so that σ(1.25	s) was equal to the noise SD used in 16 

the original simulations. Figure 8 shows a comparison between the variable noise simulations 17 

and in vivo data, demonstrating a much-improved qualitative match than the fixed noise 18 

simulations. This suggests the relationship between ATT and temporal signal variation largely 19 

explains the differences seen in the trends in vivo, though we cannot deduce the cause of this 20 

variability. This ATT dependent noise model is unlikely to be useful for protocol optimisation 21 

because it will likely vary across subjects, subject placement, and head coil design. 22 
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6.4. Subject CBF and ATT variation 1 

Large differences in the CBF and ATT maps were seen across subjects (Supporting 2 

Information Figure S2 and Supporting Information Figure S3). These differences may be due 3 

to previously seen global variations across age and sex, such as decreasing CBF and increasing 4 

ATT with age (Chen et al., 2011; Dai et al., 2017; Parkes et al., 2004) and higher CBF and 5 

lower ATT in women (Henriksen et al., 2013; MacIntosh et al., 2010; Vernooij et al., 2008). 6 

6.5. Long label duration protocols 7 

The longest LD used in this work was 1.8 s, which is currently recommended for clinical use 8 

with single-PLD (Alsop et al., 2015). It has been suggested that it is more SNR efficient to use 9 

long LDs of 3 - 4 s (resulting in fewer averages) for single-PLD PCASL (Zun et al., 2014) with 10 

additional benefits of reduced temporal signal variation and reduced sensitivity to delayed 11 

ATTs (Dai et al., 2012; Lebel et al., 2015). To investigate the extent to which the CBF accuracy 12 

of the protocols in this work may benefit from longer LDs, we repeated the protocol 13 

optimisations with a maximum LD of 5 s and conducted further MC simulations as before. The 14 

LD of the single-PLD protocols was optimised similar to (Zun et al., 2014) but for a 5 minute 15 

scan, a PLD of 2 s, and an ATT range 0.5 - 2 s. 16 

The optimised protocol timings are given in Supporting Information Table S2 and the 17 

MC simulation fitting posterior distribution SDs are shown in Figure 9. All the protocols used 18 

much longer LDs than when the maximum LD was 1.8 s, except HadT1-adj which had the same 19 

timings as before. The increase in the protocols' LDs led to an average reduction in the CBF 20 

posterior SDs of 0.17 ± 0.07 mL/100g/min (5.1% ± 1.9%). As before, the HybridT1-adj and 21 

Hybridvariable protocols had similar posterior SDs, which were the lowest of all the protocols, 22 

including single-PLD. It is possible that the in vivo benefits of using longer LDs extend beyond 23 
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the theoretical benefits found here (Dai et al., 2012; Lebel et al., 2015) and should be 1 

investigated further. 2 

7. Conclusions 3 

In this work, we demonstrated that optimised multi-timepoint protocols can generate more 4 

confident, accurate, and repeatable CBF estimates across a given ATT range than a single-PLD 5 

protocol, while also generating ATT maps. We found that the time-encoded free-lunch protocol 6 

with T1-adjusted LDs can lead to improved CBF estimates over a fixed-LD time-encoded 7 

protocol and is a good approximation to the optimal time-encoded design. Finally, we 8 

demonstrated that a novel hybrid time-encoded with sequential PLD protocol design utilising 9 

T1-adjusted label durations out-performed a wide range existing literature protocol designs for 10 

estimating CBF, both in simulation and in vivo. 11 
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9. Figures 1 

 2 

  3 

Figure 1: Example timing schematics of the PCASL label/control protocols used in this work. 
The number of label/control pairs and the size of the time-encoding matrices were optimised 
in each case; see text for details. 
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Table 1: Model and sequence parameters used in the optimisations, Monte Carlo simulations 1 
and in vivo experiments. 2 

 3 

  4 

 Parameter Value  

 Model   

     T1 of blood (T1b) 1.65 s (Lu et al. 2004)  

