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Recent technological advances have made it feasible to collect multi-condition transcriptome

and proteome time-courses of cellular response to perturbation. The increasing size and

complexity of these datasets impedes mechanism of action discovery due to challenges in

data management, analysis, visualization, and interpretation. Here, we introduce MAG-

INE, a software framework to explore complex time-course multi-omics datasets and build

mechanistic hypotheses of dynamic cellular response. MAGINE combines data management,

enrichment, and network analysis and visualization within an interactive, Jupyter notebook-

based environment to enable human-in-the-loop inquiry of complex datasets. We demon-

strate how measurements from HL-60 cellular response to bendamustine treatment can be

used to build a mechanistic, multi-resolution description of cellular commitment to fate. We

present a systems-level description of signal execution from cellular DNA-damage response,

to cell cycle arrest, and eventual commitment to apoptosis, mediated by over 2 000 biochem-

ical species. We further show that MAGINE can reveal unexpected, non-canonical effects of

bendamustine treatment, including disruption of cellular pathways relevant to HIV infection

response. MAGINE is available from https://github.com/lolab-vu/magine.

1 Introduction

Cellular response to perturbations can elicit molecular responses across multiple processes such

as gene expression modulation, changes in protein and metabolic activity, and in extreme cases,
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changes in DNA structure (e.g., mutations). Modern, accessible technologies—most notably mass

spectrometry (MS) and RNA-sequencing (RNAseq)—have enabled the measurement of biochem-

ical interactions at molecular resolution for whole cellular genomes, proteomes, and metabolomes

1–3. Recent work by our labs and others have already shown the potential of these kinds of datasets

to gain a systems-level understanding of cellular response mechanisms to perturbations, with mea-

surements that can easily number in the thousands to millions of data points 4–6. Although these

measurements in principle contain the molecular details necessary to formulate mechanistic hy-

potheses about cellular response to perturbations, the analysis of these datasets currently entails

multiple tools, most notably enrichment- and network-based methods.

Enrichment analysis can provide insights about relevant cellular processes by comparing

multiple experimental conditions following perturbations such as drug treatments 7, 8. This ap-

proach can be used to identify biological processes with altered activity by identifying groups

of genes or proteins that are up- or down-regulated following treatment. Unfortunately, for the

purposes of mechanistic exploration, these approaches fail to provide insights about molecular in-

teractions that could drive a specific cellular process. For the purposes of large multi-omics and

multi-experiment exploration, popular web-based enrichment analysis tools such as EnrichR 9 and

Webgestalt 10 can only handle one sample at a time through their web interfaces, thus posing a

major limitation given the high-throughput needed for multi-omics analysis.

In contrast to enrichment-based analysis methods, network-based analysis produces ”maps”

of biochemical species and their interactions. Networks can then be explicitly analyzed – e.g.
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using graph theoretic methods – to find paths or groups of relevant interactions between two or

more network points. However, these become difficult to visualize and interrogate when the graph

grows beyond a few tens of nodes, as seen in genome-wide networks. leading to the familiar

”hairball” problem. Network tools, most notably Cytoscape 11, partially address the needs for

combined enrichment and network analysis through the use of plugins, but their capabilities for

multi-sample analysis are limited. Ingenuity Pathway Analysis 12, a useful pathway analysis tool

available for multi-omics data, can provide cellular process exploration, but its closed, proprietary

nature limits extension by users to meet the needs of the field.

Recognizing the need for multi-omics analysis, other tools have been built that can handle

small multi-omics datasets 9, 10, 13–15. However, these tools were not designed for the emerging

needs posed by large and complex, multi-time point or multi-sample datasets. Thus there is an

unmet need for novel tools to (i) integrate -omics datasets from multiple experimental modalities,

(ii) provide a platform where multiple analysis tools can be used in tandem, and (iii) enable human-

guided mechanism exploration within a reproducible, shareable workflow environment 16–21

To address the needs for modern multi-omics data analysis, we developed the Mechanism of

Action Generator Involving NEtwork analysis (MAGINE). MAGINE is a Python-based mechanism-

of-action exploration framework that unifies enrichment and network analyses, enabling the user

to explore interactions across multiple cellular processes along with the molecular interactions that

drive these processes. MAGINE embraces a literate programming paradigm 22 in which biological

knoweldge, data exploration, and visualization are integrated within a live document within an ex-
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ecutable web-based environment such as Jupyter notebooks, thus facilitating access to the Python

scientific ecosystem.

