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Abstract 19 

Across the life sciences, processing next generation sequencing data commonly relies upon 20 

a computationally expensive process where reads are mapped onto a reference sequence. Prior to 21 

such processing, however, there is a vast amount of information that can be ascertained from the 22 

reads, potentially obviating the need for processing, or allowing optimized mapping approaches to 23 

be deployed.  Here, we present a method termed FlexTyper which facilitates a “reverse mapping” 24 

approach in which high throughput sequence queries, in the form of kmer searches, are run against 25 

indexed short-read datasets in order to extract useful information. This reverse mapping approach 26 

enables the rapid counting of target sequences of interest. We demonstrate FlexTyper’s utility for 27 

recovering depth of coverage, and accurate genotyping of SNP sites across the human genome. 28 

We show that genotyping unmapped reads can correctly inform a sample’s population, sex, and 29 

relatedness in a family setting, which can be used to inform optimized downstream analysis 30 

pipelines. Detection of pathogen sequences within RNA-seq data was sensitive and accurate, 31 

performing comparably to existing methods with increased flexibility. The long-term adoption of 32 

the “reverse mapping” approach represented by FlexTyper will be enabled by more efficient 33 

methods for FM-index generation and biology-informed collections of reference queries.  In the 34 

long-term, selection of population-specific references or weighting of edges in pan-population 35 

reference genome graphs will be enabled by the FlexTyper reverse mapping approach. FlexTyper 36 

is available at https://github.com/wassermanlab/OpenFlexTyper.  37 

  38 
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Author Summary 39 

In the past 15 years, next generation sequencing technology has revolutionized our capacity 40 

to process and analyze DNA sequencing data. From agriculture to medicine, this technology is 41 

enabling a deeper understanding of the blueprint of life. Next generation sequencing data is 42 

composed of short sequences of DNA, referred to as “reads”, which are often shorter than 200 43 

base pairs making them many orders of magnitude smaller than the entirety of a human genome. 44 

Gaining insights from this data has typically leveraged a reference-guided mapping approach, 45 

where the reads are aligned to a reference genome and then post-processed to gain actionable 46 

information such as presence or absence of genomic sequence, or variation between the reference 47 

genome and the sequenced sample. Many experts in the field of genomics have concluded that 48 

selecting a single linear reference genome for mapping reads against is limiting, and several current 49 

research endeavours are focused on exploring options for improved analysis methods to unlock 50 

the full utility of sequencing data. Among these improvements are the usage of sex-matched 51 

genomes, population-specific reference genomes, and emergent graph-based reference genomes. 52 

Data-driven approaches which inform these complex analysis pipelines are currently lacking. Here 53 

we develop a method termed FlexTyper, which creates a searchable index of the short read data 54 

and enables flexible, rapid, user-guided queries to provide valuable insights without the need for 55 

reference-guided mapping. We demonstrate the utility of our method by identifying sample 56 

ancestry and sex in human whole genome sequencing data, as well as detecting viral pathogen 57 

reads in RNA-seq data. We anticipate early adoption of FlexTyper within analysis pipelines as a 58 

pre-mapping component, and further envision the bioinformatics and genomics community will 59 

leverage the tool for creative uses of sequence queries from unmapped data.  60 

  61 
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Introduction 62 

Short-read DNA sequencing enables diverse molecular investigations across life science 63 

applications spanning from medicine to agriculture. Obtaining useful information from sequencing 64 

datasets typically involves either performing de novo assembly, or mapping the data against one 65 

or more reference genomes. The process of mapping sequencing reads (short pieces of DNA read-66 

outs from the DNA sequencer) against reference genomes, or a collection of reference genomes, 67 

is made computationally tractable by indexing the reference sequences, commonly performed with 68 

a Burrows Wheeler transform or FM-index. Several data analysis pipelines, whether they focus on 69 

quantification (e.g. observed gene expression in RNA sequencing data), or identifying sequence 70 

differences between a sample and a reference genome (e.g. genotyping), leverage reference 71 

genome mapping as a primary analysis component.  72 

While the status quo has been to utilize linear representations of reference genomes, a 73 

transition away from a single haploid reference genome is inevitable (Yang et al. 2019; Ballouz, 74 

Dobin, and Gillis 2019). This transition is supported by several factors. A large amount of 75 

structural variation exists between human populations (Feuk, Carson, and Scherer 2006; 76 

MacDonald et al. 2014; Levy-Sakin et al. 2019). A recent study focusing on ~1000 individuals of 77 

African descent identified nearly 200 million bases missing from the most recent reference genome 78 

