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Abstract 

 

Adaptive movements are critical to animal survival. To guide future actions, the 

brain monitors different outcomes, including achievement of movement and 

appetitive goals. The nature of outcome signals and their neuronal and network 

realization in motor cortex (M1), which commands the performance of skilled 

movements, is largely unknown. Using a dexterity task, calcium imaging, 

optogenetic perturbations, and behavioral manipulations, we studied outcome 

signals in murine M1. We find two populations of layer 2-3 neurons, “success”- and 

“failure” related neurons that develop with training and report end-result of trials. 

In these neurons, prolonged responses were recorded after success or failure 

trials, independent of reward and kinematics. In contrast, the initial state of layer-5 

pyramidal tract neurons contains a memory trace of the previous trial’s outcome. 

Inter-trial cortical activity was needed to learn new task requirements. These M1 

reflective layer-specific performance outcome signals, can support reinforcement 

motor learning of skilled behavior. 

 

Introduction 

Moving our bodies coordinately in the world is critical for survival. Effective movements 

require constant adjustment due to changes in the world or the body. To guide 

movements, the central nervous system must monitor consequences of actions, that can 

in turn be used to correct ongoing movements and/or inform future movement plans 

(Keller and Mrsic-Flogel, 2018; Kording and Wolpert, 2006; Tseng et al., 2007; Wolpert 

et al., 2011).  

 

Action outcomes can be evaluated on two major levels. On one level, outcomes can be 

evaluated teleologically (i.e., was the ultimate purpose of movement achieved?). 

Comparisons at this level typically use reinforcement signals such as reward, reward 

prediction errors, or success and failure outcome signals. On the other level, outcomes 

can be evaluated with reference to the performance of the physical means of obtaining 

the goal (e.g., was the planned movement achieved?). Here, movement predictions are 
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compared to sensory consequences of the movement. At this level, feedback error 

signals serve to indicate sensory prediction errors (Shmuelof and Krakauer, 2011; 

Wolpert et al., 2011).  

 

Neuronal activity which convey reward, reward prediction errors, and performance error 

signals are ubiquitous in the brain and have been described in various brain regions 

including midbrain, cerebellum, and cortical regions (Amador et al., 2000; Amiez et al., 

2006; Chen et al., 2017; Engelhard et al., 2019; Heffley et al., 2018; Heindorf et al., 2018; 

Isomura et al., 2013; Keller et al., 2012; Kostadinov et al., 2019; Krigolson and Holroyd, 

2007; Laubach et al., 2000; Mathis et al., 2017; Matsumoto et al., 2007; Roesch and 

Olson, 2004, 2005; Sajad et al., 2019; Schall et al., 2002; Schultz, 2000; Shadmehr and 

Krakauer, 2008; Stuphorn et al., 2000; Teichert et al., 2014; Wallis and Kennerley, 2010; 

Watabe-Uchida et al., 2017; Wickens et al., 2003). Such signals were shown to serve in 

error-based and reinforcement learning behavioral paradigms (Glascher et al., 2010; 

Mathis et al., 2017; Shadmehr and Krakauer, 2008; Wolpert et al., 2011) and such 

combined signals can enhance adaptation (Galea et al., 2015; Nikooyan and Ahmed, 

2015). 

  

Representation of motor errors or performance outcome signals in motor cortex (M1) did 

not receive much attention in the literature until recently. This is despite the fact that M1 

is one of the major brain regions responsible for planning and execution of motor 

commands (Ebbesen and Brecht, 2017; Georgopoulos and Carpenter, 2015; Lemon, 

2008; Whishaw et al., 1986), undergoes plasticity at multiple levels, and has been shown 

to be crucial for motor skill learning (Cichon and Gan, 2015; Fu et al., 2012; Hayashi-

Takagi et al., 2015; Li et al., 2017; Makino et al., 2016; Masamizu et al., 2014; Papale 

and Hooks, 2018; Peters et al., 2014; Peters et al., 2017). Since M1 receives inputs from 

dopaminergic neurons, sensory streams, and the cerebellum, M1 is expected to have 

access to both reinforcement and error-based negative outcome signals (Hooks et al., 

2011; Hooks et al., 2013; Hosp et al., 2011; Kuramoto et al., 2009; Mao et al., 2011; 

Molina-Luna et al., 2009; Petrof et al., 2015; Shepherd, 2013; Tsubo et al., 2013).  
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Three recent studies in primate limb motor cortex demonstrated the involvement of motor 

cortex in the generation of error signals (Even-Chen et al., 2017; Inoue et al., 2016; 

Ramkumar et al., 2016). However, the signals reported by the three studies are diverse. 

