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Abstract 10 

Humans can covertly track the position of an object, even if the object is temporarily occluded. What are 11 

the neural mechanisms underlying our capacity to track moving objects when there is no physical stimulus 12 

for the brain to track? One possibility is that the brain “fills-in” information about invisible objects using 13 

internally generated representations similar to those generated by feed-forward perceptual mechanisms. 14 

Alternatively, the brain might deploy a higher order mechanism, for example using an object tracking 15 

model that integrates visual signals and motion dynamics (Kwon et al., 2015). In the present study, we 16 

used electroencephalography (EEG) and time-resolved multivariate pattern analyses to investigate the 17 

spatial processing of visible and invisible objects. Participants tracked an object that moved in discrete 18 

steps around fixation, occupying six consecutive locations. They were asked to imagine that the object 19 

continued on the same trajectory after it disappeared and move their attention to the corresponding 20 

positions. Time-resolved decoding of EEG data revealed that the location of the visible stimuli could be 21 

decoded shortly after image onset, consistent with early retinotopic visual processes. For processing of 22 

unseen/invisible positions, the patterns of neural activity resembled stimulus-driven mid-level visual 23 

processes, but were detected earlier than perceptual mechanisms, implicating an anticipatory and more 24 

variable tracking mechanism. Monitoring the position of invisible objects thus utilises similar perceptual 25 
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processes as processing objects that are actually present, but with different temporal dynamics. These 26 

results indicate that internally generated representations rely on top-down processes, and their timing is 27 

influenced by the predictability of the stimulus. All data and analysis code for this study are available at 28 

https://osf.io/8v47t/.   29 
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Introduction 30 

Internally-generated representations of the world, as opposed to stimulus-driven feedforward 31 

representations, are important for day-to-day tasks such as constructing a mental map to give a stranger 32 

directions, remembering where you last saw a lost item, or tracking the location of a car that becomes 33 

occluded by another vehicle. In these cases, there is little or no relevant perceptual input, yet the brain 34 

successfully constructs a picture of relevant visual features such as object form and spatial position. Such 35 

internally-generated representations have been studied with tasks involving imagery, mental rotation, 36 

and perception of occluded objects. It is clear that internally-generated representations rely on similar 37 

brain regions to stimulus-driven perceptual representations (Lee et al., 2012; Reddy et al., 2010) but they 38 

appear to have different temporal dynamics (Dijkstra et al., 2018), raising the question of how exactly 39 

these internal representations are formed. 40 

 41 

Top-down processing appears to play an important role in generating internally representations. Current 42 

theories of mental imagery are based on similarities between perception and imagery, with a greater 43 

focus on bottom-up processing in perception and top-down processing in imagery (for review, see 44 

Pearson, 2019). Neuroimaging work has shown increases in brain activation within early visual cortical 45 

regions when participants engage in imagery, in a similar way to viewing the same stimuli (Kosslyn et al., 46 

1993; Le Bihan et al., 1993), but there is more perception-imagery overlap in higher level brain regions 47 

such as ventral temporal cortex (Lee et al., 2012; Reddy et al., 2010). Imagery involves greater flow of 48 

information from fronto-parietal to occipital regions than perception, indicating that top-down or 49 

feedback-like processes mediate internally generated representations (Dentico et al., 2014; Dijkstra et al., 50 

2017; Mechelli, 2004). Consistent with this account, recent work using magnetoencephalography and 51 

time-resolved decoding showed that imagery of faces and houses involves similar patterns of activation 52 

as viewing those stimuli, but with different temporal dynamics (Dijkstra et al., 2018). In the Dijkstra et al. 53 

(2018) study, imagery-related processing was delayed and more diffuse than perception, which showed 54 
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multiple distinct processing stages. Together, these results suggest that imagery originates in higher-level 55 

brain regions rather than involving feed-forward visual processes from V1.  56 

 57 

One aspect that is likely to affect the top-down generation of internal representations is the ability to 58 

predict aspects of the stimulus in advance, for example when objects become occluded. The processes 59 

underlying the representation of occluded objects may be closely related to those in conventional imagery 60 

tasks (Nanay, 2010). However, there are some important differences between imagery and occlusion. 61 