     T1 of tissue (T1t) 1.445 s (Lin et al. 2001)  

     Labeling efficiency (α) 0.85 (Dai et al. 2008)  

     Brain/blood water partition coefficient (λ) 0.9 mL/g (Herscovitch et al. 1985)  

 Sequence   

     RF labeling pulse duration 500 µs duration (Gaussian)  

     RF labeling pulse interval 1 ms  

     RF labeling flip angle 20°  

     Mean labeling gradient 0.8 mT/m  

     Gradient during labeling pulses 6 mT/m  

 Analysis   

     CBF prior 0 ± 106 mL/100g/min  

     ATT prior 1.3 ± 106 s  
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Table 2:The optimised protocol timings for the protocols compared in vivo and in simulation. 1 
For the time-encoded (Had) and hybrid protocols, the LDs are given in chronological order 2 
and the number of LDs defines the size of the Hadamard encoding matrix used. For the 3 
Hybridvariable protocol, each PLD is associated with the LDs on the same row. NT is the number 4 
of effective PLDs, NAve is the number of averages, and Nacq is the number of acquired volumes 5 
for each scan. 6 

 7 

  8 

Protocol Label durations (ms) Post-label delays (ms) NT NAve NAcq Scan duration (min) 

Simulation and in vivo comparison 

Single-PLD 1800 2000 1 34 68 5:02 

Seqsingle-LD 1800 175, 1050, 1425, 1725, 
2075, 2200, 2300, 2300, 
2300 

7 4 72 5:00 

Hadfixed 550, 550, 550, 550, 550, 
550, 550 

100 7 8 64 4:54 

HadT1-adj 1150, 675, 475, 375, 300, 
250, 225 

75 7 9 72 5:00 

Hadfree-lunch 1800, 625, 450, 350, 300, 
250, 225 

125 7 8 64 5:05 

Hybridfixed 1275, 1275, 1275 75, 150, 600, 850, 1000 15 3 60 5:00 

HybridT1-adj 1800, 850, 550 200, 650, 900, 900 12 4 64 4:48 

Simulation comparison only 

Hadvariable 1725, 750 650, 375, 150, 
150, 125 

100 7 8 64 4:58 

Hybridvariable 1800, 1050, 775 

1800 1225, 550 

1800, 850, 750 

1800, 800, 800 

100 

525 

575 

700 

12 4 64 4:55 
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 1 

 2 

Figure 2: The CBF (A, C, E) and ATT (B, D, F) mean estimates (A, B), uncertainties (C, D), expressed 
as the marginal posterior probability distribution output by BASIL, and the errors relative to the ground 
truth mean estimates (E, F) shown as protocol estimates - ground truth estimates. Two slices from a 
representative subject are shown. The colour maps use perceptually uniform colour maps, developed by 
(Kovesi, 2015). 

Figure 3: The predicted (Cramér-Rao lower bound SDs) (A,D), simulation (Monte Carlo simulation 
posterior SDs) (B,E), and in vivo (posterior SDs) (C,F) CBF uncertainty measures for the literature 
protocols (top) and the proposed hybrid protocols (bottom) shown across ATTs. For the simulation and 
in vivo results, the median SD at each ATT is plotted. A sliding window was used to plot the in vivo data 
with window size 0.1 s and step size 0.01 s. 
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 2 

 3 

 4 

  5 

Figure 4: The simulation (A, B) and in vivo (C) mean posterior SDs across all voxels. (A) 
shows the simulation results for the uniform ATT distribution, while (B) shows the simulation 
results weighted by the measured in vivo ground truth ATT distribution. In vivo, the means and 
standard errors of the bootstrap distributions are shown (see methods). All differences were 
significant (two-sided paired Wilcoxon signed-rank test, Bonferroni correction for 6 
comparisons, α<0.05). 