Specifically, Even-Chen et al. reported outcome error signals to failure trials during a 

brain-machine interface based cursor control task. Ramkumar et al. found signals related 

to lack of reward and not to measures of task outcome during a reaching task to a noisy 

target. Finally, Inoue et al. reported directionally-tuned visual error signals that were 

critical for adaptation in a reaching task. Notably, all three studies reported only negative 

error signals. The presence of only negative error signals in the limb motor cortex is 

surprising, in light of the importance of positive outcome signals to reinforcement and 

error based motor learning and the direct dopaminergic innervation to M1 (Galea et al., 

2015; Hosp et al., 2011; Molina-Luna et al., 2009; Wolpert et al., 2011). Interestingly, in 

Purkinje neurons, complex spikes were reported to occur on correct movements and 

unexpected rewards but not following motor errors during a sensory-motor forelimb task 

(Heffley et al., 2018), consistent with a reinforcement learning rule. Similar positive signals 

have not yet been reported in M1 during forelimb behaviors. 

 

While outcome and error signals are beginning to be identified in M1, their nature and 

circuit realization remains unclear, in part due to the limited number of identified neurons 

recorded from in the primate. Here by leveraging the tools available in the mouse, we 

attempt to close this gap and identify movement outcome signals and their realization in 

M1 networks for a reaching and grasping task. Specifically, we use a head-fixed version 

of the forelimb prehensile task, consisting of reach-grab-eat in mice (Guo et al., 2015). 

This is a complex dexterous task, which was shown to be M1-dependent (Guo et al., 

2015), and as such facilitates in depth interrogation of the outcome representations in 

M1. We concentrated on two major excitatory neuronal populations in M1, layer 2-3 

pyramidal neurons and layer 5 pyramidal tract (PT) neurons (Anderson et al., 2010; 

Hooks et al., 2011; Weiler et al., 2008). Layer 2-3 neurons constitute a large cell layer 

receiving convergent information from cortical, sub-cortical and brainstem regions (Harris 

and Shepherd, 2015; Shepherd, 2013). On the other hand, PT neurons serve as the main 

source of motor output to brainstem and spinal cord motor centers (Lemon, 2008). Key 
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open questions include, what type of signals are being generated, are they monitoring 

reward or the movement itself, can motor cortex generate positive and negative outcome 

signals, what are the cell type specific and network organization of these signals in M1, 

and are they useful for motor control and learning during a dexterous task. 

 

Here we show for the first time reward-independent positive and negative outcome 

signals in layer 2-3 of M1. We find two different populations of layer 2-3 neurons that 

selectively report either successful or failed behavior attempts. These success and failure 

outcome signals, report a global assessment of motor performance and not specific 

kinematic parameters nor reward. Furthermore, outcome impacts PT network initial state 

activity of the next trial, and post-movement M1 activity is necessary for adaptation to 

changes in task requirements.  

 

Results 

Cell-type specific, outcome-related activity in M1 cortex 

We imaged layer 2-3 and layer 5 PT M1 neurons (Figure 1) during a prehension task, 

where head-fixed mice reached for a food pellet, grabbed it, and then delivered it into 

their mouths. Success was defined when mice grabbed and delivered the food pellet for 

consumption. This behavior was done without visual information and was cued by an 

auditory tone with an approximate 30 second inter-trial interval (Figure 1A), as previously 

described (Guo et al., 2015; Osborne and Dudman, 2014). We used two high speed video 

cameras (front and side view) and modified machine learning software (Kabra et al., 

2013) to semi-automatically annotate the behavior (Figure 1B). We typically annotated 

three main behavioral epochs, “lift”, “grab”, and “at mouth”, which signify three important 

phases of prehension in our head-fixed behavioral task (Guo et al., 2015). In addition, we 

used DeepLabCut (Mathis et al., 2018) to track hand trajectories (Figure S1). Mice were 

not over trained and on average, mice in this study succeeded on 58±10% of the trials, 

thus enabling a dynamical range for studying both positive and negative outcome 

signaling. An average of 2.1 ± 1.3 (n=6 mice; 11 sessions) grab attempts were required 

to successfully complete the task (Figure 1C and Figure S1). In failure trials, mice typically 

missed the food pellet at the grab stage or less frequently dropped the pellet before 
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reaching the mouth. On average 3.9 ± 1.7 (n=6 mice; 11 sessions) failed grab attempts 

were performed before the mice stopped and returned to perch position (Figure 1C and 

Figure S1). Failures were rarely due to the lack of attempting the prehensile movement.  