Imagery can be prompted from either long term memory or working memory, which involve different 62 

patterns of brain activation (Ishai, 2002), whereas representations in conditions of occlusion often have 63 

some sensory support, such as from a fragment of the object not occluded or full view of the object 64 

immediately before occlusion. One possibility is that internally generated representations utilise the same 65 

brain networks as perceptual representations but the temporal dynamics vary with the ability to predict 66 

and anticipate details of the stimulus to be generated. 67 

 68 

Tracking the position of a predictably moving object is a common task that may share some top-down 69 

processes with static imagery tasks. In particular, prediction is likely to play an important role in both 70 

imagery and visual tracking. The ability to predict the movement of a stimulus influences perceptual 71 

processing during visual tracking; Hogendoorn & Burkitt (2018) measured EEG from participants who 72 

viewed an apparent motion stimulus that was predictable or unpredictable in its motion trajectory. 73 

Position-specific representations 80-90ms after stimulus onset were unaffected by the predictability of 74 

the motion, but a later stage of processing (typically 140-150ms after a stimulus is presented) was pre-75 

activated for predictable relative to random sequences by approximately 16ms (Hogendoorn & Burkitt, 76 

2018). Predictability therefore has a marked effect on the temporal dynamics of spatial representations 77 

for visible stimuli. For an object appearing in an unpredictable location, the resulting position 78 

representation must be a combination of the internal representation of the expected location and the 79 
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stimulus-driven response to the actual object location. Disentangling how expected stimulus position is 80 

represented in the brain, the internal spatial representation, from a stimulus-driven response, is an 81 

important next step in understanding how and when internal representations are formed. Anticipatory 82 

mechanisms are likely to influence internally generated spatial representations, but might interact with 83 

other effects, for example the delayed processes observed during imagery (Dijkstra et al., 2018).  84 

 85 

In the current study, to understand the nature of internal representations in the brain, we investigated 86 

the neural processes underlying visual tracking for visible and invisible objects. Participants covertly 87 

tracked the position of a simple moving stimulus and kept tracking its imaginary trajectory after it 88 

disappeared. Using invisible objects allowed us to assess the temporal dynamics of internal 89 

representations during object tracking in the absence of a stimulus-driven response. EEG and time-90 

resolved multivariate pattern analysis were used to assess the position-specific information contained 91 

within the neural signal during visible and invisible stimulus presentations. We successfully decoded the 92 

position of the stimuli from all phases of the task. Our results show that the visible and invisible stimuli 93 

evoked the same neural response patterns, but with very different temporal dynamics. These findings 94 

suggest that overlapping mid- and high-level visual processes underlie perceptual and internally 95 

generated representations of spatial location, and that these are pre-activated in anticipation of a 96 

stimulus. 97 

 98 

Methods 99 

All stimuli, data and analysis code are available at https://osf.io/8v47t/. The experiment consisted of two 100 

types of sequences: a template pattern estimator and the experimental task. The pattern estimator used 101 

unpredictable stimulus sequences to obtain position-specific EEG signals that were unlikely to be affected 102 

by eye-movements. These were subsequently used to detect position signals in the experimental task.  103 

 104 
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Participants 105 

Participants were 20 adults recruited from the University of Sydney (12 females; age range 18-52 years) 106 

in return for payment or course credit. The study was approved by the University of Sydney ethics 107 

committee and informed consent was obtained from all participants. Four participants were excluded 108 

from analyses due to excessive eye movements during the template pattern estimator sequences.  109 

 110 

Stimuli and design 111 

While participants maintained fixation in the centre of the monitor, a stimulus appeared in six distinct 112 

positions 4 degrees of visual angle from fixation. The stimulus was a black circle with a diameter of 3 113 

degrees of visual angle. Six unfilled circles acted as placeholders, marking all possible positions throughout 114 

the trial. Every stimulus presentation was accompanied by a 1000 Hz pure tone presented for 100 ms via 115 

headphones. All stimuli were presented using Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 116 

