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Abstract

An epidemic can be characterized by its speed (i.e., the exponential growth rate r) and
strength (i.e., the reproductive number R). Disease modelers have historically placed much
more emphasis on strength, in part because the effectiveness of an intervention strategy is
typically evaluated on this scale. Here, we develop a mathematical framework for this clas-
sic, strength-based paradigm and show that there is a corresponding speed-based paradigm
which can provide complementary insights. In particular, we note that r = 0 is a threshold
for disease spread, just like R = 1, and show that we can measure the speed and strength
of an intervention on the same scale as the speed and strength of an epidemic, respectively.
We argue that, just as the strength-based paradigm provides the clearest insight into cer-
tain questions, the speed-based paradigm provides the clearest view in other cases. As an
example, we show that evaluating the prospects of “test-and-treat” interventions against the
human immunodeficiency virus (HIV) can be done more clearly on the speed than strength
scale, given uncertainty in the proportion of HIV spread that happens early in the course
of infection. We suggest that disease modelers should avoid over-emphasizing the reproduc-
tive number at the expense of the exponential growth rate, but instead look at these as
complementary measures.
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1 Introduction

An epidemic can be described by its speed and strength. The speed of an epidemic is charac-
terized by the exponential growth rate r, which measures how fast an epidemic grows at the
population level. The strength of an epidemic is characterized by the reproductive number
R, which measures how many new cases are caused by a typical individual case. Knowing
the speed and strength of an epidemic allows predictions about the course of the epidemic
and the effectiveness of intervention strategies.

Much research has prioritized estimates of R, and particularly its value in a fully suscep-
tible population, called the basic reproductive number R0, because R has a threshold value
(i.e., R = 1) that determines whether a disease can invade, the level of equilibrium, and
the effectiveness of control efforts (Anderson and May, 1991; Diekmann et al., 1990). The
insight that a case must on average cause at least one new case under good conditions for
a disease to persist goes back > 100 years (Ross, 1911); the idea of averaging by defining
a ‘typical’ case was formalized 30 years ago (Diekmann et al., 1990). R is also of interest
because it provides a prima facie prediction about the total size of an epidemic (Anderson
and May, 1991; Ma and Earn, 2006; Arino et al., 2007; Andreasen, 2011; Miller, 2012).

Here, we show that r can also serve as a threshold, and also provide a useful metric
for difficulty of elimination. We first generalize the idea that R measures the difficulty of
elimination by showing we can measure an intervention’s “strength” on the same scale as the
reproductive number. We then show that we can likewise measure an intervention’s “speed”,
and that there is a duality between the threshold R = 1 and a corresponding minimal
intervention strength required for elimination, and the threshold r = 0 and a corresponding
minimal intervention speed. We argue that the historical primacy of R over r is partly
artificial, and discuss cases where strength provides the better framing for practical disease
questions and cases where speed does.

2 Methods

2.1 Epidemic model

We model disease incidence using the renewal equation, a simple, flexible framework that
can cover a wide range of model structures (Heesterbeek and Dietz, 1996; Diekmann and
Heesterbeek, 2000; Roberts, 2004; Aldis and Roberts, 2005; Wallinga and Lipsitch, 2007;
Roberts and Heesterbeek, 2007; Champredon et al., 2018). In our model, disease incidence
at time t is given by:

i(t) =
∫
K(τ, t)i(t− τ)dτ. (1)

Here, K(τ, t) is the infection kernel describing how infectious we expect an individual infected
τ time units ago to be in the population. In general, K(τ, t) will depend on population
characteristics that may change through time t – notably, the proportion of the population
susceptible, S(t). Since we are interested in invasion and control, we will generally neglect
changes in K(τ, t) through time. Thus, we will assume K(τ, t) ≡ K(τ). Importantly, this
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Figure 1: Effects of constant-strength and constant-speed intervention on infec-
tion kernels. Ebola-like gamma infection kernel K(τ) (mean: 16.2 days, CV: 0.58, and
R0: 1.5) is shown in black (Park et al., 2019). The infection kernel after applying each
intervention strategy K̂(τ) is shown in red. (A) The effect of a constant-strength inter-
vention with θ = 1.5. A constant-strength intervention reduces the density by a constant
proportion: K̂(τ) = K(τ)/θ; when the strength of intervention matches the strength of
epidemic (θ = R), the resulting distribution is equivalent to the intrinsic generation-interval
distribution (K̂(τ) = g(τ)). (B) A constant-speed intervention with φ ≈ 0.0267/day is ap-
plied to the same kernel. A constant-speed intervention reduces the density exponentially:
K̂(τ) = K(τ) exp(−φτ); when the speed of intervention matches the speed of epidemic
(φ = r), the resulting distribution is equivalent to the initial backward generation-interval
distribution (K̂(τ) = b(τ)).