 

To record activity of pyramidal neurons in M1 cortex, we used chronic, two-photon, 

calcium imaging of the genetically encoded calcium indicator GCaMP6 (Chen et al., 

2017). We used transgenic and viral approaches to record from layer 2-3 pyramidal 

neurons and layer 5 output PT neurons of M1(Figure 1D-E). Neurons in layer 2-3 were 

transfected in Slc17a7-IRES-Cre transgenic mice (Huang et al., 2013) and PT neurons 

were specifically retrogradely labeled from the pons in wild type mice using a rAAV2-retro 

virus expressing GCaMP6  (Tervo et al., 2016) (Figure S2).  

 

If outcome signals exist in M1, they should emerge or be maintained after the behavior 

and display differences between success and failure trials. On average, layer 5 PT 

neurons were activated during hand movement and this activity gradually decreased upon 

the completion of the behavior (Figure 1E). In contrast, the averaged activity of layer 2-3 

pyramidal neurons was characterized by a tri-phasic response consisting of an initial, 

post-tone, brief activation phase; an intermediate, slow inhibition phase; and a late, post-

reach, prolonged activation phase (Figure 1E). During the late activation phase, which 

was coincident or followed behavior completion, a subpopulation of layer 2-3 pyramidal 

neurons appeared to be specific for the trial outcome (Figure 2A and Figure S3). We 

identified two main outcome related cell activity patterns: cells that exhibited late activity 

selectively after successful trials, “success related neurons” and neurons that exhibited 

late activity after failure trials, “failure related neurons” (Figure 2A). For layer 5 PT 

neurons, we did not observe comparable late activity (Figure 2B). 

 

Using a linear support vector machine (SVM) we quantified the percent of layer 2-3 and 

layer 5 PT indicative neurons that reliably reported success or failure trials (Figure 2C, 

“indicative neurons” were defined as those that predicted with 95% confidence success 

or failure trials, see Materials and Method). In layer 5 PT neurons, 6.3 ± 7.4 % were 

indicative during the initial 3 seconds after the tone, but gradually diminished during the 
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later phase of the trial (Figure 2C; 6 mice). Since the hand movements occurred mostly 

during the initial 3 seconds after the tone, the calcium activity of some of these indicative 

neurons could in fact reflect movement differences between successes and failures such 

as the number of grab attempts (Figure 1C). In contrast, in layer 2-3 neurons, 

approximately a sixth of the layer 2-3 population were indicative (16.1 ± 5.8 %; 7 mice). 

Their activity gradually developed during the first 5 seconds after the tone and remained 

high throughout the duration of the trial (Figure 2C). Therefore, late signals that 

distinguish outcomes are found in layer 2-3 M1 neurons. 

 

Are outcome neurons innate in the layer 2-3 network or do they develop as the task is 

learned? To answer this question, we compared indicative neurons at two time points 

during the training, when mice were beginners with average success rate of 34±4% and 

later in the training when they almost doubled their success rates (67±7.2%; 4 mice, t-

test p<0.01 compared to the beginner’s phase). We found that indicative neurons 

developed with training, increasing from 6.4±1.7% to 20.9±3.3% of the recorded neuronal 

population (Figure 2D; 4 mice, 1640 neurons, t-test p<0.01). Only a small minority ~ 1% 

lost their indicatively from the early to the later time point of training (Figure 2D). These 

findings indicate that the majority of outcome related neurons are not innate residents of 

the layer 2-3 network of M1, rather they develop as part of learning process.  

 

Layer 5 PT neuronal activity is primarily movement related while layer 2-3 neuronal 

activity is primarily outcome related 

We next used latency histograms to examine the relationship between movement 

parameters and neuronal activity. We quantified the percent of neurons with a peak 

response in different latencies relative to the various behavioral events. A large 

percentage of layer 5 PT neurons showed locking to tone and the different behavioral 

events such as first and last grab, and hand at mouth (Figure 3A). In contrast, a small 

number of layer 2-3 neurons showed locking to the tone, lift, and first grab and locking 

was nearly absent for the last grab (Figure 3B, Figure S3 and Figure S4). The average 

percent of layer 5 PT and layer 2-3 neurons activated within 0.2 seconds before and 0.5 

seconds after the first grab was 67.8±7.8% and 9.9±2.1% and the last grab was 
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49.3±7.7% and 4.7±0.9% respectively (4 animals for layer 2-3 neurons and 4 animals for 

PT neurons). Therefore, unlike PT activity, the outcome-related activity of layer 2-3 was 

not well temporally aligned with motor behaviors. 

