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Abstract 

Background 

The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous 
symptoms. As a result, individuals each present a distinct set of symptoms despite having the 
same overall diagnosis. 

Methods 

Although machine learning techniques are considered a potential gateway to precision 
psychiatry, prior work has primarily focused on dichotomous patient-control classification. 
Instead, we predict the severity of each individual symptom on a continuum. We applied 
machine learning regression within a multi-modal fusion framework to fMRI and 
behavioural data acquired during an auditory oddball task in 80 schizophrenia patients. 

Results 

Brain activity was highly predictive of some, but not all symptoms, namely hallucinations, 
avolition, anhedonia and attention. Each of these symptoms was associated with alterations in 
specific functional networks encompassing the ventral and dorsal attention networks, the 
auditory network, amongst other cortical and subcortical regions. We found that an ensemble 
of subscale models yielded a two-fold increase in accuracy over single models which predict 
positive and negative compound scores directly.  

Conclusions 

Our results suggest that modelling symptoms as an ensemble of subscales is more accurate, 
specific, and informative than the compound-based approach. We provide functional brain 
maps of model contributions identifying the networks of regions which pertain to each 
individual symptom. This approach is transferrable to any other psychiatric condition and may 
also contribute to the development of precision psychiatry. 
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Introduction 

Schizophrenia diagnoses comprise a diverse range of heterogeneous symptoms which 
collectively manifest in widespread neuroanatomical and functional differences. Over the past 
decade, machine learning has been widely used in the field of neuroimaging for mapping 
symptomatic manifestations onto brain substrates. These methods are generally considered a 
potential gateway to precision psychiatry as they provide predictions at the individual level, 
hence going beyond classical univariate methods which can only tell us about overall group 
effects within a given population. The vast majority of psychiatric machine learning studies 
are primarily concerned with group membership, in particular the binary classification 
between patients and controls, patient subgroups, or prognoses (1-3). However, given the 
wide array of symptoms which characterise schizophrenia, individuals each present with their 
own distinct set of symptoms despite having the same categorical diagnosis. In an effort to 
parse these symptomatic differences, there has recently been a shift away from dichotomous 
labels towards a dimensional approach (4, 5). 

As defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM; 6), 
symptoms are categorised as positive or negative. Positive symptoms are typically absent in the 
general population, such as hallucinations and delusions, whereas negative symptoms present 
more often, including affective flattening and poverty of speech.  In clinical practice, 
standardised psychometric tools are widely used to assess the severity of symptoms, in 
particular the Scale for Assessment of Positive Symptoms (SAPS; 7), the Scale for 
Assessment of Negative Symptoms (SANS; 8) and the Positive and Negative Symptom Scale 
(PANSS; 9). Individual symptoms or subscales are assigned numeric scores relative to their 
severity, ranging from absent to severe. The composite score is the sum of all symptom 
subscales, providing an overall summary of the given category. The limited prior work on 
predicting schizophrenia symptoms via machine learning has thus far only been performed on 
the basis of composite symptoms (10, 11), general functioning (12, 13) and polygenic risk 
scores for schizophrenia (14). Other neuroimaging studies have also reported univariate 
correlates (15, 16), or lack thereof (17, 18), with symptom severity on the basis of composite 
summary scores rather than those of the underlying symptoms, an approach which 
significantly comprises aetiological specificity (19). For example, if we were to compare two 
patients, one with disorganised thought processes which render them unable to bathe 
themselves to another with severe alogia who is unable to communicate, these are vastly 
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different symptoms which in turn are likely to be caused by different sources of dysfunction in 
different neural networks. By combining the breadth of symptoms under the hypernyms of 
schizophrenia, positive or negative symptoms, the superposition of features pertaining to each 
specific symptom may appear more heterogeneous en masse than if these symptoms were 
addressed separately. Furthermore, a pair of individuals may be assigned the same composite 
score, and yet have vastly different symptomatology (e.g., a large number of mild symptoms or 
a smaller subset of high severity symptoms). Given the pervasive issues associated with the 
heterogeneity of schizophrenia, we suggest the distinction between individual symptoms may 
be pertinent. 