1997) in MATLAB. In total, there were 8 blocks of trials, each of which contained two template pattern 117 

estimator sequences and 36 experimental task sequences. 118 

 119 

Template pattern estimator 120 

The template pattern estimator sequences were designed to extract stimulus-driven position-specific 121 

neural patterns from the EEG signal. Participants viewed 16 pattern estimator sequences (2 per block), 122 

each of which consisted of 10 repetitions of the 6 stimulus positions (Figure 1a). The order of stimuli was 123 

randomised to ensure that for a given stimulus position, the preceding and following stimuli would not 124 

be predictive of that position; for example, comparing the neural patterns evoked by positions 1 and 2 125 

could not be contaminated by preceding and following stimuli because they could both be preceded and 126 

followed by all six positions.  Each stimulus was shown for 100ms and was followed by an inter-stimulus 127 

interval of 200ms. Onset of the stimulus was accompanied by a 100ms tone. Participants were instructed 128 

to passively view the stimuli without moving their eyes from the fixation cross in the centre of the screen. 129 
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 130 

The stimuli were presented in unpredictable patterns so there was no regularity in the positions of the 131 

previous or following stimuli to contribute to the neural patterns extracted for each position. Additionally, 132 

the random sequences ensured that any eye movements would be irregular and thus unlikely to 133 

contribute to the extracted neural signal. Previous work has shown that even the fastest saccades typically 134 

take at least 100ms to initiate (Fischer & Ramsperger, 1984). Furthermore, eye movements do not appear 135 

to affect decoding of magnetoencephalography data until 200ms after a lateralised stimulus is presented 136 

(Quax et al., 2019). Our 100ms stimulus duration was therefore unlikely to generate consistent eye 137 

movements that would affect the early, retinotopic EEG signal of stimulus position. 138 

 139 

To assess whether participants complied with the fixation instruction, we assessed the EEG signal from 140 

electrodes AF7 and AF8 (located near the left and right eye, respectively) as a proxy for electrooculogram 141 

measurements. We calculated the standard deviation of the AF7 and AF8 signals across each of the 16 142 

sequences and then averaged the deviation for the two electrodes. If a participant’s average median 143 

deviation across the 16 sequences exceeded 50μV, that individual was considered to be moving their eyes 144 

or blinking too often, resulting in poor signal. An amplitude threshold of 100 μV is commonly used to 145 

designate gross artefacts in EEG signal (Luck, 2005), so we adopted an arbitrary standard deviation 146 

threshold of 50 μV (50% of the typical amplitude threshold) to indicate that there were too many artefacts 147 

across the entire pattern estimator sequences. Four participants exceeded this standard deviation 148 

threshold (M = 72.72μV, range = 63.93-82.70μV) and were excluded from all analyses. For each of the 149 

remaining 16 participants, the median deviation was well below this threshold (M = 25.92μV, SD = 5.64μV, 150 

range = 16.06-37.62μV). Thus, the four excluded participants had far more signal artefacts (probably 151 

arising from eye movements) than the other participants.  152 

 153 
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 154 

Figure 1. Stimuli and design. a) Template pattern estimator. Participants passively viewed rapid sequences in which a black 155 

circle stimulus appeared in six locations in random order. A tone accompanied every stimulus onset. b) Tracking task. The 156 

stimulus was presented in different locations in predictable sequences. After 4-6 visible locations, participants had to track the 157 

location of the “invisible” stimulus by imagining the continuation of the sequence. A tone accompanied every stimulus onset. 158 

During the 4-6 “imagined” positions, the auditory stimulus continued at the same rate, but only the six placeholder locations 159 

were shown. At the end of the sequence, a probe appeared, and participants had to respond if it was in the expected position 160 

or whether it was trailing or leading the sequence. This example shows a clockwise sequence with trailing probe. Red arrows 161 

(not shown in experiment) designate the expected position of the invisible stimulus. 162 

 163 

Tracking task 164 

For the experimental task, participants viewed sequences consisting of 4-6 visible stimuli and 4-6 165 

“invisible” presentations simulating occluded stimuli (Figure 1b). The positions of the visible stimuli were 166 

predictable, presented in clockwise or counter-clockwise sequences. Participants were asked to covertly 167 

track the position of the stimulus, and to continue imagining the sequence of positions when the stimulus 168 

was no longer visible. At the end of each sequence, there was a 1000 ms blank screen followed by a probe 169 

stimulus that was presented in one of the 6 locations. Participants categorised this probe as either (1) 170 

trailing: one position behind in the sequence, (2) expected: the correct location, or (3) leading: one 171 
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position ahead in the sequence. Participants responded using the Z, X or C keys on a keyboard, 172 

respectively. Each response was equally likely to be correct, so chance performance was 33.33%. 173 