 

To further quantify the relationships between motor events and neuronal activity in both 

layers, we used a generalized linear model (GLM) (Engelhard et al., 2019; Ramkumar et 

al., 2016) to evaluate the relative contributions of the different behavioral components 

(see Methods) to the observed calcium signals. We modeled the calcium transients of 

layer 2-3 and layer 5 PT neurons based on 3 types of predictors: time series of 3-D spatial 

location of the hand (Mathis et al., 2018), time-varying discrete behavioral events (tone, 

lift, grab, and at mouth) (Kabra et al., 2013), and outcome labeled as constant binary 

variables of either success or failure (1 or 0 respectively) throughout the duration of the 

trial (Figure S5). To model the time course of the GCaMP6 calcium signal of single 

neurons, we convolved the time varying binary events with a set of splines (Figure S5A-

B). We modeled the neuronal activity as a linear combination of the predictors during two 

temporal epochs: peri-movement segment during which mice complete the hand reach 

attempts (1 second before until 2 seconds after the tone; Figure S5C-D); and post-

movement segment (5 to 8 seconds after tone). For the peri-movement time segment, 

the GLM was more successful in modeling the activity of individual PT neurons than of 

layer 2-3 neurons. During this first time segment, the full GLM successfully modeled more 

than 15% of the energy in 51.5% of layer 5 neurons and in only 4.5% of layer 2-3 neurons 

(Figure 3C-D). Motor related parameters were more prominent in layer 5 PT neurons 

(explaining ~75% of the modeled activity), while outcome parameters were more 

prominent in layer 2-3 neurons (explaining >50 % of the modeled activity) (Figure 3E). In 

contrast to the peri-movement segment, during the post-movement time segment, the full 

GLM could not model any of the layer 5 PT neurons while successfully modeling the 

activity of ~ 3% of layer 2-3 neurons (Figure 3E). We presume that the difference in the 

percent of neurons modeled by the GLM compared to the larger number of indicative 

layer 2-3 neurons, resulted from two fundamental assumptions used by the GLM: linear 

interactions between the different predictors and uniform responses for trials of any given 

predicted parameter. For layer 2-3 neurons with post-movement modeled activity, the 
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outcome parameter explained nearly all (~95%) of the activity (Figure 3E). Taken together 

our analysis revealed that while a major fraction of the activity of layer 5 PT neurons was 

related to movement itself, outcome information explains more of the activity in layer 2-3 

especially in the post-movement time segment.  

 

Differential network representation of outcome-related activity in layer 5 PT and 

layer 2-3 neurons 

Next, we investigated how the outcome related activity is represented at the network level. 

First, we performed principal component analysis (PCA), and embedded the data from all 

neurons of each trial into a 2D plane defined by the first two principal components 

obtained by the PCA (Figure 4A-B). Thus, each point in this analysis represents the 

associated values in the two principal eigenvectors of a single trial. The PCA embedding 

of the data obtained for layer 2-3 could discriminate between success and failure trials 

with a very high level of accuracy (Figure 4A; average accuracy 0.95±0.05; 8 mice; 24 

sessions). Interestingly, the algorithm picked up unusual behaviors, for example, when 

the mouse groomed during the trial (Figure 4A, orange dots). The second dimensionality 

reduction analysis method performed an unsupervised nonlinear embedding of the data 

based on manifold learning (diffusion maps) (Lafon et al., 2006) in order to create a 

hierarchical tree-like clustering (see Methods). When we applied this analysis to the data 

of layer 2-3 neurons, failure and success trials separated at the root of the tree, implying 

that the initial separation of the tree was based on the trial outcome (Figure 4A; Average 

accuracy 0.95±0.06; 8 mice 24 sessions). Taken together, these two analysis methods 

revealed that motor outcome is represented in the top activity components of the M1 layer 

2-3 network. 

 

Similar PCA embedding analysis performed for layer 5 PT neurons also showed 

classification of the success and failure trails albeit with lower accuracy (Figure 4B; 

Average accuracy 0.74±0.11, 8 mice, 25 sessions). However, given the correlation in the 

latency histograms and the GLM analysis (Figure 3), this classification may reflect at least 

in part the behavioral differences in success vs. failure trials which exhibit more grab 

attempts (Figure 1C and Figure S1). Diffusion maps embedding of layer 5 PT neuronal 
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activity showed that in contrast to layer 2-3 neurons, outcome information is not 

represented in the primary division of the tree, rather at lower branching levels indicating 

that outcome is not the primary information content of layer 5 PT neurons (Figure 4B; 

Average accuracy 0.77±0.16, 8 mice, 25 sessions). 