(Sherman et al. 2019). Static linear reference genomes which do not capture these large differences 79 

between populations impose challenges for accurate genotyping (Ballouz, Dobin, and Gillis 2019; 80 

Yang et al. 2019), with implications in medicine and association studies. An alternative to choosing 81 

from a collection of population-specific reference genomes is to use emerging graph genome 82 

approaches to unite the data (Dilthey et al. 2015). As highlighted in a review by (Paten et al. 2017), 83 

in either approach, a key challenge in the future will be to determine the most appropriate reference 84 

genome(s), or path(s) through a graph genome, to maximize genotyping performance. Knowledge 85 

of distributed single nucleotide polymorphisms (SNPs) genotypes across the genome can be used 86 

to guide such choices. 87 

Currently, the primary approach for identifying SNP genotypes across the genome utilizes 88 

computationally expensive reference-based read mapping and variant calling strategies (Nielsen 89 

et al. 2011). Inferring ancestry from specific, population-discriminating SNPs can be performed 90 

rapidly with the recently published tool Peddy, which uses fewer than 25,000 SNPs to identify 91 
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ancestry through principal component analysis (Pedersen and Quinlan 2017). Previous work 92 

showed that it is possible to genotype predefined SNPs from unmapped sequence data, 93 

circumventing the read mapping and variant calling process (Dolle et al. 2017; Sun and Medvedev 94 

2019; Shajii et al. 2016). Some approaches focus on kmer (short sequences of length k) hashing 95 

and matching to predefined target kmers to perform genotyping of known SNPs, as demonstrated 96 

in the VarGeno and LAVA frameworks (Sun and Medvedev 2019; Shajii et al. 2016). These 97 

approaches are fast, but rely upon indexes of kmers extracted from the reference genome and SNP 98 

databases, thus reducing their flexibility for kmers of different length and source. A separate 99 

approach is taken by Dolle et al., wherein the entire 1000 Genomes dataset is compressed into an 100 

FM-index and queried with kmers spanning polymorphic sites, thus demonstrating the utility of 101 

scanning unmapped reads for predefined kmers of interest. The “reverse mapping” highlighted in 102 

their approach was applied to aggregated data, but the concept can be extended to the analysis of 103 

individual genomes if implemented in a flexible way for diverse types of queries.  104 

Within the paradigm of indexing reads and performing reverse mapping, other useful 105 

operations can be performed with increased utility, especially in cases with a diverse set of 106 

informative sequences. One example of this is within RNA sequencing (RNA-seq), where analysis 107 

of cancer RNA-seq datasets can reveal the presence of viral pathogens within patient data (Klijn 108 

et al. 2015). Several tools have been developed to specifically detect these viral pathogens from 109 

sequencing data including viGEN (Bhuvaneshwar et al. 2018) and VirTect (Xia et al. 2019). 110 

However, they are hampered by a computationally expensive iterative mapping procedure which 111 

first maps against the human reference genome and then subsequently maps against viral genome 112 

collections. Other methods, such as Centrifuge (Kim et al. 2016) and Kraken2 (Wood, Lu, and 113 

Langmead 2019), rely upon kmer searches against large viral and bacterial databases. Both of these 114 

methods are powerful, but come with drawbacks of flexibility and reliance upon phylogenetic 115 

relationships between target sequences. Specifically, they require re-indexing of search databases 116 

for different query lengths or when the target sequences change. Nevertheless, these tools are 117 

broadly used and thus serve as good comparators for efficacy, as they have both been demonstrated 118 

to have utility in detecting viral pathogens within cancer RNA-seq datasets by examining kmer 119 

content. (https://www.sevenbridges.com/centrifuge/).  120 

Combining the current drive to decrease our reliance upon linear reference genomes, and 121 

the wealth of demonstrated utility of reverse mapping approaches, we developed FlexTyper. 122 
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FlexTyper is a computational framework which enables the flexible indexing and querying of raw 123 

next generation sequencing reads. We show example usage scenarios for FlexTyper by 124 

demonstrating the high accuracy of reference-free genotyping of SNPs in single samples, and the 125 

ability to identify foreign pathogen sequences within short-read datasets. We hope the flexibility 126 

afforded by the framework underpinning FlexTyper will fuel the emerging trend away from the 127 

necessity for a static reference genome that currently lay at the heart of the majority of genomic 128 

analysis tools.  129 

Design and Implementation 130 

Overview of FlexTyper 131 

Usage can be broken down into three steps: 1) query generation, 2) indexing the raw reads, 132 

and 3) querying against the FM-index (Figure 1). For query generation, we allow for both custom 133 

user query generation, as well as pre-constructed queries from useful databases, such as 134 