The aim of this study was to predict the severity of schizophrenia symptoms on a continuum 
using a dimensional diagnosis approach, based on individual neural and behavioural responses 
to an auditory oddball task performed during a fMRI scan. We applied machine learning 
regression techniques within a multi-modal fusion framework to predict each individual 
symptom whilst determining the set of neural and behavioural features which inform each 
model. In addition, we sought to predict global symptom severity as an ensemble of these 
subscales and compare this to models which predict the composite scores directly. Finally, we 
provide maps of the brain regions which contributed toward predictions of specific 
symptoms. 
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Methods 

Dataset 

The data used in this study was provided by the Mental Illness and Neuroscience Discovery 
Institute Clinical Imaging Consortium (MCIC; 20) via the Collaborative Informatics 
Neuroimaging Suite (COINS; 21) online data repository. Anonymised medication data was 
also obtained directly from the curators of the dataset. These data were originally collected 
across multiple sites — the University of New Mexico, Massachusetts General Hospital and 
University of Iowa.  

Participants and cognitive characterisation 

From an initial sample of 118 schizophrenia patients obtained from the COINS database, 
participants were excluded on the basis of missing data and/or poor task performance (mean 
− 3SD). The final sample consisted of 80 schizophrenia patients (58 male, 22 female) with 
ages ranging from 18 to 60 years (mean ± SD, 32.55 ± 11.39 years). Diagnoses were 
confirmed using the Structured Clinical Interview from DSM-IV or Comprehensive 
Assessment of Symptoms and History (22) with severity of symptoms assessed using the 
SAPS and SANS. For a summary of participant symptom scores, refer to Supplemental 
Figure S1. Both SAPS and SANS use a five point scale for each subscale (0 = absent, 1 = 
questionable, 2 = mild, 3 = moderate, 4 = marked, 5 = severe) with the summary score the sum 
of all subscales. 

Stimulus paradigm 

fMRI data were acquired whilst participants listened to an auditory oddball paradigm devised 
by Kiehl and Liddle (23), comprising streams of predictable standard tones (1kHz, p = 0.82), 
interspersed with infrequent target (1.2kHz, p = 0.09) and novel tones (complex, computer-
generated tones, p = 0.09). Participants were instructed to respond to target stimuli via button 
press whilst ignoring standard and novel tones. For details on stimulus presentation, MRI 
data acquisition and pre-processing, refer to Supplemental Material. 
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Features 

Four distinct feature sets were defined categorically as neural responses to target and novel 
conditions, behavioural measures, and other potential confounds.  

For the target and novel conditions, voxel-wise activity was extracted from a set of 15 regions-
of-interest (ROIs) within the fMRI contrast images. Informed by a meta-analysis by Kim 
(24), these regions were assumed a priori to be those where task-relevant and irrelevant 
oddball effects would be most robust. The complete set of regions is shown in Figure 1 with 
atlas references available in Supplemental Table S1. 

FIGURE 1 — Regions-of-interest and systemic categorisations applied to the fMRI contrasts, defined a priori 
according to a meta-analysis of auditory oddball processing tasks by Kim (24). For Harvard-Oxford cortical and 
subcortical atlas identifiers, refer to Supplemental Table S1. 

The behavioural measures comprised the sensitivity, specificity, precision and mean reaction 

time of responses to target stimuli, as well as the ex-Gaussian parameters μ, σ and τ (25) 

summarising the distribution of reaction times over the course of the experiment obtained via 
the exgauss toolbox for MATLAB (version 1.3; 26). 
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The set of potential confounds comprised age and education, both of which have also been 
associated with auditory prediction error signals on a univariate basis (17), scanner field 
strength, which varies between sites, and cumulative antipsychotic drug exposure (20, 27), 
which is thought to alter neuroanatomy. 

Framework 

The machine learning framework encompasses an ensemble of domain experts (28), each 
trained on a given feature set, which are integrated using a multi-stage fusion tree. The 
machine learning framework, as illustrated in Figure 2, was implemented using the Scikit-
learn (version 0.20.2; 29) and NumPy (version 1.15.4; 30) libraries for the Python 
programming language (version 3.6.5; Python Software Foundation). All experts and fusion 
models were trained using the lasso algorithm (31), which constrains the size of the model 
coefficients through regularisation and setting a subset of feature coefficients to zero. The 
result is a sparse formulation with implicit dimensionality reduction and a high level of model 
interpretability. 

To make predictions for each individual subject, we employed a 10-fold cross-validation 

scheme with 10 repetitions, stratified by site with the regularisation hyper-parameter α 

optimised using a nested 9-fold cross-validation scheme. 