 174 

EEG recordings and preprocessing 175 

EEG data were continuously recorded from 64 electrodes arranged in the international 10–10 system for 176 

electrode placement (Oostenveld & Praamstra, 2001) using a BrainVision ActiChamp system, digitized at 177 

a 1000-Hz sample rate. Scalp electrodes were referenced to Cz during recording. EEGLAB (Delorme & 178 

Makeig, 2004) was used to pre-process the data offline, where data were filtered using a Hamming 179 

windowed sinc FIR filter with highpass of 0.1Hz and lowpass of 100Hz and then downsampled to 250Hz 180 

as in our previous work (Grootswagers et al., 2019; Robinson et al., 2019). Epochs were created for each 181 

stimulus presentation ranging from -200 to 1000ms relative to stimulus onset. No further preprocessing 182 

steps were applied. 183 

 184 

Decoding analyses 185 

An MVPA decoding pipeline (Grootswagers et al., 2017) was applied to the EEG epochs to investigate 186 

position representations of visible and invisible stimuli. All steps in the decoding analysis were 187 

implemented in CoSMoMVPA (Oosterhof et al., 2016). A leave-one-block-out (i.e., 8-fold) cross-validation 188 

procedure was used for all time-resolved analyses. A linear discriminant analysis classifier was trained 189 

using the template pattern estimator data to distinguish between all pairs of positions. The classifier was 190 

trained with balanced numbers of trials per stimulus position from the template pattern estimator 191 

sequences. The classifier was then tested separately on the visible and invisible positions in the 192 

experimental task. This provided decoding accuracy over time for each condition. At each time point, 193 

mean pairwise accuracy was tested against chance (50%). Importantly, because all analyses used the 194 

randomly-ordered template pattern estimator data for training the classifier, above chance classification 195 

was very unlikely to arise from the predictable sequences or eye movements in the experimental task. For 196 
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the tracking task, all sequences were included in the decoding analyses regardless of whether the 197 

participant correctly classified the position of the probe (i.e., correct and incorrect sequences were 198 

analysed). When only correct trials were included, the trends in the results remained the same (see Figure 199 

S1, https://osf.io/8v47t/).   200 

 201 

To assess whether neighbouring stimulus positions evoked more similar neural responses, we also 202 

calculated decoding accuracy as a function of the distance between position pairs. Each position pair had 203 

a radial distance of 60°, 120° or 180° apart. There were six pairs with a distance of 60° (e.g., position 1 vs 204 

position 2, position 2 vs position 3), six pairs with a distance of 120° (e.g., position 1 vs position 3, position 205 

2 vs position 4), and three pairs with a distance of 180° (directly opposing each other, e.g., position 1 vs 206 

position 4, position 2 vs position 5). Decoding accuracy for each pair distance was calculated as the mean 207 

of all relevant pair decoding and compared to chance (50%). 208 

 209 

As a final set of analyses, time generalisation (King & Dehaene, 2014) was used to assess whether the 210 

patterns of informative neural activity occurred at the same times for the pattern localiser and the visible 211 

and invisible stimuli on the tracking task. Classification was performed on all combinations of time points 212 

from the pattern estimator epochs and the visible or invisible epochs. The classifier was trained on all 213 

trials from the localiser sequences and tested on visible and invisible stimulus positions. To reduce 214 

computation time, instead of the 15 pairwise tests conducted for the time-resolved decoding analyses, 215 

we performed six-way position decoding for the time generalization analyses, so chance was 16.66%. 216 

 217 

Statistical inference 218 

To assess the evidence that decoding performance differed from chance, we calculated Bayes factors 219 

(Dienes, 2011; Jeffreys, 1961; Kass & Raftery, 1995; Rouder et al., 2009; Wagenmakers, 2007). A JZS prior 220 

(Rouder et al., 2009) was used with a scale factor of 0.707 to test the alternative hypothesis of above-221 
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chance decoding (Jeffreys, 1961; Rouder et al., 2009; Wetzels & Wagenmakers, 2012; Zellner & Siow, 222 