CytoScanHD array probe queries. Custom queries designed to capture genomic loci can be 135 

generated by pairing a user-provided VCF (format v4.3) with a reference genome fasta file. For 136 

the capture of potential pathogen sequences, we also allow query generation from one or more 137 

fasta files. The files produced from query generation are used as input for subsequent index query 138 

operations. The second step is the production of an FM-index from a set of short-read sequences 139 

in fastq format. This process includes reverse-complementing the entire read file, and 140 

concatenating the transformed reads with the original set. This is done in order to prevent the need 141 

to scan for the reverse complement of the query kmers . The third step is the core FlexTyper search 142 

algorithm which takes the query input file, generates search kmers, and scans the FM-index for 143 

matches. This step creates an output with matching format to the input file, with appended counts 144 

of matching reads for each query. A detailed breakdown of these three components is described 145 

below.  146 

 147 
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 148 
Fig 1 - Overview of FlexTyper 149 
FlexTyper has three primary components: query generation, FM indexing reads, and querying 150 
against the FM-index. Query generation includes the capacity to translate VCF files into query 151 
files given a reference genome file (Genome Fasta), or to directly create queries from fasta 152 
sequences including pathogen genome sequences. Modules VCF2Query.py and Fasta2Query.py 153 
facilitate this process. The second component involves creating an FM-index of the raw reads, 154 
after reverse complementing and concatenating the read set and performing optional 155 
preprocessing steps. The third component executes the queries against the FM-index to produce 156 
output files with counts of reference and alternate sequences within the query files.  157 
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 158 

Query generation 159 

FlexTyper supports flexible query generation giving users the capacity to query for any 160 

target sequence or allele within their read dataset. Query files can be generated from an input fasta 161 

and VCF file (VCF2Query.py), or directly from a fasta file (Fasta2Query.py). Potentially useful 162 

queries, including those presented here, are provided online and include all sites from the 163 

CytoScanHD chromosomal microarray, and ancestry discriminating sites (Pedersen and Quinlan 164 

2017). These predefined query sets are available through git-lfs in the online FlexTyper github 165 

repository (https://github.com/wassermanlab/OpenFlexTyper). If users wish to directly query a 166 

short-read dataset with a set of predetermined kmers, they can provide the kmers as a fasta file and 167 

set the k parameter to the length of the kmers in the file.  168 

FM-index creation 169 

Generating the FM-index from short-read sequencing datafiles is performed in two steps; 170 

preprocessing and indexing. The focus of our work is not on the algorithms used to construct the 171 

FM-index, and hence we use two existing utilities to generate a compatible FM-index for 172 

FlexTyper. The toolkit Seqtk is used for reformatting compressed fastq files by removing quality 173 

scores and non-sequence information to create a sequence-only fasta format, and append this with 174 

the reverse complement of the reads. The output fasta file is then processed using the SDSL-Lite 175 

library to generate the FM-index. SDSL builds a suffix array that is used to generate the BWT of 176 

the input string, which  is then compressed using a wavelet tree and subsampled. The resulting 177 

compressed suffix array is streamed to a binary index file. As the memory requirements for 178 

indexing large files can be burdensome, we support an option to split the input file and index each 179 

chunk of reads independently. Downstream search operations support the use of multiple indexes.   180 

  181 

Query against FM-index 182 

Querying the FM-index for user selected sequences can be conceptually divided into four 183 

steps: 1) kmer generation; 2) kmer filtering; 3) kmer searching; and 4) result collation (Figure 2). 184 
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There are two primary methods of kmer generation for a query; a centered search where the middle 185 

position of the query is included in all kmers, and a sliding search which starts at one end of the 186 

query and uses a sliding window approach to generate the kmers (Figure 2). Centered search can 187 

be used for genotyping or estimating coverage over a single position, and the sliding search can be 188 

used to count reads which match to any part of a query sequence. The --ignore-duplicates 189 

parameter filters query kmers by ignoring kmers that occur in multiple query sequences. After 190 

filtration, the kmers are searched for within the FM-index using C++ multithreading and 191 

asynchronous programming, using either a single thread on a single index, multiple threads on a 192 

single index, a single thread on multiple indexes, or multiple threads on multiple indexes (Figure 193 

2). Importantly, asynchronous programming allows the number of threads used during searching 194 

to be increased beyond the number of available CPUs. The output from this search process is a 195 

collated results map containing the positions of each kmer within the FM-index. These positions 196 

are translated to read IDs, and finally collapsed into query counts using the kmer-to-query 197 

mapping. Importantly, if multiple kmers from the same query hit the same read, they are recorded 198 

as a single count at the query level. For cases of multiple indexes being searched in parallel, the 199 

kmer searching and assignment to the query count is performed independently and then merged to 200 

produce a final query count table. 201 

 202 
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 203 
Figure 2 - Query Search Workflow 204 