To demonstrate the capabilities of MAGINE, we explore the time-course response of HL-60

cells to bendamustine treatment. Bendamustine is a well-established DNA-damage agent used for

cancer treatments in the clinic with a consensus mechanism of action23. Our analysis reveals de-

tailed, systems-level, dynamic molecular mechanisms, which comprise thousands of biochemical

interactions across multiple cellular processes. These results significantly expand upon the consen-

sus mechanism accepted for Bendamustine in cellular perturbations, which comprises a few tens of

molecular interactions 23, 24. We also demonstrate how MAGINE can be used to explore bendamus-

tine side-effects; specifically, protein interactions that could provide a mechanistic explanation for

previous reports of bendamustine treatments in HIV patients. Finally, all our MAGINE-based anal-

ysis is documented using Jupyter notebooks, which offer a means to transparently report complete

analyses, suitable for distribution across members of the scientific community to evaluate and ex-

pand on as desired. In summary, MAGINE unifies multiple practices in the field onto a common,

open, scalable platform that enables the extraction of cellular response mechanisms from large,

complex -omics datasets.

2 Results

MAGINE: A framework to explore cellular response mechanisms using multi-omics MAG-

INE is implemented in Python, a suitable language for a biological exploration platform due to its
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ease of use, large user base, and integration with over 200,000 packages in the Python Package

Index as of the writing of this manuscript. The platform has been tested on Windows, Mac OS,

and Linux. It can be used within the Python console, interactive Jupyter Notebooks, or within data

processing and analysis pipelines. We envisage the majority of users are best served through the

Jupyter notebook option, and thus describe that in the most detail, including a tutorial notebook

(Supplementary Information).

MAGINE comprises three main modules (Figure 1): data management and visualization,

enrichment analysis, and network analysis. Each module can be used independently, but data can

be easily shared across modules. We present a brief summary of each module below, followed by

an applied case study.

Data analysis module The data management module handles data storage, access, and analysis.

MAGINE utilizes the pandas25 library to provide database-like capabilities for -omics data query-

ing. Data are loaded using a tabular, comma-separated values (CSV) file, with one measurement

per row (see Methods). MAGINE stores these in an ExperimentalData class, which provides a

simple, high-level interface to access, filter, and search these data as needed. This module also

provides visualization capabilities, which include sample comparisons, time-series clustering, and

species differential expression trends over time (Figure 1). A summary of these methods is shown

in Supplementary Table S2, and example usage can be found online or in Supplementary Notebook

S1.
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Enrichment module The enrichment analysis module identifies over- or under-represented bio-

chemical species that share common annotation (e.g., biological processes or molecular functions)

compared to random background sets 26. MAGINE leverages the capabilities of EnrichR, which

includes over 120 gene set “libraries” 9, 27. For analysis, users provide one or more lists of genes,

which can be manually constructed or created by the ExperimentalData class (e.g., all up-regulated

genes, species detected on a specific experimental platform, or filtered by time point). MAGINE

automates analysis through EnrichR, as shown in Supplementary Figure S2. A single command

is provided to query EnrichR across all time points and data platforms present in a dataset. The

results are stored in an EnrichmentResult class, which includes methods to further query, filter,

and visualize enrichment terms. Terms can be compared, ranked, grouped, and visualized with

built-in methods (e.g., time-series heat map, word cloud). Genes corresponding to each term can

be extracted and used to subset ExperimentalData or create subgraphs.