means we are neglecting changes in susceptible proportion through time: S(t) ≈ S(0). Under
this assumption, the renewal equation is equivalent to the Von Foerster equations (see e.g.
Fraser et al. (2004)).

2.2 Strength-based decomposition

Assuming that the infection kernel K doesn’t change with time, we write:

K(τ) = Rg(τ), (2)

where g(τ) is the “intrinsic” generation-interval distribution. The generation interval is
defined as the time between when a person becomes infected and when that person infects
another person (Svensson, 2007); therefore, the intrinsic generation-interval distribution g(τ)
gives the relative infectiousness of an average individual as a function of time since infection
(Champredon and Dushoff, 2015). Since g is a distribution, it integrates to 1, and the basic
reproductive number R is thus the integral of K.

Imagine a control measure that proportionally reduces K, for example, by protecting a
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fixed fraction of susceptibles through vaccination (Fig. 1A). We then have:

K̂(τ) = (R/θ)g(τ). (3)

Since g is a distribution, the reduction needed to prevent invasion (or to eliminate disease)
is exactly θ = R. We call θ the “strength” of the intervention; transmission is interrupted
when the strength of the intervention θ is larger than the strength of spread R.

We generalize this idea by allowing an intervention strategy to reduce K by different
proportions over the course of an individual infection. We write the post-intervention kernel:

K̂(τ) = K(τ)/L(τ), (4)

where L(τ) is the average proportional reduction for an individual infected time τ ago. The
post-intervention reproductive number is thus:

R̂ =
∫
K̂(τ)dτ (5)

This framework generalizes the work of Fraser et al. (2004) who made parametric assumptions
about the shape of L(τ).

We define the strength of the intervention L to be θ = R/R̂. It is then straightforward
to show that θ is the harmonic mean of L(τ) weighted by generation-interval distribution:

θ = 1/〈1/L(τ)〉g(τ). (6)

In this more general case, we have again that the disease cannot spread when θ ≥ R.

2.3 Speed-based decomposition

The Euler-Lotka equation allows us to calculate the initial exponential growth rate r of an
epidemic given an infection kernel K:

1 =
∫
K(τ) exp(−rτ)dτ (7)

By analogy with the strength-based factorization (2), we can rewrite (7) as a speed-based
factorization:

K(τ) = b(τ) exp(rτ) (8)

Like g, b is a distribution: in this case the initial backward generation interval, which
gives the distribution of realized generation times (measured from the infectee’s point of
view) when the disease spreads exponentially (Champredon and Dushoff, 2015; Britton and
Scalia Tomba, 2019).

Now imagine an intervention that reduces transmission at a constant hazard rate φ
across the disease generation (Fig. 1B), for example, by identifying and isolating infectious
individuals. We then have:

K̂(τ) = K(τ) exp(−φτ) = b(τ) exp((r − φ)τ) (9)
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Since b is a distribution (which integrates to 1), the reduction needed to prevent invasion (or
to eliminate disease) is exactly φ = r. We call φ the “speed” of the intervention; transmission
is interrupted when the speed of the intervention is faster than the speed of spread.

We generalize this idea by allowing the hazard rate h(τ) at which K is reduced to vary
through time, thus:

K̂(τ) = K(τ) exp
(
−
∫ τ

0
h(σ)dσ

)
(10)

The associated post-intervention epidemic speed r̂ is given by:

1 =
∫
K̂(τ) exp(−r̂τ)dτ. (11)

We define the speed of a general intervention to be φ = r − r̂. We can then show that φ is
a (sort of) mean satisfying the implicit equation:

1 =

〈
exp(φτ)

exp (
∫ τ
0 h(σ)dσ)

〉
b(τ)

(12)

Specifically, the speed φ is a mean of the hazard h in the sense that an increase (or decrease)
in h produces the same sign of change in φ, and if h is constant across the generation then
φ = h.