In Stage 1, a set of experts (denoted f) were each independently trained on data extracted 
from a single ROI, such that each voxel was a feature and each region was a set of features (X) 
with one expert per region. This process was repeated for both target and novel contrasts. 
Each target score (y) was rescaled to a zero to one range, as per the maximum possible score 
on the given scale. All features were standardised to their respective z-scores, rescaling across 
participants to zero mean and unit variance. Dimensionality reduction was performed using 
principal components analysis, projecting the data onto a subset of components which 
explained 90% of the total variance, such that the number of features was much less than the 
number of samples (M ≪ N). Collectively, this set of experts provides a set of region-based 
predictions (y1-30a and y1-30b) for both the target and novel conditions (subscripts a and b, 
respectively). 
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FIGURE 2 — Schematic of machine learning framework. In Stage 1, a set of experts (blue) are independently 
trained on a subset of fMRI data extracted from one of 30 regions and one of two experimental conditions; 
target, a, and novel, b. In Stage 2, the region-based predictions, y1-30a and y1-30b, are then fused to obtain 
conditional predictions, ya and yb (green). Experts are also trained on the behavioural (orange) and confound 
(purple) feature sets. In Stage 3, the conditional, behavioural and confound predictions, ya-d, are fused to form a 
final output prediction, yo (red). Each fusion model assigns a set of weights, w, to each feature set which is used 
to intuit the relative feature importance in making predictions. 

In Stage 2, these regional predictions were taken as inputs to a pair of secondary fusion 
models (fa and fb) which return a single conditional prediction (ya and yb) and a set of weights 
assigned to each region (w1-30a and w1-30b). Experts based on the behavioural and confound 
feature sets (fc and fd) are also introduced, again assigning weights to each feature. These non-
neuroimaging features were standardised to the z-scores as in Stage 1, however, did not 
require further dimensionality reduction given M ≪ N.  

In Stage 3, the conditional, behavioural and confound predictions (ya-d) are fused to form a 
final prediction (yo) and output weights were assigned to each of the categorical feature sets 
(wa-d). 

This framework was used to train a set of models to predict each of the symptom subscales 
and summary scores outlined in Table 1. A late fusion approach was then applied to the 

 8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.02.974246doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.974246


subscale predictions by creating summary score ensemble models, taking the expert 
predictions from each of the subscale models and averaging across them to obtain predictions 
of the SAPS and SANS. 

Model performance was evaluated by comparison of true and predicted scores using the 
mean-squared error (MSE) and Pearson’s correlation coefficient (R). The statistical 
significance of each model was tested by 1000 permutations of the target variables, with p < 
0.05 for both metrics indicating that the model has truly learned some pattern within the 
data, subject to correction for multiple comparisons. 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Results 

Predicting individual symptom subscales 

These data were found to be predictive of some, but not all symptom subscales, as shown in 
Table 1. The negative symptoms of avolition, anhedonia and attention all had statistically 
significant correlations between targets and predictions ranging from 0.52 to 0.60 (p < 0.013, 
Bonferroni corrected), whilst the positive symptom of hallucination had the highest 
correlation of 0.72 (p < 0.013, Bonferroni corrected).  

All models had a comparable mean-squared error, ranging from 0.047 to 0.054, which 
translates to approximately 23% error on the original scale. Although the delusions and 
formal thought disorder models had seemingly significant correlations of 0.35 and 0.40, 
inspection of the prediction plots shown in Figure 3 indicates that these models were 
constrained in their predictions, suggesting a possible bias toward the sample means (0.53 and 
0.15, respectively). 

TABLE 1 — Summary of model performance. Avolition, anhedonia, attention and hallucinations yielded best 
performance for individual symptoms, whilst the ensemble of subscales outperformed singular summary score 
models. All p-values were computed via 1000 permutations with Bonferroni correction for multiple 
comparisons. 
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R
p-value