Even through the use of multiple databases, traditional enrichment analyses can yield terms

of varied granularity, ranging from very broad (e.g., “biological process”), to highly specific (e.g.,

“cysteine-type endopeptidase inhibitor activity involved in apoptotic process”), within a single

results output. The problem is exacerbated due to each gene mapping to multiple terms, thus in-

troducing term redundancy, increasing the total number of explorable terms and hindering human

interpretation. To address these issues, we developed an ontology compression method to aggre-

gate terms based on gene content similarity (described in Methods). This significantly reduces

enrichment term redundancy, which in turn greatly aids human interpretation. For example, on the

bendamustine dataset analyzed herein, 84 terms from traditional enrichment analysis of our data
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can be compressed to 17 terms, an 80% reduction (see Results). A summary of functions available

in the enrichment module is shown in Supplementary Table S3, and example usage can be found

online or in Supplementary Notebook S3).

Network module MAGINE’s network module allows users to build, query, and visualize molec-

ular and gene annotation networks. A summary of the network module’s methods is shown in

Supplementary Table S4 and example usage can be found online or in Supplementary Notebook

S2. The network module utilizes connectivity information from multiple databases, including

KEGG 28, 29, SIGNOR 30, Reactome Functional Interactions 31, BioGrid 32, 33, and HMDB 34, 35.

The graphs underlying these database are merged into a single network, which can be used to

perform queries (e.g., find paths between nodes, apply clustering methods) or construct context-

specific networks based on a user-provided seed species list. Seed nodes can be obtained from

various sources: significantly changed species, mutational evidence, literature review, or manual

curation. The module iterates through the databases and expands the network by adding edges and

nodes based on connectivity to the seed species in those databases (Supplementary Figure S4). The

resulting networks are a subset of the background network, focused around the specific molecu-

lar seed species. These networks can be large (> 20 000 nodes and > 100 000 edges). MAGINE

users can use the Subgraph class to generate subnetworks (Supplementary Table S4). For example,

these functions enable users to find paths between species, or find neighbors (upstream or down-

stream) of nodes of interest. Options are provided to limit the network expansion, such as setting

a maximum distance from specific nodes.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974121doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974121
http://creativecommons.org/licenses/by-nc/4.0/


Additionally, we introduce a method to create a coarse-grained network from gene sets,

which we refer to as an Annotated Gene-set Network (AGN). The AGN is motivated by the desire

to combine dynamic, high-level information about biological processes from enrichment analy-

sis with inter-process communication provided by molecular networks. This results in a coarse-

grained network, where nodes are biological process terms and the edges are connections between

the sets of nodes in the molecular network. This can be expanded into a fine-grained network,

which contains the chemical species and their connections, thus enabling multi-resolution explo-

ration. MAGINE’s network module also provides various tools for network visualization, allowing

users to overlay data or update network attributes. Users can visualize networks in Jupyter note-

books using cytoscape.js 36, modify a cytoscape session via py2cytoscape37, or create a sequence

of figures of network activity through matplotlib 38, igraph39, or graphviz40. Networks can be

exported using networkx41, for further external manipulation.

Case study: Using MAGINE to explore the temporal response of bendamustine-treated leukemia

cells. To demonstrate the capabilities of MAGINE, we extracted the mechanism of action from a

multi-omics dataset containing molecular measurements for the response of HL-60 cells 42 to treat-

ment with bendamustine, a nitrogen mustard alkylating compound used for the treatment of chronic

lymphocytic leukemia and non-Hodgkin’s lymphoma 24. Bendamustine is a cytotoxic agent that

can induce DNA interstrand cross links (ICLs), which inhibits replication and transcription, lead-

ing to cell cycle arrest, and ultimately, cell death 23, 24.

The main goal of this study was to probe and expand the consensus understanding of molecu-
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lar species and biological processes involved in cellular response to bendamustine treatment. Data

were gathered across three proteomics platforms (label-free, SILAC, phospho-SILAC/phSILAC)

and RNAseq, spanning between 30 seconds and 72 hours post-drug exposure with matching un-

treated controls (see Methods; Supplementary Figure S1). The analysis is summarized and docu-

mented in Supplementary Notebook S1.