 

Since M1 is likely a dynamical system (Churchland et al., 2012; Cunningham and Yu, 

2014), we examined the temporal evolution of the compressed layer 2-3 and PT network 

activity during the hand reach trials (see Methods for more details). The activity was 

plotted with the first three PC values represented by the three axes of the plot, thus 

visualizing the 3D dynamical evolution of the network during the time course of the trial 

(Figure 4C-D). For layer 2-3, these three PC value represented 66±2.8 % of the total 

activity energy, and average of 46.6±6.7 eigenvalues were required to account for 95% 

of the total activity energy (n=15 sessions). For layer 5 PT neurons, the initial three PC 

value represented 88.5±2.7 % of the total activity energy, and average of 15.9±4.2 

eigenvalues were required to account for 95% of the total activity energy (n=13 sessions). 

Abrupt changes in the layer 2-3 and layer 5 PT neural trajectory in state space were 

aligned to behavioral events (Figure 4C-D), for example tone (4 sec, circle) and reach 

completion (~ 5.5 sec, triangle). When we plotted the average trajectories of failure and 

success trials, we observed that these trajectories for both layer 2-3 and layer 5 PT 

neurons started in close proximity in state space and developed in parallel up to the tone. 

However, for layer 2-3, the trajectories of successful and failure trials diverged after the 

tone (Figure 4C). In contrast, layer 5 PT trajectories developed in close parallel paths 

throughout success and failure trials (Figure 4D). To quantify the degree of separation 

between the trajectories obtained for success and failure trials in layer 2-3 and layer 5 PT 

neurons, we used a sensitivity index (d’) calculated for the first three PC components. In 

layer 2-3 neurons the d’ showed a significant deflection in the separation of success and 

failure trials late in the trial after most hand reach movements terminated (peaking ~ 3 

sec after the tone; Figure 4E). The separation of the PC trajectories was consistent across 

all animals tested (8 mice, 25 sessions; average peak of the d’ was 16.83±11.84). In 

contrast, for layer 5 PT neurons, the degree of separability as measured by d’ was smaller 

compared to layer 2-3 pyramidal neurons (Figure 4E; n=8 mice, 25 sessions; average d’ 
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was 4.68±2.4). The small separation observed for layer 5 PT neuron trajectories, suggest 

the layer 5 PT network does represent outcome information, but at a much smaller 

magnitude and for a shorter period of time than the layer 2-3 network. These findings are 

consistent with our SVM indicative neuron and GLM analysis (Figure 2C and 3E). To test 

the separability of layer 2-3 network activity for success and failure trials based on the 

entire network activity, rather than based on the first three PCs, we used an SVM 

approach. This analysis also showed that layer 2-3 could discriminate the outcome of the 

previous action, with high accuracy (average accuracy for layer 2-3 neurons was 0.96 ± 

0.03 for 8 mice, 25 sessions) after ~ 1.5 sec following the auditory cue when most hand 

reach related movements ended (Figure 4F-G). Therefore, the layer 2-3 network best 

monitors outcome of recent actions and the distinguishing signals are most significant 

after the completion of behavior.  

 

Outcome-related activity in layer 2-3 neurons of M1 depends on motor performance 

and not on food consumption/reward. 

We next performed behavioral modifications to decouple hand reach movements and 

food consumption/reward. To test the necessity of hand movement, the behavioral task 

was modified such that instead of performing a hand reach for pellet, the mice licked 

(“tongue reach”) for the food pellet (Figure 5; movie 1 and 2). In these experiments, hand 

reach mice were switched to the tongue reach paradigm (Figure 5A). The results of these 

experiments showed that once food was accessed via the tongue the overall average 

activity was significantly attenuated (Figure S6A-C). Importantly, almost all outcome 

success- or failure-related neuronal activity disappeared (Figure 5B-C) and the 

percentage of indicative neurons markedly decreased (3.7 ± 3.1% during tongue reach 

and 14.1 ± 4.3 % during hand reach; 5 mice, 14 sessions; p<0.01; Figure 5D-E). 

Furthermore, the accuracy of discriminating between success and failure trials decreased 

to chance levels in the tongue reach task (Figure 5D-E; 4 mice). Thus, food consumption 

or reward signals are not sufficient to generate the outcome related activity observed in 

layer 2-3 of M1. 
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To test if performance of the behavior was sufficient to produce the outcome signals 

without reward, we exchanged the food pellets with non-edible, 3-D printed, plastic 

pellets. To provide a similar sensory experience, the plastic pellets had similar size, shape 

and weight to the normal pellet. Typically, in these experiments the mice performed the 

entire hand movement including bringing the plastic pellet to the mouth but never 

swallowed the plastic pellets (see movie 3). The definition of failure trials did not change 

in these experiments, however, success trials were defined when the mouse grabbed and 

brought the plastic pellets to the mouth. In these experiments despite the fact that no 

reward was actually consumed, we still observed outcome related neurons with a high 

percentage of indicative neurons (Figure 6A-D; 37.9±13.3%; 5 sessions in 2 mice). 