MSE
p-value

uncorrected Bonferroni uncorrected Bonferroni

Individual 
dimensions

Negative 
symptoms

Affective Flattening 0.03 0.374 1.000 0.071 0.030 0.390

Alogia -0.15 0.893 1.000 0.049 0.504 1.000

Avolition 0.59 0.001 0.013 0.049 0.001 0.013

Anhedonia 0.52 0.001 0.013 0.050 0.001 0.013

Attention 0.60 0.001 0.013 0.047 0.001 0.013

Positive 
symptoms

Delusions 0.35 0.002 0.026 0.060 0.002 0.026

Hallucinations 0.72 0.001 0.013 0.054 0.001 0.013

Bizarre Behaviour -0.10 0.808 1.000 0.043 0.724 1.000

Formal Thought Disorder 0.40 0.002 0.026 0.046 0.001 0.013

Summary 
scores

Single  
model

SAPS 0.24 0.021 0.273 0.062 0.004 0.052

SANS 0.39 0.001 0.013 0.019 0.001 0.013

Ensemble 
model

SAPS 0.51 0.001 0.013 0.018 0.001 0.013

SANS 0.49 0.001 0.013 0.017 0.001 0.013
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FIGURE 3 — Plots of model predictions and true scores for individual subscales within the SAPS and SANS. 
Predictions for each subject are shown as grey dots. All scores are rescaled to a zero to one scale. p-values are 
Bonferroni corrected for multiple comparisons. 
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Predicting symptom summary scores 

We applied two different approaches in predicting the SAPS and SANS summary scores.  
In the first case, a single model was trained directly on the summary scores by using the same 
framework as depicted in Figure 2. As shown in Table 1 and Figure 4, the composite positive 
symptom model was not statistically significant and the negative symptoms only yield a 
modest correlation. However, when considering each of the individual subscale models as an 
expert on a particular symptom within an ensemble which collectively predicts the summary 
score, we found a marked improvement in performance. Both of these ensemble models 
proved statistically significant (p < 0.013, Bonferroni corrected), with positive symptoms 
demonstrating a two-fold increase in correlation (0.24 to 0.51) and a decrease in mean-square 
error (0.062 to 0.018). On average, this translates to an approximate 13.4% error margin.    

FIGURE 4 — Plots of model predictions and true scores for the SAPS (left) and SANS (right) summary scores. 
Top row shows the predictions for a single model trained to predict the summary scores directly. Bottom row 
shows predictions for an ensemble model, where each expert is trained to predict one of the individual subscales. 
Predictions for each subject are shown as grey dots. All scores are rescaled to a zero to one scale. p-values are 
Bonferroni corrected for multiple comparisons. 
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Subscale model explanations  

Given that we are able to predict a number of symptoms from the available data, we are also 
able to intuit the main factors which underpin model performance by examining the 
contributions of each feature set in a post hoc manner. This is achieved by examining the fusion 
weights assigned to each feature set in Stage 3 and individual features in Stage 2. 

Firstly, we wish to establish whether neuroimaging is indeed useful, given the added time and 
monetary investment necessary to acquire these data. The target and novel feature sets were 
highly weighted in the Stage 3 output fusion (between 72 and 100%) in comparison with the 
behavioural and confound feature sets (0 to 17% and 0 to 11%, respectively) in each of our 
statistically significant models. This indicates that the neuroimaging data was the main driver 
behind the predictions, above and beyond the behavioural data obtained via the task itself. 
However, excluding those for the anhedonia model, the behavioural and confound coefficients 
were not set to zero, therefore these features still had some, albeit negligible contribution to 
the final predictions (Supplemental Table S2).  

To better understand the contribution of individual neuroanatomical features within these 
neuroimaging feature sets, the output weights from Stage 3 were applied to the categorical 
fusion weights from Stage 2. For each score, we are then able to obtain a regional weight map, 
as illustrated in the main 4 × 15 matrices of Figure 5a. Here, each element represents a single 
feature with colour indicating which features were identified by the algorithm as important, 
and conversely, which were non-informative. In the top panel, each row represents a region-
of-interest, with columns indicating the hemisphere (denoted L and R) and experimental 
stimulus (target and novel). Furthermore, by adding these elements together, we can collapse 
across subsets of features to summarise the broader system-wide differences between each 

brain system (4 × 5 matrix), hemisphere (4 × 1 vector) and experimental condition (bottom 2 

× 1 vector). For visualisation purposes, Figure 5b shows the regional weight maps projected 
onto a three-dimensional representation of the original regions of interest, collapsed across 
conditions.  
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FIGURE 5 — Feature importance for individual subscale models. Colours denote the contribution of each 
feature toward predictions as a percentage, with black indicating an entire feature set has been marked as 
irrelevant by the lasso algorithm. (a) Regional weight maps (top panel) show the relevance of each region (rows) 
in both left (L) and right (R) hemispheres under target and novel conditions (columns). Categorical weight 
maps (bottom panel) show the net contribution of each system, hemisphere and condition toward model 
predictions. Categorical groups of regions are based on Kim (24). (b) Regional weight maps projected onto 
three-dimensional brain structures. 
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In the avolition model, predictions were mainly driven by the target response, namely the 
right anterior middle frontal gyrus (aMFG) and other cortical activity in the left hemisphere. 
For anhedonia, predictions were primarily informed by the anterior cingulate cortex (ACC) 
target response and left superior temporal gyrus (STG) novel response. Attention predictions 
were equally driven by both target and novel stimuli, in particular the left aMFG response to 
target stimuli and subcortical activity in the novel condition. Hallucinations were informed by 
the left hemispheric target response, principally the ventral attention network and temporal 
parietal junction (TPJ). Critically, pairwise similarity measures between weight vectors 
indicated that each symptom had its own distinct pattern of activity across different sets of 
regions (Supplemental Figure S2). 