3 Example: Human immunodeficiency virus (HIV)

In this section, we use both strength- and speed-based decompositions to compare different
intervention strategies for the human immunodeficiency virus (HIV). In particular, we study
how the amount of early HIV transmission affects estimates of intervention effectiveness.
These examples are not detailed estimates for specific scenarios; instead, they are meant
to demonstrate how strength- and speed-based decompositions can help evaluate control
strategies.

We model the infection kernel of the HIV as a sum of two gamma distributions:

K(τ) = R (pearlyfearly(τ) + (1− pearly)flate(τ)) . (13)

The first component, fearly(τ), models early HIV transmission during the acute infection
stage. We assume that fearly(τ) has a mean of 3 months (Hollingsworth et al., 2008) and
a shape parameter of 3. The second component, flate, models HIV transmission during the
asymptomatic stage and the disease stage (after progression to Acquired Immune Deficiency
Syndrome (AIDS)). We assume that flate(τ) has a mean of 10 years (Brookmeyer and Goedert,
1989; Nishiura, 2019) and a shape parameter of 2 (to roughly match the wide generation-
interval distribution of HIV (Fraser et al., 2004)). Finally, pearly is the proportion of early
HIV transmission.

The infection kernel is shown in (Fig. 2A) for our baseline value of pearly = 0.23. We
assume that the initial speed of the epidemic is r = 0.452 year−1(Fig. 2B), and ask what value
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Figure 2: The infection kernel of the HIV. (A) The infection kernel of the HIV
is approximated using a sum of two gamma distributions. We assume that the baseline
proportion of early transmission is 23% (Hayes and White, 2006). (B) Time series of HIV
prevalence in pregnant women in South Africa, 1990 - 2010 (Barron et al., 2013). The initial
exponential growth rate of the HIV is estimated by fitting a straight line to log-prevalence
(1990 - 1997) by minimizing the sum of squares. (C) Increase in the estimate of the amount
of early transmission reduces the estimate of the reproductive number. The black circle
indicates the baseline scenario.

ofR0 would produce this rate of growth. When transmission is fast, (i.e., when pearly is large),
individuals don’t need to transmit as much to achieve this speed, so the estimated value of
R0 decreases (Fig. 2C). Therefore, as pearly gets smaller, we expect stronger intervention to
be required in order to control the disease.

We compare two different possible intervention strategies to shed light on the speed
and strength decompositions. First, we consider a condom intervention that reduces HIV
transmission by approximately 75% at the population level. Assuming that condoms act as
a physical barrier, and that condom use will, on average, remain roughly constant through
time, it is reasonable to model the proportional reduction in transmission due to condom
use as constant across the course of infection: Lcondom = 1/(1 − 0.75) = 4 (Fig. 3A). The
estimated strength of such an intervention is simply the average of Lcondom, i.e., θ = 4, whereas
the estimated strength of the epidemic decreases as the proportion of early transmission
increases (Fig. 3B). Thus, the predicted effectiveness of the condom intervention will depend
strongly on our estimate of the importance of early transmission: if early transmission is low,
we expect disease spread to be too strong to be controlled completely by our intervention.

Next, we consider a “test-and-treat” strategy in which infected individuals are identified,
linked to care and receive antiretroviral therapy (ART) with the goal of both preserving
health and preventing transmission through viral suppression. (Garnett and Baggaley, 2009;
Granich et al., 2009; Nah et al., 2017). Our assumptions for this scenario are shown in
Fig. 4. We assume that the hazard rate htest of this intervention starts at 0 (because there
is no way for newly infected individuals to know that they have HIV) but increases very
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Figure 3: Evaluating a condom intervention using strength-based decomposi-
tion. (A) Condom use is thought to reduce probability of transmission by a similar factor
throughout the course of infection; thus the proportional reduction Lcondom due to condom
use is constant across the course of infection. (B) The estimated amount of early transmis-
sion affects estimated strength of the epidemic but not of a condom-based intervention. The
black and red circles indicate the baseline scenario.

quickly (because sexually active individuals are the most likely to seek testing); after a few
months, the assumed hazard rate goes down to account for the effects of people who avoid
identification, persistent treatment failures, and the possibility of rare transmission even
under effective treatment (Fig. 4C). The corresponding strength of intervention L is shown
in Fig. 4A and details of the assumption are given in the caption.