Workflow for query search against the FM-index, starting with input queries and settings defined 205 
in Settings.ini file. In this example, it sets a centered search with ignoring duplicate kmers enabled. 206 
1) Kmer generation has two modes, centered search and sliding search. For a centered search, the 207 
position of interest lies in the middle of the query, and kmers are designed to overlap that central 208 
position with defined length (k) and step (w). 2) If the ignore-duplicates option is set, kmers 209 
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collated from the query set are filtered to remove any kmers which were found in multiple query 210 
sequences. 3) The filtered kmers are then searched for within the FM-index (left two panels) or 211 
multiple indexes (right two panels) of the read set. This can be done using single (top two panels) 212 
or multiple (bottom two panels) threads. 4) The results corresponding to a position within the FM-213 
index are then translated back into reads, with hits on reverse complement reads assigned to the 214 
primary read, and collapsed into a set for each query. The final counts are reported per query.  215 

 216 

 217 

 218 

Post-processing of results into downstream formats 219 

The output tables from the search process for genotyping can be translated into useful formats 220 

for downstream analysis using the fmformatter scripts 221 

(https://github.com/wassermanlab/OpenFlexTyper/tree/master/fmformater). Currently, there is 222 

the capacity to output genotype calls in VCF, 23andMe, or Ancestry.com format. Genotype calls 223 

are derived here using a basic approach which assigns genotypes given a minimum read count 224 

parameter as follows: 225 

Alt < minCount && Ref > minCount: Homozygous reference, 0/0 226 

Alt > minCount && Ref > minCount: Heterozygous alternate, 0/1 227 

Alt > minCount && Ref < minCount: Homozygous alternate, 1/1 228 

For searches which do not pertain to genotyping, the output tab-separated files can be used as count 229 

tables for observed query sequences.  230 

 231 

  232 

 233 

 234 
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Results  235 

Performance metrics for indexing and querying  236 

We used a human whole genome sequencing (WGS) sample to demonstrate the indexing 237 

and querying capacities of FlexTyper. Our indexing strategy utilizes open source tools to build the 238 

FM-index on a high memory CPU, with at least 1000GB of RAM. While index creation 239 

optimization was not the focus of this work, indexing is feasible on standard systems with ~256GB 240 

of RAM, as long as the input read dataset is smaller than ~20GB  (Supplemental Table S1). Since 241 

our search function allows for multiple separate indexes, we incorporated the ability to sub-divide 242 

larger read sets into multiple smaller read sets that can be indexed in parallel. For querying, we 243 

generated a set of kmers designed from probes on the CytoScanHD Illumina genotyping 244 

microarray with a centered search process (Figure 2) for varying kmer lengths (Figure 3A). The 245 

CytoScanHD genotyping microarray, chosen for its broad usage in the field of human genetics, 246 

has probe sequences designed to uniquely detect well-characterized SNPs. There is a noticeable 247 

benefit from multithreading FlexTyper, which we demonstrated by isolating the kmer searching 248 

process across 1 to 32 threads (Figure 3A). As the number of threads increases, we observe a 249 

continuous decrease in search time, and by comparing between observed and expected 250 

performance, the performance advantage gained from additional threads does not plateau at 32 251 

threads (Figure 3B). As the software is written using asynchronous programming, we tested the 252 

upper bound on allocated data threads given a fixed set of 32 CPUs on a single machine with 253 

256GB of RAM. For this analysis, we used an extended set of queries from the CytoScanHD SNP 254 

set, for a total of ~6.4 million kmers. We increased the threads from 32 to 512 stepping by 32 and 255 

while we do see a decrease on the improvement in speed, there is still a benefit of additional threads 256 

(Figure 3C). To see where the benefit of increased threads plateaus, we increased threads from 257 

1000 to 16,384 and witnessed little speed increase (<5 minutes) between 5000 and 16,384 threads 258 

(Figure 3C). Thus, we define the upper bound on data threads for a machine with 32 CPUs and 259 