1980). The Bayes factor (BF) indicates the probability of obtaining the group data given the alternative 223 

hypothesis relative to the probability of the data assuming the null hypothesis is true. We used a threshold 224 

of BF > 3 as evidence for the alternative hypothesis, and BF < 1/3 as evidence in favour of the null 225 

hypothesis (Jeffreys, 1961; Kass & Raftery, 1995; Wetzels et al., 2011). BFs that lie between those values 226 

indicate insufficient evidence to favour a hypothesis. 227 

 228 

Results 229 

Behavioural results 230 

Participants performed well on the tracking task. Mean accuracy was high for all probe positions (Fig 2a), 231 

and response time was faster for the expected probe position relative to the unexpected probe positions 232 

(trailing or leading) (Fig 2b). These results indicate that on most trials participants knew where the probe 233 

was meant to appear, which required tracking the expected location of the object. Therefore, participants 234 

allocated their attention appropriately to the expected position of the stimulus during the invisible 235 

portion of the tracking task. 236 
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 237 

Figure 2. Behavioural results. a) Accuracy, and b) Reaction time on the tracking task as a function of final probe position. 238 

Individual subject data are plotted in grey, with group mean in navy. Error bars depict one standard error of the mean across 239 

participants (N = 16). 240 

 241 

Position decoding using the template pattern estimator sequences 242 

The template pattern estimator sequences were designed to extract position-specific neural patterns of 243 

activity from unpredictable visible stimuli. Time-resolved multivariate pattern analysis (MVPA) was 244 

applied to the EEG data from the pattern estimator, which revealed that stimulus position could be 245 

decoded above chance from approximately 68ms after stimulus onset and peaked at 150ms (Figure 3), 246 

consistent with initial retinotopic processing of position in early visual areas (Di Russo et al., 2003; Hagler 247 

et al., 2009). To assess how the physical distance between stimulus positions influenced the neural 248 

patterns of activity, we compared the pairwise decodability of position according to the relative angle 249 
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between stimulus position pairs (i.e., angle of 60°, 120° or 180° between two stimulus positions). The 250 

greatest decoding performance was observed for larger angles between stimulus positions. 251 

 252 

Figure 3. Position decoding using template pattern estimator sequences. Left plot shows group mean decoding and smoothed 253 

individual participant decoding for all pairs of positions, and right plot shows mean position decoding as a function of the 254 

angular distance between stimulus pairs. Shaded areas show standard error across participants (N = 16). Thresholded Bayes 255 

factors (BF) for above-chance decoding are displayed above the x-axes for every time point as an open or closed circle in one 256 

of four locations (see inset). 257 

 258 

Position decoding on the tracking task 259 

To assess the similarity in position representations for visible and invisible (simulated occluded) stimuli, 260 

the classifier was trained on data from the visible template pattern estimator stimuli and tested on data 261 

from the tracking task for the visible and invisible stimuli. Crucially, position could be decoded for both 262 

visible and invisible stimuli, suggesting that similar neural processes underpin perceptual and internal 263 

representations of stimulus position. For visible stimuli, the pattern of decoding results echoed those of 264 

the pattern estimator, with decoding evident from approximately 76ms and peaking at 152ms, 265 

presumably reflecting visual coding of position in ventral visual areas of the brain (Figure 4a, left). When 266 

decoding was split according to the distance between the pair of positions, results looked similar to the 267 

pattern estimator results (Figure 4a, right).  268 

 269 
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A different pattern of results was observed for the invisible stimuli. Here, decoding was not above chance 270 

until approximately 152ms and peaked at 176ms (Figure 4b). The above chance cross-decoding from the 271 

visible pattern estimator stimuli to the invisible stimuli on the tracking task indicates that overlapping 272 

processes underlie stimulus-driven and internally-generated representations of spatial location. But this 273 

decoding of the internal representation of position was later and less accurate than position decoding for 274 

visible stimuli. Similar to the pattern estimator and visible decoding results, positions that were further 275 

apart were more decodable (Figure 4b, right). Notably, neighbouring positions (60° apart) showed little 276 

evidence of position decoding, suggesting that the representations of position were spatially diffuse for 277 

the invisible stimuli, unlike for the visible stimuli.  278 

 279 

 280 

Figure 4. Position decoding from object tracking task. a) Visible stimuli. b) Invisible stimuli. Left plots show group mean decoding 281 

and smoothed individual participant decoding for all pairs of positions, and right plots show mean position decoding as a 282 

function of the angular distance between position pairs. Shaded areas show standard error across participants (N = 16). 283 
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Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for every time point as an open or 284 

closed circle in one of four locations (see inset). 285 

 286 

The previous analyses were performed using electrodes covering the whole head, which meant that there 287 

was a possibility that non-neural artefacts such as eye movements might contribute to the classification 288 

results (Quax et al., 2019). Saccadic artefacts tend to be localised to frontal electrodes, close to the eyes 289 