Furthermore, at the network level success and failure trials were clearly distinguished by 

the layer 2-3 network activity. The 2D PCA embedding could reliably discriminate 

between success and failure trials with accuracy of 0.94±0.06 for plastic pellets (5 

sessions in 2 mice; Figure 6F) compared to 0.95±0.05 for normal pellets (4 sessions in 

the same 2 mice; Figure 6E) and the SVM classified the outcome related activity with high 

accuracy for the normal and plastic pellets (0.96±0.01 for plastic pellets and 0.92±0.04 

for normal pellets, 95% confidence; 5 sessions in 2 mice and 4 sessions in 2 mice 

respectively). Similar to the normal pellets, the average layer 2-3 neural trajectories 

completely separated and evolved in different directions during failure and success trials 

(Figure 6F; d’ was 19.6±4.7 for plastic pellets and 17±1.4 for normal pellets, 5 sessions 

in 2 mice and 4 sessions in 2 mice respectively). Taken together, the tongue reach and 

plastic pellet experiments indicate that outcome-related neuronal activity is not dependent 

on food consumption, but rather seems to reflect an evaluation of the motor performance 

itself. 

 

Motor performance could be evaluated based upon the trajectory of the arm to the pellet 

or whether a food pellet was successfully grabbed. To test if touching the food pellet was 

required for success- and failure-related signals, we omitted the pellet on a fraction of 

trials (24.5 ± 2.7 % of the trials, n=3 mice; 11 sessions). Omission trials nearly exclusively 

led to activity in failure-related neurons (Figure S7A). The PCA embedding of the data 

obtained for layer 2-3 could not discriminate between omissions and failure trials (Figure 
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S7B; 0.61±0.12, chance 0.63±0.06; 95% confidence). Furthermore, the average layer 2-

3 neural trajectories of failure and omission trials were close together and the 

discrimination accuracy using a SVM was at chance level (Figure S7C-D; 0.6±0.09; 

chance 0.62±0.06). Taken together, the three behavioral manipulation experiments we 

performed show that success- and failure-related signals must reflect the experience or 

absence, respectively, of a post-grab, non-reward, sensory event.   

 

Outcome impact the initial state of layer 5 PT network 

If outcome signals are to be useful, there should be some memory of these signals when 

future behavior is being produced. If this is indeed the case, future neuronal activity could 

change according to the performance of the preceding trial. To investigate this possibility, 

we compared the average trajectories of the layer 2-3 and layer 5 PT network activity 

during hand reach trials according to both the present and previous outcome of the trials 

(Figure 7A-D). Specifically, we divided the trials into 4 subgroups: success following 

success, success following failure, failure following success and failure following failure. 

The initial state of the layer 2-3 network showed no dependency on the outcome of the 

preceding trial (Figure 7A). The accuracy of determining the outcome of the previous trials 

based on the ongoing activity of the layer 2-3 network was at the chance level throughout 

the course of the trial (Figure 7B; average accuracy 0.65±0.05, chance 0.63±0.07; 

calculated 2 seconds before the tone, 14 sessions in 4 animals that passed the inclusion 

criteria of at least 30 trials in each outcome group per session). The confusion matrix 

showed the inability of the SVM classifier to identify previous labels of success and failure 

trials. In contrast, the initial state of the layer 5 PT network was affected by the outcome 

of previous trials (Figure 7C). The initial pre-tone state of success-success and success-

failure trials were in close proximity to each other (blue and purple trajectories), as were 

the pre-tone state of failure-success and failure-failure trials (cyan and red trajectories). 

As the hand reach movement progressed the trajectories of the pairs in these two groups 

parted and formed two new groups, success-success and failure-success pairing (blue 

and cyan trajectories) and success-failure and failure-failure pairing (purple and red 

trajectories) based on the present movement outcome (Figure 7C and movie 4). The 

accuracy of determining the outcome of the previous trial based on the ongoing activity 
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of the PT network was significantly higher than chance (Figure 7D; Average accuracy 

0.71±0.09, chance 0.58±0.07; p<0.01; calculated 2 seconds before the tone, 9 sessions 

in 4 animals that passed similar inclusion criteria as layer 2-3 sessions). The confusion 

matrix showed that the SVM classifier had comparable accuracy of correctly identifying 

both preceding success and failure trials (Figure 7D). Evidence for memory of past trial 

outcome on the initial activity state of the present trial was not only observed at the 

network level, but also on single neuron resolution as well (8.5±4.46 % of neurons, 95% 

confidence, 4 animals in 14 sessions) (Figure 7E). Taken together, our findings indicate 

that initially outcome is determined by layer 2-3, but by the next trial this information is 

represented in the PT network. 