250GB of RAM to be ~5000 data threads, for a query set of ~6.4 million kmers. It is possible that 260 

higher thread counts may improve performance for larger query sets and more powerful 261 

computers. Lastly, to highlight the clear advantage over non-indexed methods, we compared 262 
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FlexTyper to popular non-indexed algorithms achieving a decrease in search time by roughly three 263 

orders of magnitude when using FlexTyper (Supplemental Table S2).  264 

 265 

 266 
Figure 3 - Search speeds for FlexTyper 267 
A) FlexTyper search time with kmers of size 25 (blue) and 150 (red), increasing in number from 268 
10-100,000, using one (solid) or 30 (dashed) threads. B) Increasing the number of threads from 1 269 
to 32, for 100,000 kmers of length 25 (solid blue line). Expected values calculated by dividing 270 
single thread time by the additional number of threads (dashed black line), with difference between 271 
actual and expected plotted (red vertical bar). C) Hyperthreading results for the time (in seconds) 272 
vs. thread counts from 32 up to 16,384 (log10 scaled x-axis)  273 

Genomic coverage and genotype detection within human WGS data  274 

Knowing whether a given kmer is present or absent from a human WGS datafile (in this 275 

instance genome Illumina short-read, paired-end data) can have utility for estimating the depth of 276 

coverage for a target region and genotyping SNPs. FlexTyper has the capacity to compute depth 277 

of coverage or genotype SNPs from WGS data for both predefined and user-supplied loci. We 278 
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demonstrate this capacity for genomic sites using the probe sequences from the CytoScanHD 279 

microarray, as well as a subset of previously collated population discriminating SNPs (Pedersen 280 

and Quinlan 2017). Using these loci, we created query files with a reference and alternate query 281 

sequence centered on the biallelic site (Supplemental Methods).  282 

We first sought to test the read recovery capacity of FlexTyper compared to an alignment 283 

based method which we call BamCoverage. The BamCoverage method involves mapping the 284 

reads to the reference genome, and then extracting per-base read coverage over a specific reference 285 

coordinate. BamCoverage utilizes the pysam package to extract read pileup over positions defined 286 

by the FlexTyper input query file (Supplemental methods). Using the CytoScanHD SNP set, we 287 

found a high concordance between the read counts from FlexTyper and the depth of coverage from 288 

aligned reads (Figure 4A). The vast majority, 780,178/797,653 or 97.8%, of sites differed by less 289 

than 10 between FlexTyper and BamCoverage (Figure 4B). This discrepancy is similar for both 290 

reference and alternate alleles, which is important since most genotyping models assume relative 291 

contributions of observed alleles for genotype calling. There were 16,282 sites with a delta, (Δ = 292 

FlexTyper - BamCoverage), greater than 10, and 4,256 sites with a delta greater than 100. We 293 

manually investigated a few of these sites which were overcounted by FlexTyper by more than 294 

100 and found that they are being overcounted due to kmers mapping to multiple possible 295 

locations. Comparing these over-counted hits with delta greater than 100 to previously defined 296 

repeat regions shows that 4189/4256 or 98.4% of the overcounted sites overlapped with predefined 297 

repeats (Trost et al. 2018). The uniqueness of kmers is important for accurate read counting, thus 298 

it is recommended to filter such regions when using FlexTyper for genotyping or depth profiling. 299 

Lastly, by examining the recovery of reads across the chromosome between FlexTyper and the 300 

read alignment approach, it’s clear that FlexTyper can accurately capture relative sequence 301 

abundance with relevance to copy number variant calling applications (Fig 4D).   302 

Next, we investigated whether FlexTyper can accurately recover genotypes at the SNP sites 303 

profiled from the chromosomal microarray. The genotyping approach we use leverages a minimum 304 

count from the reference and alternate allele to assign heterozygous, homozygous alternate, or 305 

homozygous reference genotypes (Supplemental Methods). We applied this basic genotyping 306 

algorithm to both FlexTyper and BamCoverage counts to produce a VCF file. These genotypes 307 

were compared to an alternate pipeline which uses reference-based mapping and sophisticated 308 

variant calling using DeepVariant (Poplin et al. 2018). For the 797,653 SNPs on the CytoScanHD 309 
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microarray, all three methods agree on 99.2% (791,063/797,653) of the sites. For the sites where 310 

there was disagreement, we see an overlap with the repeat regions of 5004/5586 or 89.6%, 311 

affirming that these repeat regions are responsible for the majority of discordant genotypes. We 312 

further demonstrate the accuracy of these genotypes by indexing nine WGS samples from the 313 

Polaris project representing diverse populations including three African, three Southeast Asian, 314 

and three European individuals (S. Chen et al., n.d.). After indexing, we queried the samples for 315 

population discriminating sites and then genotyped the output table to produce a VCF file. The 316 

output VCFs were then used within the Peddy tool, and a principal component analysis was 317 

performed to predict the ancestry of the samples (Pedersen and Quinlan 2017). In all nine cases 318 

the population was correctly determined, as well as the relatedness inference for the three trios 319 