In total, we detected 54 818 unique molecular species across all platforms, of which 14 426

were significantly changed versus control in at least one time point upon drug treatment. By

platform, we saw 5 115 changed species versus control from phSILAC MS, 1 653 from label-free

MS, 133 from SILAC MS, and 736 from RNAseq (Supplementary Figure S1b). Early changes

were detected at the phosphorylation level; phSILAC detected > 700 such changes at the 30s

time point. Phosphorylation events occurred relatively evenly across all sample time points, while

a gradual increase of significant differences versus control occurred over time in overall protein

and RNA (Supplementary File S1). We next examined the overlap between significantly changed

species across the experimental platforms (Supplementary Figure S1 c and d). The highest overlap

among proteomic platforms was between phSILAC and label-free (643 species). Only 88 species

were significantly changed versus respective controls in both RNA and at least one of the proteomic

platforms (phSILAC, SILAC, and label-free; Supplementary Figure S1). Indeed, even within the

protein platforms, a majority (>2 500) of measured species were unique to a single platform, while

688 species were measured in at least two platforms, and only 22 species were measured in all three

platforms. Within-platform detection is generally reliable and repeatable 4, thus the low overlap

between significant species changes across platforms demonstrates the value of integrative, multi-
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platform analysis.

We proceeded to further analyze the dataset with a custom MAGINE workflow, integrating

both network and enrichment analyses (Figure 2). First, we constructed a master signaling net-

work utilizing significantly changed species across all platforms and time points as seed species.

Separately, we performed an enrichment analysis across 52 reference gene sets (provided by En-

richR) for each time point and experimental platform; MAGINE automates this entire process

using a single instruction, run enrichment(). Each enrichment result set was arranged by

three change types: up-regulated, down-regulated, and significantly changed (both up- and down-

regulated) species; and across 12 time points and four experimental platforms, resulting in 78 total

result sets (not all combinations are represented). In total, there were 20 758 enriched terms across

the 52 reference gene sets with an adjusted p-value ≤ 0.05.

We initially focused on phospho-protein changes to elucidate signaling activity. Using the

MAGINE filtering capability, we selected only enriched terms originating from phSILAC data with

the Reactome 2016 reference gene set, resulting in 561 unique terms. Next, we required terms to be

significantly enriched in at least 3 of 5 time points, resulting in 84 terms. To reduce redundancy of

closely-related terms (e.g., “cell cycle”, “cell cycle, mitotic”), we applied the remove redundancy()

method, resulting in 17 terms (Supplementary Figure S3); a manageable number for visualization.

We created a heatmap to examine the dynamics of these 17 terms over time (Figure 2, center

right), which include cell cycle, processing of capped intron-containing pre-mRNA, DNA repair,

apoptosis, and HIV infection. As shown in Supplementary Figure S3c, we were able to expand
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resulting terms such as cell cycle to view aggregated and redundant terms removed in the compres-

sion process described above, such as nuclear envelope breakdown, DNA replication, and G2/M

checkpoints, all of which are known bendamustine responses 23.

An enrichment analysis by itself provides no detail on how terms affect one another. There-

fore, we constructed an annotated gene set network (AGN) for each time point (Figure 2, bottom).

Each node in the AGN represents an enriched biological process, and the edges between the nodes

reflect the directed connectivity between species that are annotated with that node’s biological pro-

cess term. As shown in Figure 2 and Supplementary File S5, this network can be visualized over

time, where the node size will be adjusted based on the enriched value of the term at each time

point, providing a high-level representation of the dynamics of signal flow, with animation if de-

sired. These figures give insights into the high-level organization of signaling dynamics. At 30

seconds, the ontology term with the most changes involves processing of pre-mRNA, suggesting

alterations in transcriptional activity. By 6 hours, terms involving genes associated with apoptosis,

protein translation, and HIV response (explored in the next section) have their relative peaks at 6

hours. However, by the 12 and 24 hour time points, cell cycle becomes the dominant ontology

term. This suggests early response is mediated through phosphorylation and changes in transcrip-

tion, while later activity manifests through signaling activity. Looking at network connectivity,

RNA polymerase II transcription is regulated by four terms (cellular response to stress, cell cycle,

sumo E3 ligases sumoylate target proteins, HIV infection), but only regulates a single term (rho

GTPase effectors), suggesting the transcription is highly regulated in response to bendamustine.