Figure 5: The simulation (A, B) and in vivo (C) RMSEs across all voxels. (A) shows the 
simulation results for the uniform ATT distribution, while (B) shows the simulation results 
weighted by the measured in vivo ground truth ATT distribution. In vivo, the means and 
standard errors of the bootstrap distributions are shown (see methods). All differences were 
significant except for Hadfree-lunch vs Hybridfixed in vivo (two-sided paired Wilcoxon signed-rank 
test, Bonferroni correction for 6 comparisons, α<0.05). 
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Figure 6: The simulation (A, B) and in vivo (C) test-retest RMSEs across all voxels. (A) shows 
the simulation results for the uniform ATT distribution, while (B) shows the simulation results 
weighted by the measured in vivo ground truth ATT distribution. In vivo, the means and 
standard errors of the bootstrap distributions are shown (see methods). All differences were 
significant (two-sided paired Wilcoxon signed-rank test, Bonferroni correction for 6 
comparisons, α<0.05). 

Figure 7: The MC simulation CBF posterior SDs (uncertainty) for Hadvariable, Hybridvariable, 
and a selection of previously compared protocols. (A) the median uncertainty for each protocol 
across ATTs, (B) the mean uncertainty for each protocol across the whole ATT range. 
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Figure 8: The simulation (Monte Carlo simulation posterior SDs) (A, C) and in vivo (posterior 
SDs) (B, D) median CBF uncertainty measures for the literature protocols (top) and the 
proposed hybrid protocols (bottom). These MC simulations use the estimated variable noise 
levels across ATTs calculated from the in vivo data and scaled to the noise SD used in the 
original MC simulations. The simulation uncertainty trends across ATTs now better match the 
trends seen in vivo. 

Figure 9: The MC simulation CBF posterior SDs (uncertainty) for a selection of the protocols 
optimized using longer LDs. (A) the median uncertainty for each protocol across ATTs, (B) the 
mean uncertainty for each protocol across the whole ATT range. The mean uncertainties for the 
short LD cases are also shown in (B) as faded bar graphs to demonstrate the differences. 
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10. Supporting information text 1 - Protocol optimisation 1 
 2 
Optimisation updates 3 

Details of the optimisation implementations are as follows. To optimise the Seqsingle-LD 4 

protocol, the PLDs were optimised in the same way as the original implementation, but the 5 

optimal single experiment LD was found when optimising the final (Nth) PLD. For the Seqmulti-6 

LD protocol, the optimal ith LD and PLD pair were found at each iteration. In both cases, the 7 

PLDs were restricted to a monotonically increasing order (PLDi-1 ≤ PLDi ≤ PLDi+1) to reduce 8 

the parameter space. 9 

Due to the design constraints of the Hadfixed and HadT1-adj protocols, only the first LD 10 

and final PLD, for any encoding size, (𝑀 + 1) × 𝑀, must be searched over, making it possible 11 

to carry out a global grid search for all possible timing combinations for each M, rather than 12 

use the iterative exchange method used with the sequential protocols. The Hadfree-lunch protocol 13 

differs only in that the first encoded LD is fixed to the single-PLD protocol LD, with the 14 

remaining LDs being optimised identically to the Hadfixed and HadT1-adj protocols. 15 

The Hybridfixed and HybridT1-adj protocols were optimised by iterating through each of 16 

the sequential N PLDs and optimising the ith PLD and LDs of the encoding matrix 17 

simultaneously. 18 

Hadvariable was optimised by iterating through the encoded LDs and simultaneously 19 

optimising the ith LD and the final PLD. Hybridvariable was optimised by iterating through each 20 

of the sequential N PLDs and encoding matrices and then iterating through each of the M LDs, 21 

optimising the jth LD of the ith encoding matrix with the ith PLD together. Initial testing of these 22 

variable-LD protocols suggested the best protocols had LDs of decreasing duration during the 23 

PCASL preparation, so the LD was restricted to LDj-1 ≤ LDj ≤ LDj+1. 24 

Protocol initialisations 25 
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Seqsingle-LD: initialised with single LD 1.8 s and N PLDs spaced evenly between 0.075 - 2.3 s. 1 