(Figure 4E, Figure S1). Interestingly, we observed a discrepancy between the listed sex for the 320 

child of the European trio, individual HG01683, and the inferred sex from FlexTyper and Peddy 321 

(Figure 4F). We followed up on this observation and revealed that the individual is not an XY 322 

male, but rather an XXY individual. Taken together, FlexTyper has the capacity to provide 323 

accurate counts of observed reads matching a query sequence, with relevant utilities such as copy 324 

number estimation, sample identification, ancestry typing, and sex identification.  325 

 326 

   327 
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 328 

 329 
Figure 4 - WGS Genotyping using FlexTyper 330 

A) FlexTyper read count compared to the total coverage from BAM file over SNP sites 331 
represented on the CytoScanHD microarray. B) Histogram showing the delta,  (Δ = FlexTyper - 332 
BamCoverage), in read count for both the alternate (red) and reference (blue) alleles. C) Histogram 333 
of the same delta as B) but with an extended axis from 100-2000, showing the frequency of over-334 
counting for sites using FlexTyper. D) Scatter plot showing the delta  (Δ = FlexTyper - 335 
BamCoverage) on the y-axis, plotted across chromosome 1 on the x-axis. E) Principal component 336 
analysis showing projection of FlexTyper-derived SNP genotypes from nine individuals of Asian 337 
(green), African (red) and European (purple) ancestry. Squares denote FlexTyper genotypes, 338 
points denote existing data from the 1000 Genomes project provided by Peddy. F) Sex-typing for 339 
these Polaris samples showing the ratio of heterozygous to homozygous sites on the X 340 
chromosome (y-axis) for individuals for the defined sexes as male (right) and female (left). Each 341 
individual is labeled as green (correctly sex-labeled) or red (incorrectly labeled).  342 
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Testing for the presence of pathogen sequences in RNA-seq 343 

To demonstrate the capacity of FlexTyper to detect pathogens from RNA-sequencing data, 344 

we generated synthetic reads from four relevant viral genomes including Epstein-Barr virus 345 

(EBV), Human Immunodeficiency virus type 1 (HIV-1), and two Human Papilloma virus strains 346 

68b (HPV FR751039) and 70 (HPV U21941) (Supplemental Methods). We first examined the 347 

impact of various FlexTyper parameters on the recovery rate of pure, simulated read sets for each 348 

of the four viruses and one human blood RNA-seq dataset from the Genome England project 349 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6523/samples/) (Table S3). 350 

Importantly, varying the parameters k (length of search substring) and w (step-size) change the 351 

specificity and sensitivity of read recovery. When k is set to 15 (a short kmer), there are roughly 1 352 

million off-target hits to the viral genomes for the pure human RNA-seq file (Table S3). Next, we 353 

demonstrated that the kmer uniqueness setting only guarantees that identical kmers cannot appear 354 

across queries. Thus, if query specificity is a priority then setting the w parameter to 1 will produce 355 

results with the least amount of cross-query assignment. By exploring these parameters, we show 356 

that all simulated reads can be recovered with parameters of 30 and 5 for k and w respectively, 357 

with low off-target assignment.  358 

Next, to simulate patients infected by one of the four viruses, we spiked-in simulated 359 

pathogen reads with the human RNA-seq dataset. Using the optimized parameters derived above, 360 

we are able to detect each virus in the patient sample even at low concentrations (Table S4). We 361 

further demonstrate the capacity for FlexTyper to discriminate between spiked-in virus samples 362 

by mixing the viruses at differing concentrations (read counts) within the human RNA-seq dataset 363 

(Table 1). FlexTyper was run with two settings by varying the k and w parameters for increased 364 

sensitivity  (k=31, w=5), or increased speed (k=100, w=25). We compared these results with 365 

Centrifuge, a software tool that works with unmapped short-read sequencing data by performing 366 

read-length (k=150) kmer searches against a database of viral and bacterial genomes (Kim et al. 367 

2016). For each of the datasets, FlexTyper is able to detect the contaminating pathogen sequences, 368 

even in a sample (Patient_5) where we only spiked in the equivalent of a 1x coverage of the viral 369 

genome, which equates to roughly 50-1150 reads depending on the size of the viral genome (Table 370 

1). For comparison, Centrifuge results were manually combined for viruses of similar naming 371 

schema and presented as the sum of non-unique read hits (Table 1). For each of the samples, both 372 