The cell cycle node is connected to all other nodes in the AGN, in agreement with its importance
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in regulating response to bendamustine 23. Overall, the AGN provides a broad representation of

the data that allows users to visualize major cellular processes and their mutual interactions. Users

can then identify terms of importance to be used as a starting point for further exploration.

MAGINE elucidates DNA repair, cell cycle, and cell death proteins central to bendamustine

response. We next examined how our data recapitulate existing knowledge of bendamustine’s

mechanism of action (the “canonical mechanism”). We extracted a molecular network from the

AGN focused on the terms most commonly associated with bendamustine response23 : DNA repair,

cell cycle, and apoptosis (Figure 3, top center). There are a total of 65, 146, and 28 species in the

network for the terms DNA repair, cell cycle, and apoptosis respectively. 33 species were classified

as both DNA repair and cell cycle, 37 genes were classified as cell cycle and apoptosis, two genes

were in all three terms, while no genes were classified as both DNA repair and apoptosis. We saw

higher connectivity between DNA repair and cell cycle (132 outgoing and 117 incoming edges)

and cell cycle and apoptosis (154 outgoing and 609 incoming edges) compared to DNA repair and

apoptosis (24 outgoing and 56 incoming edges).

We next examined each of these ontology terms at the molecular level using MAGINE’s

network module. In the DNA repair term, we saw 173 phosphorylation events across 80 proteins,

43 changes in protein expression, and 5 changes of RNA expression (Figure 3, left). Of these, we

identified proteins involved in DNA ligase (LIG1, LIG2), required to alleviate interstrand cross-

links, and double stranded break response MRN complex (RAD50, MRE11A, NBN) 43, suggesting

that the interstrand cross-links are corrected during DNA replication creation of double stranded
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breaks. We also identified proteins involved with base excision repair pathways (DDB1, XRCC1,

XRCC2, XRCC5, XCCC6) and nucleotide excision repair (ERCC3, ERCC5, ERRC6) 44, sug-

gesting that the pyrimidine analog properties of bendamustine also contribute to DNA damage in

addition to interstrand cross-links.

We next extracted and visualized changes in cell cycle status (Figure 3, center). For the “cell

cycle” term, we saw 444 significant phosphorylation events across 153 proteins, 111 changes in

protein expression, and 17 changes of RNA expression. We clustered protein expression changes

and created a sub-network of up-regulated species. We saw up-regulation of CDK1, AURKA,

AURKB, CCNB1, CDC20, and PLK1 45–47. Of these, CDC20, CDK1, and CCNB1 regulate chro-

mosome separation 48, while expression of AURKA/AURKB/PLK1 regulates progress through

the G2-M checkpoint 46. Without this checkpoint, activated apoptotic signals could lead to mitotic

catastrophe during metaphase/anaphase transition, a mechanism known to occur in response to

bendamustine 23.

Finally, we used the Subgraph module to explore downstream targets of CASP3, an effec-

tor caspase whose cleavage marks commitment to apoptosis 49. Although significant changes in

CASP3 concentration were not detected from the experimental datasets, enough biological ev-

idence about CASP3 activation exists that motivate exploration of its downstream targets. To

accomplish this, We created a network of downstream targets of CASP3 and visualized their ex-

pression levels over time (Figure 3, right). We saw 9 proteins that were down-regulated and one

up-regulated at late time points, after apoptosis was induced. Thus, despite not measuring changes
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in CASP3, MAGINE allowed us to gather evidence suggesting its activation in a signaling capacity.