Summary model explanations   

The difference between the two approaches in predicting summary scores is most apparent 
when comparing the respective weight maps. For the single positive symptoms model (Figure 
6a), we can observe that of all the possible combinations of features, the optimal solution 
computed by the algorithm comprises a single feature — the response to target stimuli in the 
left precentral gyrus. Given the low performance of this model, this can be attributed to a 
classic case of underfitting. Conversely, the ensemble model weight map includes the specific 
contributions toward each of the individual subscales, resulting in a widespread distribution of 
features across the whole brain. Notably, we observe that the precentral gyrus is not a member 
of the ensemble weight map, nor any of the constituent subscales. Similarly, the negative 
symptom models (Figure 6b) demonstrate the same pattern, with the single model reduced to 
the left inferior frontal junction (IFJ) and right Heschl’s gyrus (HG) responses to the target 
condition, both of which are down-weighted in the equivalent ensemble model. 

These comparisons demonstrate that the ensemble of subscales clearly outperforms the single 
model approach, not only in terms of predictive accuracy, but also in terms of identifying  
plausible functional neuroanatomical maps — the composite negative and positive symptoms 
arise from widespread brain networks, whereas individual symptoms pertain to more nuanced 
sub-networks. 
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FIGURE 6 — Feature importance for SAPS and SANS summary score models. Ensemble models are shown in 
warm colour map and single models shown in greyscale. Regional weight maps (top panel) show the relevance of 
each region (rows) in both left (L) and right (R) hemispheres under target and novel conditions (columns). 
Categorical weight maps (bottom panel) show the net contribution of each system, hemisphere and condition 
toward model predictions. Categorical groups of regions are based on Kim (24). Colours denote the contribution 
of each feature toward predictions as a percentage, with black indicating an entire feature set has been marked as 
irrelevant by the lasso algorithm. 
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Discussion 

In this study, we used multivariate machine learning regression techniques to predict the 
severity of schizophrenia symptoms on a continuum based on the neural and behavioural 
responses to an auditory oddball task. By training a set of models to predict each symptom 
subscale independently, these data were found to be highly predictive of hallucinations, 
attention, avolition and anhedonia. We also found that by modelling the composite SAPS 
and SANS summary scores as ensembles of these subscales, the accuracy of predictions 
significantly increased, whereas single models trained to predict summary scores directly 
demonstrably underfit to irrelevant features. 

Interpreting functional anatomy of psychotic symptoms  

Anhedonia is described as a reduced capacity to experience pleasant emotions (32). We found 
that anhedonia predictions were mainly driven by responses to the novel stimulus in the left 
hemisphere, in particular the putamen and STG, as well as the target response in the ACC. 
The ACC is known to play a key role in reward processing (33) and has previously been 
linked to anticipation of pleasant events (34) and self-referencing (35) in schizophrenia.  
Deep brain stimulation of the ACC has also been shown to modulate anhedonia-like 
symptoms (36). To the best of our knowledge, the putamen and STG have not been linked to 
anhedonia in schizophrenia specifically, however have been previously reported in depression, 
which has high comorbidity with anhedonia (32). The putamen is connected to the motor 
cortices and is thought to encode associations between stimuli, actions and rewards (37). 
Notably, major depressive disorder patients (MDD) with anhedonia have a two-fold age-
related putamen volume decrease in comparison with healthy controls (38). Additionally, the 
STG, primarily involved in auditory and language processing, has a reduced response in first-
episode MDD patients with anhedonia when comparing probable vs. improbable rewards 
(39). STG volume reduction has also been widely reported in schizophrenia patients (40). 
Collectively, these findings may imply that anhedonia leads to a lower anticipation for 
rewards upon performing the required action, as reflected in changes within the putamen, 
STG and ACC. 