(Lins et al., 1993). To assess if the EEG signal contributing to the position-specific neural information 290 

originated from posterior regions of the brain (e.g., occipital cortex), as expected, we conducted the same 291 

time-resolved decoding analyses using a subset of electrodes from the back half of the head. We used 28 292 

electrodes that were likely to pick up the largest signal from occipital, temporal and parietal areas (and 293 

were less likely to be contaminated with frontal or muscular activity). The electrodes were CPz, CP1, CP2, 294 

CP3, CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, O2, TP7, TP8, TP9 295 

and TP10. As can be seen in Figure 5, the same trend of results was seen using this subset of electrodes 296 

compared with the whole head analyses in Figure 4. Specifically, Bayes Factors revealed evidence that 297 

position of invisible stimuli was decodable approximately 136-244 ms, which is slightly earlier than the 298 

whole brain results. Decoding was also most evident for positions that were a distance of 120° or 180° 299 

apart (Figure 5b). Analyses restricted to frontal electrodes showed later, more diffuse coding for visible 300 

stimuli, and little evidence for position coding of invisible stimuli (see Figure S2, https://osf.io/8v47t/). 301 

Thus, position-specific neural information for visible and invisible stimuli was evident specifically over 302 

posterior regions of the brain, consistent with visual cortex representing stimulus-driven and internal 303 

representations of spatial location. 304 

 305 
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 306 

Figure 5. Position decoding from object tracking task using only posterior electrodes. a) Visible stimuli. b) Invisible stimuli. Left 307 

plots show group mean decoding and smoothed individual participant decoding for all pairs of positions, and right plots show 308 

mean position decoding as a function of the angular distance between stimulus pairs. Shaded areas show standard error across 309 

participants (N = 16). Thresholded Bayes factors (BF) for above-chance decoding are displayed above the x-axes for every time 310 

point as an open or closed circle in one of four locations (see inset). 311 

 312 

The results of the time-resolved analyses showed that position-specific neural patterns for visible stimuli 313 

generalised to invisible stimuli, but with different temporal dynamics. To assess the possibility that neural 314 

processes were more temporally variable for invisible than for visible stimuli, we performed whole brain 315 

(63-channel) time-generalisation analyses by training the classifier on all time points of the pattern 316 

estimator and testing on all time points from the tracking task. As expected, position could be decoded 317 

from both visible and invisible stimulus presentations, but with marked differences in their dynamics 318 

(Figure 6). For the visible stimuli, most of the above-chance decoding was symmetric on the diagonal, 319 
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indicating that the position-specific processes occurred at approximately the same time for visible stimuli 320 

in the pattern localiser and the tracking task (Figure 6a), even though the inter-stimulus intervals for 321 

stimuli in the training and test sets were different. Interestingly, there was also some above-diagonal 322 

decoding indicating that some neural signals observed in the pattern localiser occurred substantially 323 

earlier in the tracking task, which may reflect prediction based on the previous stimuli. Also likely 324 

reflecting anticipation of the stimulus position, generalisation occurred for time points prior to onset of 325 

the visible stimulus in the tracking task. After the tracking stimulus was presented (800-1000ms), there is 326 

some evidence of below chance decoding, indicating a different stimulus position was systematically 327 

predicted. This is likely to reflect processing of the next stimulus in the tracking task, which was presented 328 

at 700ms on the plot (stim +1 vertical line).   329 

 330 

Time generalisation for the invisible stimulus position was not centred on the diagonal, reflecting different 331 

temporal dynamics for the predicted internal representations than for the stimulus-driven processing of 332 

the template pattern estimator. Decoding generalisation was also much more diffuse and relied on 333 

processes approximately 120-750 ms after stimulus onset in the pattern estimator (Figure 6b). Decoding 334 

again preceded the onset of the tone in the tracking task, reflecting an anticipation effect. There was also 335 

below chance decoding at later time points, indicating that the classifier was predicting a different 336 

stimulus position at times when the next stimulus would be processed. Overall, time generalisation results 337 

suggest that during the invisible stimulus portion of the tracking task, which relied on internal 338 

representations of position, the neural dynamics were more variable and anticipatory.  339 