Bendamustine regulation of nuclear pore proteins and regulators of nuclear trafficking: po-

tential clinical significance to HIV infection. Throughout the exploration of the HL-60 re-

sponse to bendamustine dataset, we noticed that the term HIV infection was a significantly enriched

ontology term that apparently played no role in the cell-death response associated with bendamus-

tine. However, since HIV infection hijacks and modulates cell cycle and DNA repair 50, 51, we

examined whether a plausible explanation of the enrichment in proteins associated with HIV in-

fection is the overlap of underlying species with these expected biological process terms. The data

showed that this overlap did not completely account for the finding (Figure 4). Proteins down-

regulated in response to bendamustine marked with the HIV infection term include those related to

the nuclear pore (NUP107, NUP133, NUP153, NUP155, NUP160, NUP188, NUP210, NUP214,

NUP35, NUP37, NUP50, NUP62, NUP88, NUP93, NUP98) as well as regulators of the trafficking

through the nuclear pore (RANBP1, RANBP2). Perturbations to RANBP2 are known to disrupt

the HIV virus’ ability to shuttle the HIV-1 Rev protein between the cytoplasm and nucleus, mak-

ing it a potential target for inhibition of HIV 52. Additionally, CCNT1, a co-factor of the HIV-1

Tat protein necessary for full activation of viral transcription, is down-regulated at the 60 and 72

hour time points. Thus, the ability of bendamustine to perturb HIV infection-related genes could

have clinical relevance. While treatment with bendamustine (for other disease indications) in HIV-

positive patients is rare, case reports state that two HIV-positive patients with chronic lymphocytic

leukemia received bendamustine without adverse outcomes 53. Therefore, unbiased analysis of this

16

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974121doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974121
http://creativecommons.org/licenses/by-nc/4.0/


dataset enabled side effects exploration that could lead to further leads in HIV treatment. Although

such results clearly require further validation, they demonstrates the ability of MAGINE to identify

non-canonical cellular pathways effected by drug treatment.

3 DISCUSSION

Experimental advances in -omics data generation have provided a wealth of data and opportuni-

ties to advance currently available tools. The most common analysis types include network and

enrichment analysis, which were originally designed for single sample, single platform studies.

These analyses are complementary: network analyses give molecular interaction insights, while

enrichment analyses show the coordination of molecular activity at the level of biological pro-

cesses. Although both approaches have been widely used, computational tools allowing users to

employ both analyses in a complementary fashion on multi-sample, multi-omics data have been

lacking. Here we demonstrated that MAGINE can integrate multi-sample -omic data with enrich-

ment analysis and data-specific signaling networks in a single computational environment, which

allows users to gain many types of biological insights and to explore their data interactively and

efficiently.

MAGINE enables users to construct custom analysis protocols in Jupyter notebooks that are

both reproducible and transferable. Existing software such as Biojupies 54 and PaDua 55 have

demonstrated the power of this approach on RNAseq and phospho-proteomics analysis. We ex-

pect the use of Jupyter notebooks to increase and see MAGINE as highly complementary to such
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pipelines.

Multi-omics mesaurements provide larger cellular coverage than traditional in vitro/in cell

measurements (Western blots or ELISA) and identification of unexpected significantly changed

biochemical species is common. MAGINE enables users to elucidate these findings through ex-

ploration of the molecular data and their biological network context, which is often a slow step.

Here, we demonstrated MAGINE’s ability to quickly explore why the term HIV infection was de-

tected and its relationship to known bendamustine responses. We expect this utility to be useful in

identifying and exploring non-canonical cellular pathways that are often disregarded or ignored.

Our results show the complexity in interpreting multi-omics data, as the response to ben-

damustine involves multiple genes and cellular pathways. Single time point measurements do not

capture an entire mechanism, with some events occurring early (phosphorylation events of DNA

repair proteins), and some later (up-regulation of cell cycle proteins, cleavage events of apoptotic

CASP3). Interactive exploration of these data enables users to piece together the mechanism and

design further experiments for validation and follow-up exploration.