Predictions of avolition, i.e. a lower pursuit and persistence of goal-directed activities (32), 
were predominantly informed by the target response in the right aMFG. This region has been 
previously associated with processing of conflicting information (41) and is reported to have 
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reduced activity under working memory load in those at ultra-high risk for psychosis (42). 
Target responses in the left precentral and postcentral gyri also contributed to the prediction, 
albeit to a lesser degree. Alterations in activity within these sensorimotor regions may suggest 
that those with avolition are required to make an increased effort in response to stimuli which 
demand a physical action.  

Predictions of attention scores were largely informed by the target response in the left aMFG, 
a region engaged in tasks requiring divided attention (43). In schizophrenia, activity in the 
left MFG during sustained attention has been previously been shown to correlate with 
compound negative symptoms on the PANSS scale (44). Patients with brain tumours in the 
left MFG also show significant reductions in flexible attention and cognition (45). Volitional 
or self-initiated shifts in attention in the absence of instructional cues have been associated 
with both left and right MFG activity (46, 47). Interestingly, the thalamic response to the 
novel condition was also highly weighted, which is known to filter distracting or conflicting 
information (48, 49). Given that participants were instructed to ignore novel stimuli, the 
thalamus involvement here may be inhibiting these distractors and allowing for increased 
selective attention. 

Our model for hallucinations was primarily driven by the target response within the ventral 
attention network and the left TPJ, a known critical node in the speech perception network 
implicated in hallucinations (50, 51). The left TPJ has previously been used as a target area for 
transcranial direct-current stimulation (tDCS), leading to a reduction in hallucinations in 
schizophrenia patients (52). In turn, hallucinations following tDCS have been shown to 
correlate with the functional connectivity between the left TPJ and left AI (53). This is 
consistent with our findings, which identify both of these regions as highly predictive of 
hallucination severity.  

Further studies investigating symptom-specific circuitries may open new possibilities for 
informing future personalised treatments. In the future, if we were to obtain a robust brain 
mapping for each symptom based on consistent replications of these findings, brain 
stimulation or pharmacological interventions could be tailored for an individual based on 
their symptom profile with dosages relative to the level of severity. This could also provide 
opportunities for reverse translation into an array of symptom-based animal models of 
schizophrenia.  
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Methodological considerations 

We employed a multi-modal fusion approach which has previously been applied to 
neuroimaging data for combining different types of structural and functional images (54-56).  
When building an integrative model from a dataset comprising multiple distinct feature sets, 
there are two general approaches for fusing these features to form a single prediction. In an 
early fusion approach, features from each modality can be merged prior to the learning process 
with the joint representation input to a single model providing a multimodal prediction (57). 
Alternatively, in a late fusion approach, a set of models can be trained on each feature set 
independently and the unimodal predictions from each are combined to form an overall 
multimodal prediction, typically through averaging or a secondary linear model. The key 
methodological advance presented in this study is that we perform fusion not only on the 
basis of the data structure, but also on the target variables. The psychometric tools used in 
clinical practice, such as the SAPS and SANS, are by definition multidimensional — they 
comprise a set of symptom subscales which are assessed independently, then combined to 
obtain a composite summary score. Our results suggest that within a machine learning 
context, a late fusion of subscale predictions as per the original diagnostic framework provides 
greater specificity and accuracy than the early fusion equivalent of predicting the summary 
scores directly. Together with the drawn region-based weight maps, this finding also suggests 
that each symptom has a distinct functional anatomic pattern, whereas models trained to 
predict positive and negative composite scores directly were unable to capture this nuanced 
information. In principle, we envisage that modelling the symptom subscales as an ensemble 
could be applied to any psychiatric disorder. 

In a typical neuroimaging context, the number of available features vastly outweighs the 
number of samples, a phenomenon known as the curse of dimensionality (58). This often 
leads to an overfitting of model parameters, which in turn may not generalise to new samples 
(1). To address this issue, we chose to adopt a multi-tier fusion tree which is conceptually 
similar to a well-established approach known as stacked regression (59). This enabled us to 
iteratively reduce the dimensionality of the data from the original voxel space whilst also 
improving model interpretability by expressing the relevant features in more general terms of 
brain regions and networks. As such, the functional anatomy which informs model 
predictions is more interpretable by those familiar with the pathology of the disease and 
relatable to other univariate studies.  

Note that whilst some neuroimaging features may have a greater contribution than others, all 
features with non-zero weights contribute to the model predictions. Although a highly 
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