Centrifuge and FlexTyper are capable of detecting the spiked-in pathogens. In all simulations, 373 
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consistent with its use of shorter kmers, FlexTyper is more sensitive in its detection capacity, 374 

recovering more reads than Centrifuge. In our collation of viral hits for the Centrifuge data, we 375 

observed the limitation that for HPV strains, Centrifuge utilizes a comprehensive genome database 376 

with hundreds of distinct strains. Thus, retrieving a combined count of HPV sequences within a 377 

sequencing dataset is nontrivial and requires collation over hundreds of viral genome hits. In 378 

contrast, FlexTyper is able to detect all of the spiked in reads for these viral genomes of interest. 379 

This is due to the increased flexibility of FlexTyper, which enables the user to define the relevant 380 

pathogens to search for without the need for reconstructing a complex bacterial or viral database, 381 

as is the case for Centrifuge. In summary, FlexTyper is more sensitive in its detection capacity 382 

than Centrifuge, and the flexibility to ad hoc define the pathogen search space could be beneficial 383 

in some applications, such as instances when the virus is a novel strain.   384 

 385 

  386 
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 387 

 EBV HIV-1   

Sample Expect FT:30,5 FT:100,25 C Expect FT:30,5 FT:100,25 C   

Patient_1 1145 1146 861 538 610 610 462 284   

Patient_2 11450 11454 8290 5427 6100 6099 4359 2797   

Patient_3 114500 114502 83504 54352 61000 61000 43648 28206   

Patient_4 1145000 1144990 833955 543924 62 62 45 29   

Patient_5 1146 1146 861 538 62 62 45 29   

           

 Total HPV U21941 FR751039 

Sample Expect FT:30,5 FT:100,25 C Expect FT:30,5 FT:100,25 Expect FT:30,5 
FT:100,2

5 

Patient_1 57200 60812 40930 2650 5200 8475 3755 52000 52337 37175 

Patient_2 52052 55371 37443 1470 52000 52005 37406 52 3366 37 

Patient_3 572 615 422 25 52 92 38 520 523 384 

Patient_4 5720 6084 4152 273 520 851 388 5200 5233 3764 

Patient_5 104 112 75 3 5 57 38 52 55 37 
 388 
Table 1 - Performance comparison for simulated spike-in pathogens.  389 
Each of the samples, (Patient_1 - Patient_5), with expected (simulated known counts) vs. observed 390 
counts for Centrifuge (C) and FlexTyper with k=30/w=5 (FT:30,5) and k=100/w=25 (FT:100,25). 391 
Each quantified viral strain includes Epstein Barr Virus (EBV), Human Immunodeficiency Virus-392 
1 (HIV-1), total Human Papillomavirus (HPV), and two strains of HPV (type 70 and 68b). The 393 
maxOcc parameter was set to limit the number of hits to one million and non-unique kmers were 394 
allowed. For centrifuge, sub-strain HPV counts were not feasible so counts were aggregated over 395 
all papilloma viral strains in the output report file per patient.  396 

 397 

 398 

 399 

 400 

 401 

 402 
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Discussion 403 

Here we presented FlexTyper, a flexible tool which enables exploratory analysis of short 404 

read datasets without the need for alignment to a reference genome. Our framework allows for the 405 

custom generation of queries, giving the user total control to perform searches relevant to the 406 

problem at hand. We demonstrated three applications, including depth of coverage analysis, 407 

accurate SNP genotyping, and sensitive detection of pathogen sequences. FlexTyper is available 408 

for the creative use of genomics researchers.    409 

The rapid and accurate recovery of read depth enables innovative usage of FlexTyper in 410 

the space of copy number variant profiling. We demonstrated that we can reproduce the depth of 411 

coverage of a genomic region without the need for reference-based mapping. As microarrays are 412 

replaced by genome sequencing assays, we envision that FlexTyper could be extended to 413 

reproduce microarray-style outputs. Further, we show that when genomic queries with counts 414 

higher than the expectation arise, these events correspond to  repetitive genomic sequences. As 415 

such, FlexTyper may not only enable the recovery of read depth in an accurate manner, but it can 416 

also inform the quality of a sequence query as a “unique probe” for assessing genomic copy 417 

number.  418 

The genotyping case study highlights how pre-alignment analysis of genome sequence data 419 

can provide rapid insights into the properties of a sample. SNP genotyping was accurate across the 420 

genome, allowing rapid identification of sample ancestry, sample relatedness in the trio setting, 421 

and sample sex typing using Peddy (Pedersen and Quinlan 2017). Interestingly, applying Peddy to 422 

the ouput of FlexTyper for open source trio data from the Polaris project revealed a mislabeling of 423 

the sex for individual HG01683, which was reported and subsequently  ammended in the online 424 

data repository (https://github.com/Illumina/Polaris/wiki/HiSeqX-Kids-Cohort). Since ancestry 425 

and sex information can inform choices in downstream data processing, identifying these 426 

discrepancies between labeled sex and inferred sex in a data-driven manner is a critical step of pre-427 

alignment informatics. For instance, mapping against the sample-matched sex chromosomes has 428 

been shown to improve performance (Webster et al. 2019; Olney et al., n.d.). As such, using 429 