In this example, we see that, as pearly goes down and our estimate of epidemic strength
increases, the estimate of intervention strength increases roughly in parallel. The increase in
intervention strength makes sense, as we have more time to reach people on average before
they transmit: this is the core of the result of Eaton and Hallett (2014). In our scenario, we
predict that the intervention remains effective over the range of considered parameters.

Though there is a clear intuition for why both strengths increase as early transmission
goes down, the speed paradigm provides insight into why these two increases are so close to
parallel. The estimated epidemic speed depends only on the observed growth rate – it does
not change if we change our assumption about the proportion of early transmission. For
the test-and-treat intervention, the effective epidemic speed also stays relatively constant
(Fig. 4D), in part because we have (plausibly) assumed that hazard stays relatively constant
for a few key months, and in part because the backward generation-interval distributions
for different scenarios are relatively similar. The intervention speed increases slightly as
proportion of early transmission increases because the subpopulation that the intervention
fails to reach become relatively more important if late transmission is more important. Thus,
the speed paradigm provides an intuitive underpinning for the originally surprising result of
Eaton and Hallett (2014): the effectiveness of test-and-treat interventions should not depend
much on the proportion of early transmission.

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974048
http://creativecommons.org/licenses/by-nd/4.0/


1

3

10

30

0 4 8 12 16
Time (years)

L t
es

t
A

●

●

1

2

4

8

16

0.1 0.2 0.3 0.4
Proportion of early transmission

S
tr

en
gt

h

Epidemic

Intervention

B

0.0

0.5

1.0

1.5

2.0

0 4 8 12 16
Time (years)

h t
es

t (
ye

ar
−1

)

C

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0

0.2

0.4

0.6

0.8

0.1 0.2 0.3 0.4
Proportion of early transmission

S
pe

ed
 (y

ea
r−1

)

D

Figure 4: Evaluating a test-and-treat intervention using strength- and speed-
based decomposition. (A) The strength of the test-and-treat intervention (calculated
from the assumed hazard, (C)). The dashed line shows the corresponding effective strength
of the intervention (from (6)) assuming 23% early transmission. (B) Increase in the esti-
mated amount of early transmission decreases the estimated strength of an epidemic as well
as the estimated strength of test-and-treat intervention. (C) The assumed hazard for the
test-and-treat intervention. The dashed line shows the corresponding effective speed of the
intervention (from (12)) assuming 23% early transmission. (D) The estimated amount of
early transmission has little effect on the effective speed of intervention, and none on the
speed of the epidemic estimated from incidence data. Circles indicate the baseline scenario.
Test-and-treat intervention is modeled phenomenologically: Ltest(τ) = exp (

∫ τ
0 htest(σ)dσ)

and htest(τ) = hmax(1− exp(−Kf(τ))), where f(τ) is a gamma probability density function
with a mean of 1 year and a shape parameter of 2, K = 4/max(f(τ)), and hmax = 2 year−1.

4 Discussion

The effectiveness of an epidemic intervention is often measured by its ability to reduce the
reproductive number – R, or outbreak “strength” – below 1. The exponential growth rate
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– r, or outbreak “speed” – is often seen just as a stepping stone to R or even overlooked
entirely (Park et al., 2020). We argue that R and r provide equally valid, complementary
perspectives on epidemic control, and that there are situations where each provides a clearer
picture than the other.

In this study, we: first extended the standard paradigm of R as critical parameter for
control, by defining the strength of an intervention on the same scale as R, the strength
of the epidemic; then constructed a parallel interpretation which measures the speed of an
intervention on the same scale as r, the speed of an epidemic. We thus showed that the
standard paradigm for R and control has a natural parallel interpretation in terms of r.