 340 
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 341 

Figure 6. Time generalisation results. a) Decoding visible stimulus position. b) Decoding invisible stimulus position. Decoding 342 

was performed by training on data from the template pattern estimator sequences of visible stimuli and testing on the 343 

experimental trials for all pairs of time points. Left plots show 6-way decoding accuracy for stimulus position, and right plots 344 

show associated Bayes Factors.  345 

 346 

Discussion 347 

In this study, we assessed the neural underpinnings of internally-generated representations of spatial 348 

location. Participants viewed predictable sequences of a moving stimulus and imagined the sequence 349 

continuing when the stimulus disappeared. Time-resolved MVPA revealed that patterns of activity 350 

associated with visual processing in random sequences were also associated with processing of visible 351 

and invisible spatial stimulus positions in the tracking task, but with different temporal dynamics. 352 

Specifically, the neural correlates of invisible position (i.e., internally-generated representations) were 353 

anticipatory and more temporally diffuse than those of visible position (i.e., sensory and perceptual 354 
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representations). Taken together, this study provides evidence that internal representations of spatial 355 

position rely on mechanisms of visual processing, but that these are applied with different temporal 356 

dynamics to actual perceptual processes. 357 

 358 

The results of this study suggest that similar perceptual processes are implemented for processing 359 

position of visible and invisible (e.g., occluded) stimuli. This adds to previous neuroimaging work using 360 

high level objects by showing that internally-generated spatial representations appear to use the same 361 

visual perceptual processes as viewed stimuli (Dijkstra et al., 2018). What neural processes are responsible 362 

for this low-level spatial imagery? We found generalisation from the template pattern estimator to the 363 

visible tracked stimuli began at approximately 76ms, but for invisible stimuli the generalisation did not 364 

occur until 120ms. This suggests that internal spatial representations do not rely on early retinotopic 365 

processes such as that of V1, but are implemented by higher order visual processes. Above-chance 366 

generalization for visible and invisible stimuli was maintained until approximately 750ms after the pattern 367 

estimator stimulus was presented, indicating that position-specific information represented throughout 368 

the visual hierarchy has some similarity for stimulus-driven and internally generated representations. It is 369 

important to note, however, that the time generalisation results did not show evidence of distinct, 370 

progressive stages of processing for the invisible representations. In contrast, the visible stimuli showed 371 

different clusters of above-chance decoding on the diagonal of the time-generalisation results, indicating 372 

that there were distinct stages of processing.  These results are similar to those observed in Dijkstra et al., 373 

(2018) during imagery of faces and houses. Internal representations thus seem to activate different 374 

perceptual processes simultaneously, rather than the representations involving information flow through 375 

different brain regions. 376 

 377 

For both visible and imagined stimuli, more distant stimulus positions could more easily be discriminated 378 

by the EEG signals. Decoding for neighbouring positions (60° apart) was generally much lower than 379 
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decoding for positions that were further apart. This is consistent with the retinotopic organization of visual 380 

cortices (Tootell et al., 1998), where closer areas of space are represented in neighbouring regions of 381 

cortex, leading to more similar spatial patterns of activation that are measured on the scalp with EEG 382 

(Carlson et al., 2011). Time generalization results also showed that neural patterns of activity from the 383 

template pattern estimator sequences generalized above chance to neighbouring positions. Interestingly, 384 

however, decoding for the closest positions was particularly low for the invisible stimuli, raising the 385 

possibility that internally generated representations of position are more spatially diffuse than perceptual 386 

representations. Together, increasing decodability of stimulus position with increasing distance between 387 

stimuli supports a common, retinotopic mechanism for processing position of both visible and imagined 388 

stimuli, but with greater precision for visible stimuli. 389 

 390 

Another cognitive process that might contribute to the extracted position-specific signal in the current 391 

study is that of spatial attention. In our experimental task, participants were explicitly asked to track the 392 

position of the stimulus, and they performed well, suggesting they were directing their attention to the 393 

location of the stimulus. Spatial attention influences the amplitude of early EEG responses (for review, 394 

see Mangun, 1995), and MEG classification work has shown that spatial attention enhances object 395 

decoding at early stages of processing (Goddard et al., 2019). It is important to note, however, that our 396 