FlexTyper, in combination with Peddy, on diverse datasets prior to reference-guided read 430 

alignment will lead to improved results from mapping-based pipelines.  431 
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The importance of pathogen identification is increasingly recognized. In both cancer 432 

profiling (Klijn et al. 2015) and public health studies (Gardy, Loman, and Rambaut 2015), rapid 433 

determination of the presence of pathogen sequences could obviate the need for full reference 434 

mapping. Some existing tools designed for viral detection in sequencing data rely upon pre-435 

indexed databases of viral and bacterial sequences, sometimes including a phylogenetic 436 

relationship between genomes within the index (Xia et al. 2019; Wood, Lu, and Langmead 2019; 437 

Kim et al. 2016). One such approach, Centrifuge, has been applied to cancer genomes to confirm 438 

the presence of viral pathogens. We demonstrated that our approach compares favorably to 439 

Centrifuge, with a more sensitive detection level, due to the ability to search for kmers shorter than 440 

the read length and the advantage of fine-tuned control over the searchable database. Here we only 441 

searched for viral pathogens of interest, although other specific pathogen queries could be 442 

performed, such as the presence of antibiotic resistance genes within a patient RNA-seq sample.    443 

We anticipate that the research community will identify diverse and creative uses for 444 

“reverse mapping” analysis with FlexTyper, but a few approaches are apparent to us. It is feasible 445 

to genotype complex structural variants by searching for sequences overlapping breakpoints, such 446 

as those observed in a subpopulation, or events recurrently found in cancer (Li et al. 2020; Sudmant 447 

et al. 2015). Within RNA-seq data, querying for exon-exon splice junctions in a rapid manner can 448 

allow isoform quantification, as has been previously demonstrated (Patro, Mount, and Kingsford 449 

2014; Bray et al. 2016). Further, a recent report showed the utility of kmer-counting methods in 450 

resolving copy number variants within paralogous loci and genes (Shen, Shen, and Kidd 2020). 451 

Another group showed the advantage of examining depth of coverage at specific sites across the 452 

paralogous genes in Spinal Muscular Atrophy (X. Chen et al. 2020) As FlexTyper is well suited 453 

for specific sequence recovery operations, scanning with preselected query sequences such as 454 

defined by these studies can enable rapid detection (X. Chen et al. 2020). All of these proposed 455 

applications help tackle challenges which are currently a burden for traditional reference-based 456 

mapping approaches. 457 

We focused this report on the utility of kmer searches against indexed read sets, but 458 

recognize that speed and computational resources are an important consideration for adoption of 459 

the method. One obvious (but transient) constraint on the utility of FlexTyper is the generation of 460 

the FM-index for the sequencing reads. As the FM-index is critical to many aspects of genome-461 

scale sequence analyses, there are diverse efforts to develop novel indexing strategies, such as 462 
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optimizing FM-index construction using GPUs (Chacón et al. 2015) and creating efficient 463 

construction algorithms (N. Chen, Li, and Lu 2018; Labeit, Shun, and Blelloch 2017). Further, the 464 

nature of the mapping procedure holds promise with massive parallelization approaches, including 465 

those involving GPU acceleration (Hung et al. 2018). Moving forward, accelerations to the FM-466 

index generation and reverse mapping approach will result in faster genomic analysis pipelines 467 

than is currently possible with alignment based methods.  468 

Looking to the future, we see the kmer-searching approach of FlexTyper as having great 469 

utility when used in conjunction with emergent graph-based representations of the reference 470 

genome (Kehr et al. 2014; Paten et al. 2017; Kaye 2016). Whether users seek to select a population 471 

specific reference graph as the basis for read mapping, or to introduce Bayesian priors (edge 472 

weighting) within a pan-population reference graph, knowledge of population markers spanning 473 

chromosomes will be required to inform the processes.  Furthermore, it is our expectation that 474 

graph-based mapping methods will ultimately use read-based FM-indices, as indexing the 475 

reference graph imposes restrictions on the graph structures that can be used and the types of 476 

variations that can be incorporated (Ghaffaari and Marschall 2019; Paten, Novak, and Haussler 477 

2014). As the graph-based algorithms mature, approaches such as FlexTyper which enable reverse 478 

mapping of sequences against a set of indexed reads will be instrumental in the initial steps of 479 

genome analysis pipelines, and in the resolution of challenging regions of the genome.  480 

 481 
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