To illustrate this idea, we used simple assumptions to explore the effects of two HIV
intervention strategies (condoms and test-and-treat), using both strength- and speed-based
frameworks. In particular, we provided an alternative explanation for the result of Eaton and
Hallett (2014) who used detailed mathematical modeling of HIV transmission to show that
the amount of early transmission does not affect the effectiveness of the ART: we can control
an outbreak if we can identify infected individuals and enroll them on ART faster than the
observed rate at which new cases are generated, which does not depend on the estimates
of the amount of early transmission. The original explanation of the result relied on a
strength-based argument: increasing the amount of early transmission decreases the basic
reproductive number, which negatively correlates with the outcome of the ART intervention
(Eaton and Hallett, 2014).

While both speed- and strength-based frameworks can give the same conclusion about
the outcome of an intervention, sometimes one provides a clearer understanding of a given
measure. For example, we expect the speed-based framework to be clearer for characterizing
newly invading pathogens: when an epidemic is growing exponentially, the reproductive
number cannot be estimated with confidence (Weitz and Dushoff, 2015), especially when
there is large uncertainty in the shape of the generation-interval distribution (Park et al.,
2020). Conversely, we expect the strength-based framework to be clearer for evaluating
established pathogens (based on the effective proportion of the population susceptible). For
interventions, we expect the speed-based framework to be clearer for evaluating intervention
strategies that work at the individual level, like test-and-treat for HIV (Granich et al.,
2009), or contact-tracing and quarantine for COVID-19 (Hellewell et al., 2020); we expect
the strength-based framework to be clearer for intervention strategies that seek to reduce
the overall transmission at the population level, like condom use. In other cases, such as
real-time rollout of vaccines during an outbreak, both speed and strength approaches might
be similarly uncertain because the result depends both on the speed of the rollout and the
(strength-like) final coverage (Shah et al., 2018).

When comparing interventions with epidemic parameters to evaluate strategies, the situ-
ation is similar. Some scenarios lend themselves naturally to a single approach. For example,
in the classic case of vaccination to eliminate a previously established childhood disease, both
disease spread and intervention can be clearly characterized using strength (Anderson and
May, 1985). In our HIV example, both the HIV epidemic and the test-and-treat interven-
tion can be best characterized using speed. Other cases, such as using social distancing (a
strength-like intervention) in the early stages of COVID-19 (epidemic speed is observed) may
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not fit so neatly into either paradigm, however.
There is an analogy here with measures of fitness in theoretical ecology. For example,

when a population is regulated by density dependence that affects all individuals identically,
r may be the best measure of fitness (Pasztor et al., 1996), but when regulation primarily
affects juveniles mortality, R is likely to be superior (Mylius and Diekmann, 1995). The
importance of speed-based perspectives are still rarely recognized in the case of infectious
disease, however.

Responses to the 2014 Ebola Outbreak in West Africa and the recent COVID-19 outbreak
show an over-emphasis on strength at the expense of speed: during the early phases of both
outbreaks, many disease modelers tried to estimate R0 but overlooked r. For example, only
1 out of 7 preliminary analyses of the COVID-19 outbreak that were published as preprints
between January 23–26, 2020 reported the doubling time of an epidemic (Bedford et al.,
2020; Imai et al., 2020; Liu et al., 2020; Majumder and Mandl, 2020; Read et al., 2020; Riou
and Althaus, 2020; Zhao et al., 2020). We suggest that infectious disease modelers should be
aware of the complementarity of these two frameworks when analyzing disease outbreaks.
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Svensson, Å. (2007). A note on generation times in epidemic models. Mathematical bio-
sciences 208 (1), 300–311.

Wallinga, J. and M. Lipsitch (2007). How generation intervals shape the relationship between
growth rates and reproductive numbers. Proceedings of the Royal Society of London B:
Biological Sciences 274 (1609), 599–604.

Weitz, J. S. and J. Dushoff (2015). Modeling post-death transmission of Ebola: challenges
for inference and opportunities for control. Scientific reports 5, 8751.

Zhao, S., J. Ran, S. S. Musa, G. Yang, Y. Lou, D. Gao, L. Yang, and D. He (2020).
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-
nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the
outbreak. https://www.biorxiv.org/content/10.1101/2020.01.23.916395v1. Accessed 26,
January, 2020.

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974048
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Methods
	Epidemic model
	Strength-based decomposition
	Speed-based decomposition

	Example: Human immunodeficiency virus (HIV)
	Discussion