In summary, MAGINE enables users to easily switch between enrichment analysis, net-

works, and experimental data within an iterative, interactive framework. This allows users to vary

resolutions (molecular/biological process, static/dynamic) depending on the question at hand, and

generate new hypotheses. As improvements and falling costs with -omic data generation allow

multiple sample acquisitions per perturbation, we envision the need for integrative tools such as

MAGINE increasing significantly.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974121doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974121
http://creativecommons.org/licenses/by-nc/4.0/


4 METHODS

MAGINE software implementation MAGINE is implemented as a Python package. It leverages

several existing Python packages, including pandas 25, NumPy 56, Bioservices 57, Matplotlib 38,

Seaborn 58, matplotlib-venn, and networkx 41 packages. Optional but recommended dependencies

include jupyter- notebook 59, python-igraph 39, py2cytoscape 37, and plotly 60 Python packages and

graphviz 40 and Cytoscape 11 software for additional visualization features.

Data format MAGINE is designed for quantitative datasets. These data are loaded from a sin-

gle file in a tabular format, with columns identifying the sample, time point, and experimental

platform. Due to the large number of possible experimental platforms, we generalized naming

of columns to support a wide variety of data types. MAGINE requires the following column la-

bels: identifier, label, species type, significant, fold change, p value, source, and sample id, with

a sample table shown in Supplementary Table S1. This format uses a stacked data file notation (de-

normalized, in database parlance), which provides ease of editing and compatibility (a single, text

format table is all that is needed) at the expense of data redundancy. For identifier, we use HGNC 61

and Human Metabolite Database (HMDB) 35 IDs for genes and compounds, respectively (we also

provide tools to map other identifiers to these formats). The label column can be used to store

any other information, such as post-translational modifications, aliases, or molecular weights. The

source and sample id are used to label the experimental platform and sample condition (i.e., time

point). The species type column is used to state if the species is a metabolite or gene (we use

“gene” to label all possible gene products and allow the source column to specify the type). The
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fold change column and p value column are for the fold-change and statistical significance of the

data compared to control (supplied from the raw data processing step performed before data are

loaded into MAGINE). Note that the p value should be the adjusted value if using any form of

multiple hypothesis testing. Finally, the significant column is used to identify if a given measure-

ment is significant compared to control. The definition of significant is deliberately left to the user:

in the situation where each experimental platform is handled by a different team, those teams can

apply their own standards or software to defining significance, if desired.

Once loaded, data are stored in an instance of MAGINE’s ExperimentalData class, built on

the Pandas DataFrame with added methods designed for biological data. Our goal was to sim-

plify and provide shorthand properties/methods to minimize the code needed to perform common

operations such as filtering, querying, aggregating, and visualization of the data. A summary of

these methods is shown in Supplementary Table S2 and example usage can be found online or in

Supplementary Notebook S1). MAGINE allows for custom workflows to be assembled from its

component modules and methods (Figure 5). Python properties are constructed around the signif-

icant, source and sample id columns, allowing users to gather only significant changes (data.sig),

extract only label-free proteomics data (data.label free), extract out only sample id rows labeled

“wild type” (data.wild type), or filter up-regulated fold-changed species (data.up). Importantly,

filters can be chained together to create complex queries, with less complex syntax, and methods

directly applied to the resulting information (data.label free.sig.up.heatmap()). Identifiers or labels

of these queries can then be aggregated (data.id list or data.label list) and passed to enrichment

analysis or to construct a network. Additionally, the class has direct access to common biological
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plotting functions such as volcano plots (data.volcano()), heatmaps (data.heatmap()), or individual

species plots (data.plot species(...)).

Enrichment term aggregation MAGINE contains a method, remove redundancy, for reducing

the number of gene enrichment terms by aggregating redundant terms. First, it calculates the ratio

of the sizes of the intersection and union (Jaccard index 62) between genes within all term pairs.

It then ranks all terms based on either their combined score (from EnrichR), number of genes in

the term, or p-value. Starting from the highest ranked, it compares all lower ranked terms and

removes them if their similarity is above a user-defined threshold, as shown in Supplementary Text

1 and demonstrated in Figure S3. This allows the user to minimize the number of total terms while

maintaining a level of information content that preserves total information.