 

Late signals in M1 are necessary for motor task adaptation 

Are these performance outcome signals in M1 important for behavior? Our data suggests 

a working hypothesis that layer 2-3 holds outcome signals which it then uses to influence 

motor commands, either directly or indirectly, in the layer 5 PT network to adapt future 

behavior. If this hypothesis is true, then disrupting the outcome signals in M1 should 

disrupt an animal's ability to change its movements given a new task requirement. To test 

this, we used a task variant where animals are forced to learn a new pellet position. In 

control conditions, moving the pellet away from the set position initially adversely affects 

success rates, but then adjustments to the arm trajectory are made, and skillful 

performance is partially restored within the same session (Figure 7E, G). To perturb the 

memory of the last trial’s outcome, we optogenetically silenced M1 cortex during the inter-

trial interval (ChR2 activation of resident inhibitory neurons in Gad2-Cre mice or 

stGtACR2 (Mahn et al., 2018) silencing of pyramidal neurons in Slc17a7-IRES-Cre mice, 

after execution of most movements or movement attempts ended, 800-1000 msec after 

the tone). We find that this post movement cortical disruptions prevented learning the new 

pellet position (Figure 7F-G; success rate in new position 27.5 ± 13.9 % and 5.8 ± 4.8 % 

in control and optogenetic silencing respectively, p<0.01; 9 new positions in 5 mice). This 

result was not due to a direct effect on basic motor execution of the forepaw for two 

reasons. First, silencing was delayed until the post-reach epoch, allowing the initial motor 

act to be performed in an unperturbed manner. Secondly, in control experiments when 
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the pellet remained in the original location, silencing cortex late in the trial, did not 

significantly change success rates (success rate 63 ± 15.3 % and 61 ± 10.6 % with and 

without optogenetic activation, respectively; 2 animals in 5 sessions).  

These findings are consistent with the role of motor cortex in conveying outcome 

information crucial for motor learning and adaptive behavior. 

 

 

Discussion 

In this study, we examine the role of two main cortical layers in M1 in outcome evaluation 

of skilled dexterous behavior. While PT neurons are mostly concerned with movement 

related activity during the trial, a major component of layer 2-3 activity is devoted to 

monitoring positive and negative motor outcome information. In layer 2-3, we find two 

neuronal populations, success and failure related cells, whose activity distinguishes the 

end-result of the trial. Outcome related signaling is not innate to the M1 layer 2-3 network, 

but rather develops with learning of the task. The performance outcome activity of these 

neurons is not representing reward per se but rather reflects a measure of the hand reach 

performance itself. We further show that a memory trace of the outcome history is 

contained in the initial state of PT network activity on the next trial. Our optogenetic 

experiments suggest that M1 cortical activity between behavioral attempts, which include 

both the performance outcome signals in layer 2-3 and subsequent effects on the layer 5 

PT network, is necessary for animals to adapt to changes in task requirements. The 

outcome signals we report here, may be considered as higher level signals reporting the 

end result which may have relevance in correcting future movements but have no 

relevance to immediate movements. This type of reinforcement outcome signals can 

serve for motor learning and adaptation assigning credit or punishment in the process of 

learning over longer time scales as discussed below (Even-Chen et al., 2017; Schultz, 

2000; Wolpert et al., 2011) and for maintaining learned motor skills (Uehara et al., 2019).  

 

In principle, this success and failure related neuronal activity might result from kinematic 

differences between success and failure trials. However, the lack of correlations between 

specific kinematic parameters and success and failure signals in layer 2-3 neurons shown 
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by our GLM analysis does not support such possibility. In addition, it is important to stress 

that the outcome signals we report here are not reporting success and failure of every 

single grab attempt, rather they develop at the end of the trial after the mice made several 

failed attempts before a successful grab or towards the end of multiple grab attempts in 

failure trials. Thus, these outcome signals cannot be simply related to specific kinematics 

movements of the hand but rather likely convey the outcome of the whole sequence in a 

trial. Although we cannot completely rule out differences in general posture or other minor 

body differences after success and failure trials, such differences if they exist do not 

detract from the main findings. If the animals post-trial behavior reflects the outcome of 

the last trial, something in the nervous system must be commanding this response. 