classification results were obtained from training on the template pattern estimator, in which there was 397 

no explicit task and therefore no incentive to specifically attend to stimulus position. The neural patterns 398 

of activity associated with position were therefore more likely to be associated with perceptual rather 399 

than attentional mechanisms. A role of spatial attention cannot be ruled out, however. In the pattern 400 

estimator there was only one stimulus presented at a time and the onsets were likely to attract attention, 401 

albeit in a different fashion to the cued positions in the experimental tracking task. It is possible that a 402 

combination of both perceptual and attentional mechanisms is necessary for the generation of internal 403 

spatial representations. Future work could attempt to disentangle the role of perceptual and attentional 404 
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processes in spatial imagery with a manipulation to reduce attention during the pattern estimator or even 405 

make the stimuli invisible. 406 

 407 

One factor that we tried to control in this study was eye movements. Recent work has shown that even 408 

when participants were instructed to maintain central fixation, the spatial position of a peripheral 409 

stimulus could be decoded from eye movements, and the eye movements appeared to account for 410 

variance in the MEG signal from 200ms after the stimulus was presented (Quax et al., 2019). To reduce 411 

the likelihood of eye movements influencing our spatial representation results, one countermeasure we 412 

implemented was using independent sequences of randomly-ordered visible stimuli (template pattern 413 

estimator sequences) to extract position-specific patterns from the EEG signal and used these to 414 

generalise to the tracking task. Thus, only neural signals in common between the pattern estimator and 415 

the tracking task could result in above chance decoding. The position sequences in the template pattern 416 

estimator (training set) were randomised, so any incidental eye movements were unlikely to consistently 417 

vary with position. The tracking task implemented both clockwise and counter-clockwise sequences, so if 418 

there were eye movements, across the whole experiment a given position would have two completely 419 

different eye movement patterns. Above-chance cross-decoding from the pattern estimator to the 420 

tracking task was therefore unlikely to be driven by eye movements. Second, all stimuli were presented 421 

briefly (100ms duration), and for a short 200ms inter-stimulus interval during the pattern estimator. This 422 

rapid presentation rate reduced the likelihood that participants would overtly move their eyes, as even 423 

the fastest saccades take at least 100ms to initiate (Fischer & Ramsperger, 1984). Third, we excluded 424 

participants that appeared to move their eyes excessively during the template pattern estimator 425 

sequences, which were the sequences used for training the classifier. Finally, we conducted an additional 426 

analysis using only posterior electrodes to validate that the neural patterns of activity informative for 427 

spatial position were consistent with processes within the visual system (e.g., from occipital cortex). 428 

Decoding from posterior electrodes was similar to the whole-brain results. Furthermore, a similar analysis 429 
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using only frontal electrodes showed later, more diffuse position decoding for visible stimuli, and 430 

insufficient evidence for position decoding of invisible stimuli (see Figure S2, https://osf.io/8v47t/), 431 

indicating that frontal signal or artefacts did not drive decoding of spatial position for visible or imagined 432 

stimuli. Taken together, our finding that spatial position generalised from the pattern estimator to the 433 

tracking task from relatively early stages of processing indicates that it was actually a neural 434 

representation of spatial location that was driving the classifier rather than any overt eye movements. 435 

 436 

In conclusion, in this study we successfully decoded the position of predictable visible and invisible stimuli 437 

using patterns of neural activity extracted from independent visible stimuli. Our findings suggest that 438 

internally generated spatial representations involve mid- and high-level perceptual processes. The visible 439 

stimuli that we used relied on early retinotopic visual processes, yet we found no evidence of 440 

generalisation from very early processes (90-120ms) to the invisible stimuli. The stimuli we used were 441 

much simpler than the vivid, complex objects used in previous work, but we found similar stages of 442 

processing generalised from perceptual to internally-generated representations (Dijkstra et al., 2018), 443 

suggesting a general role of mid- and high-level perceptual processing in internally-generated 444 

representations such as those implemented during imagery or occlusion. Our finding that mid- and high-445 

level perceptual processes were spatially diffuse and occurred earlier for invisible objects than for the 446 

unpredictable objects indicates an important role of prediction in generating internal representations. 447 

Together, our findings suggest that similar neural mechanisms underlie internal representations and 448 

visual perception, but the timing of these processes is dependent on the predictability of the stimulus. 449 

  450 
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