Seqmulti-LD: N LD and PLD pairs randomly initialised between 0.8 - 1.8 s and 0.075 - 2.3 s, 2 

respectively. For each N, the sequential protocol optimisations iterated through each timepoint 3 

in a randomly permuted manner and were run with 20 different initialisations for robustness. 4 

Hadfree-lunch: the first LD was fixed at 1.8 s (matching the single-PLD protocol) with the 5 

remaining LDs being either fixed-duration or T1-adjusted. The final PLD was also optimised, 6 

therefore, it was not guaranteed that the PLD of the first encoded LD would match that of the 7 

single-PLD protocol. The Hadfixed and HadT1-adj protocols did not require initialisation because 8 

the entire timing parameter space could be evaluated. 9 

Hybridfixed and HybridT1-adj: all N final PLDs initialised at 0.075 s - the LDs did not 10 

require initialisation because they are all globally optimised at each step, similar to the time-11 

encoded protocols. 12 

Hadvariable and Hybridvariable: the LDs were randomly initialised between 0.1 - 1.8 s and 13 

sorted into a descending order; the N PLDs were initialised to 0.075 s. In the case of 14 

Hybridvariable, the N PLDs were iterated through in the same order. For both Hadvariable and 15 

Hybridvariable, the M LDs were iterated through in a randomly permuted order. The 16 

optimisations were each run with 50 different initialisations for robustness.  17 

  18 
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11. Supporting information Figures and Tables 1 

 2 

 3 

 4 

Supporting Information Table S1: The optimised protocol timings for Seqmulti-LD and Hadfixed 5 
with a 4×3 Hadamard matrix, which were not included in the in vivo comparison. NT is the 6 
number of effective PLDs, NAve is the number of averages, and Nacq is the number of acquired 7 
volumes for each scan. 8 

 9 

  10 

Protocol Label durations (ms) Post-label delays (ms) NT NAve NAcq Scan duration (min) 

Seqmulti-LD 
1800, 1500, 1800, 1800, 
1800, 1800, 1800, 1800, 
1800, 1800, 1800, 1800 

200, 825, 1350, 1475, 1800, 
1850, 2100, 2225, 2300, 
2300, 2300, 2300 

12 3 72 5:00 

Hadfixed 
4×3 

1125, 1125, 1125 75 3 18 72 4:54 

Supporting Information Figure S1: The theoretical residual static tissue longitudinal 
magnetisation at the time of the readout excitation. The BGS uses a presaturation module and two 
inversion pulses to. null T1 = 700 ms and 1400 ms. (A) The residual magnetisation when the 
inversion pulses are restricted to play out after the LD; (B) the residual magnetisation when the 
inversion pulses are played out at the optimal times, including during the LD. For both (A) and 
(B), the residual longitudinal magnetisation is shown for 6 different PLDs (0.25 - 1.5 s) and a LD 
of 1.4 s. Instantaneous RF pulses, perfect spoiling, and perfect inversion are assumed. The null 
time has been set to 100 ms before the excitation, to ensure positive signal in all cases. 
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Supporting Information Figure S2: A single slice of the CBF maps for each subject for each 
of the protocols and the ground truth estimates. The subjects' sex and age are given, where 
"F 25" means "Female, 25 years old." 
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Supporting Information Figure S3: A single slice of the ATT maps for each subject for each 
of the protocols and the ground truth estimates. The subjects' sex and age are given, where 
"F 25" means "Female, 25 years old." 
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Supporting Information Figure S4: The voxels excluded due to the posterior SD restrictions 
and the posterior SD maps for 5 slices of a single representative subject. (A) The excluded 
voxels and the CBF posterior SD maps, (B) the ATT posterior SD maps. The single-PLD 
protocol does not have ATT posterior SD maps because ATT is not estimated. The excluded 
voxel maps show voxels excluded due to high SDs in either the CBF or the ATT posterior SD 
maps. 
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Supporting Information Figure S5: The subjectwise in vivo comparisons of the uncertainty 
(posterior SDs), accuracy (RMSEs), and repeatability (test-retest RMSEs) metrics for each 
protocol. The boxplots show the median, quartiles, and range across subjects, in each case. 
Significant differences are shown for individual protocols (two-sided paired Wilcoxon signed-
rank test, Bonferroni correction for 6 comparisons, α<0.05). 