Annotated gene set network construction Annotated gene set networks start with a set of anno-

tation terms, which can be selected based on expert knowledge, rank of enrichment, all compressed

terms, or any other criteria. We first extract the set of nodes from a molecular network identified

with the selected annotation terms. From there, we search through all possible combinations of

pairs between the terms. For example, if term 1 has genes (A, B, C) and term 2 has (D, E), we

count the number of edges from the possible sets ((A, D), (A, E), (B, D), (B, E), (C, D), (C, E))

that are found in the network edges. We then do the reverse (term 2 to term 1). If a node is in both

sets, we consider the edges that connect the other term, not edges that are within the term. This is

demonstrated in Supplementary Figure S5.
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Software availability and requirements MAGINE is released as open source software under the

GNU General Public License, version 3. Source code for MAGINE can be found at github.com/LoLab-

VU/Magine. Full documentation can be found at magine.readthedocs.io. MAGINE has a full soft-

ware test suite, which is executed using continuous integration and checked for code coverage. The

project is version-controlled on GitHub. We encourage the community to post issues, questions,

enhancement requests, and code contributions.

Experimental methods Briefly, HL-60 cells were plated and exposed to 100 M bendamustine

in triplicate for each time point, as described previously 4. Sample preparation for transcrip-

tomics, label-free proteomics, and metabolomics analyses was performed as previously described

4. SILAC and phSILAC samples were prepared in a similar manner as reported 5, with the excep-

tion that SILAC samples were run by 1D chromatography rather than MudPIT. After introduction

of drug, measurements were collected at 12 time points ranging from 30 seconds to 72 hours across

6 experimental platforms as shown in Figure S1a. Each dataset was then formatted and combined

into a single CSV to be used with MAGINE.
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Figure 1: The MAGINE platform. MAGINE is designed for quantitative time-series multi-omic
data. It is built around three concepts: data management, enrichment analysis, and network explo-
ration. The modular design allows flow of information among the data, enrichment, and network
modules, allowing an iterative cycle with varying levels of resolution. Example outputs of each
module are provided in each panel.
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Figure 2: Example workflow of bendamustine mechanism extraction. Multi-omics datasets
(top left) are combined with public databases (top right) to generate detailed interaction networks
(middle left) and enriched annotated gene set (AGS) heatmaps (middle right). The data-derived
network is then pruned by extracting a subnetwork of genes from high-ranking AGS terms and
collapsed to produce annotation-level networks (bottom), where each node is labeled by an AGS
term and scaled according to enrichment of that term; the width of each edge represents the number
of edges between the terms. The network can be viewed at each time point or as an animation
(Supplementary File S5).
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Figure 3: Custom workflows for exploring known biological processes of bendamustine.
Molecular network constructed from DNA repair, cell cycle, and apoptosis classified species, the
canonical processes involved in bendamustine response (top). The network is an expanded version
of the annotated gene network from Figure 2. From the term “DNA repair”, MAGINE can visu-
alize (center left) as well as construct a signaling network corresponding to the term’s molecular
species (bottom left). Due to CASP3 importance in executing apoptosis, we constructed a network
of downstream species (center right). We then filtered the experimental data to generate a heatmap
(bottom right). Eight of nine species are down-regulated, indicating CASP3 activity. We then vi-
sualized the changes to cell cycle-related genes over time (center), and subsequently constructed a
molecular network based on CCNB1 and CDK1 (middle bottom), two genes responsible for G2-M
transition of cell cycle. 37

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.02.974121doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974121
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4: Common genes between bendamustine mechanism processes and the GO term HIV
infection. An unexpected outcome of the analysis revealed that proteins related to the GO term HIV
infection were modulated with bendamustine. An annotated gene set network of the interaction
between the GO terms DNA repair, HIV infection, and cell cycle (top left). The overlap between
genes labeled in each pathway labeled by Reactome (bottom left). Molecular interaction network
of all significantly changed species grouped according to their classified pathway (right).
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Figure 5: Example of MAGINE workflow. The figure shows example function calls made by the
user (left column) and how these are handled by MAGINE and external tools (middle columns),
and examples of resulting output (right column). This is a typical processing workflow where users
desire to run enrichment analysis, construct a data-specific network, and construct a compressed
annotated gene set network.
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