Supporting Information Figure S6: Bias in the ground truth Monte Carlo simulation CBF 
RMSEs when using 2 different noise models: (A) ground truth values fitted using 1 noise 
magnitude for all of the data and (B) ground truth values fitted using 3 noise magnitudes (1 
each for: non-time-encoded protocols, time-encoded protocols, and the hybrid protocols). 
When 1 noise magnitude is used in the fitting, there is a large variation in the bias across 
protocols, but when 3 noise magnitude are used the RMSEs are much more similarly 
underestimated for all the protocols by -0.21 ± 0.03 mL/100g/min. 
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Supporting Information Figure S7: The in vivo voxelwise ATT measures of (A) uncertainty 
(posterior distribution SDs), (B) accuracy (RMSEs relative to the ground truth estimates) and 
(C) repeatability (test-retest RMSEs). The mean and standard error (see methods) of the 
metrics across voxels are shown. All protocols had significantly different measures, unless 
highlighted as not-significant (NS). 

Supporting Information Figure S8: The simulated CBF uncertainty (Monte Carlo simulation 
posterior SDs) for the optimised Hadfixed protocol when using a 4×3 or 8×7 Hadamard matrix. 
(A) the median uncertainty across ATTs, (B) the mean uncertainty for each encoding size across 
the whole ATT range. Due to the 4×3 Hadamard protocol only having 3 PLDs, there is a large 
increase in uncertainty in the middle of the ATT distribution where the protocol becomes more 
sensitive to longer ATTs. However, overall, the 4×3 protocol has a lower average uncertainty 
than the 8×7 protocol. 
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Supporting Information Table S2: The optimised protocol timings when the maximum LD was 4 
extended to 5 s. For the time-encoded (Had) and hybrid protocols, the LDs are given in 5 
chronological order and the number of LDs defines the size of the Hadamard encoding matrix 6 
used. For the Hybridvariable protocol, each PLD is associated with the LDs on the same row. NT 7 
is the number of effective PLDs, NAve is the number of averages, and Nacq is the number of 8 
acquired volumes for each scan. 9 

Protocol Label durations (ms) Post-label delays (ms) NT NAve NAcq Scan duration (min) 

Single-PLD 
3125 2000 1 26 52 5:00 

Seqsingle-LD 
2800 75, 975, 1600, 2100, 

2300, 2300 
6 5 60 5:00 

Seqmulti-LD 
2025, 1400, 3425, 4225, 
3850 

200, 925, 1975, 1475, 
2300 

5 6  5:00 

Hadfree-lunch 
3125, 1100, 1100 100 3 12 48 4:51 

HybridT1-adj 
3550, 1050, 625 75, 275, 550, 625 12 3 48 5:00 

Hybridvariable 

3975, 1125, 300 
3325, 1425, 550 
3300, 1225, 500 
3575, 725, 625 

200 
325 
575 
675 

12 3 48 5:00 

Supporting Information Figure S9: The in vivo test-retest RMSEs across all voxels with all 
subjects (A) and with 1 subject removed (B). The removed subject had a much larger HybridT1-adj 
test-retest RMSE than the other subjects, but when removed did not lead to a large change in the 
test-retest RMSEs of the other protocols. The means and standard errors of the bootstrap 
distributions are shown (see methods). All differences were significant (two-sided paired 
Wilcoxon signed-rank test, Bonferroni correction for 6 comparisons, α<0.05). 
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