Therefore, the signals we find in cortex could be the signals remembering the outcome 

and commanding the post-trial behavior, they could be an efference copy from some other 

brain region commanding this behavior, or they could be reacting to the sensory 

consequences of the post-trial behavior. In all of these cases, the signals in cortex would 

still contain information about the outcome of the last trial.  

 

In contrast to previous recent studies in primate limb motor cortex that reported only 

negative error or lack of reward signals (Even-Chen et al., 2017; Inoue et al., 2016; 

Ramkumar et al., 2016), here we report both positive and negative performance outcome 

signals. The reason for the discrepancies between our findings and those previously 

reported, may be related to several potential factors. The smaller number of neurons 

recorded in primate motor cortex; a possible selection bias towards larger neurons with 

extracellular recordings; or differences in the tasks. While tasks in primates involved 

adaptation in reaching guided by changing visual goals, in our case the task involves 

complex reaching and grabbing movements that results in rich sensory differences 

between success and failure trials. Finally, the lack of positive outcome signals may be 

caused by differences between primates and rodent motor cortex. This last possibility is 

less likely as positive outcome signals were reported in supplementary eye field (SEF) 

neurons in primates (Sajad et al., 2019; Stuphorn et al., 2000). It is interesting to note that 

positive outcome signals were also reported in ALM and vibrissae motor cortex, during a 

localization whisking task in mice (Chen et al., 2017). The layer representation of the 
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signals we describe in M1 differed from those reported in both these specialized motor 

regions (SEF and vibrissae motor cortex). In contrast to our findings, signals in ALM and 

vibrissae motor cortex were more prevalent in layer 5 compared to layer 2-3 (Chen et al., 

2017). In SEF, signals were distributed across all layers with negative reporting signals 

(loss of reward and errors) more prevalent in layers 2-3 (Sajad et al., 2019). These 

differences may reflect differences in the degrees of freedom of the effectors being 

controlled by each region. The presumably more complex control of the forelimb may 

necessitate separation of monitoring and control functions. 

   

How are performance outcome signals generated in M1? These signals could be 

generated through “predictive coding” (Friston, 2011; Kording and Wolpert, 2006) where 

copies of motor commands could be used to generate a prediction of the end result of 

that action. This prediction could then be compared with the actual sensory consequence 

once the trial is executed (Izawa and Shadmehr, 2011; Wolpert et al., 2011). If a match 

exists between the prediction and the actual, a success signal could be generated. In 

contrast, if a mismatch is detected, a failure signal would be generated. If this is the 

underlying mechanism for the signals seen here, it will be of great interest to see where 

the prediction is being produced and where the comparisons are being performed. One 

possible source contributing to prediction generation, might be the cerebellum which is a 

major input source to M1 via the thalamus (Bosch-Bouju et al., 2013) and has been 

reported to generate diverse signals including outcome signals, reward delivery, reward 

omission and expectations (Heffley et al., 2018; Kostadinov et al., 2019; Wagner et al., 

2017). Interestingly, in the cerebellum positive outcome signals were reported and are 

reminiscent to the success related activity we report here (Heffley et al., 2018). However, 

in contrast to the success related signals we describe here, which lasts many seconds, 

the time course of the responses at the Purkinje neuron dendrites last several hundreds 

of milliseconds (~500-600 ms) only. In addition, success signals in Purkinje cells were 

also seen when reward was delivered outside the context of the behavior, which was not 

seen in M1 in the “tongue reach” experiments. Thus even if the source of the success 

related signal is driven by the cerebellum, this signal undergoes significant processing at 

M1 network. Of course the reverse possibility also exists that the outcome signals in 
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cerebellum are dependent on M1 inputs. Other input sources such as S1 or VTA may 

also contribute to outcome signals in M1 (Hosp et al., 2011; Lacefield et al., 2019; Mao 

et al., 2011; Mathis et al., 2017; Molina-Luna et al., 2009; Schultz, 2000; Wickens et al., 

2003).  

 

An alternative but related mechanism for generating these signals is that sensory 

information alone creates two different activity states for success and failure trials. Such 

sensory-driven divergences in activity could be due to network modifications that arise 

from plasticity mechanisms during the learning process. Success and failure 

consequences are essentially cached, or stored in memory. In this scenario, online 

predictions built off the outgoing motor command are not necessary for creating the 

success and failure related signals. Distinguishing between predictive coding and a 

cached system would require separately manipulating sensory reafference or the copies 

of motor commands associated with success and failure trials. 

 

We show that the initial state of the PT dynamical system on the next trial is related to the 

outcome of the previous trial. Although the initial state of the PT neuronal activity may not 

be directly caused by the success and failure related activity of layer 2-3 neurons, it is 

conceivable that the outcome activity in layer 2-3 contributes to the initial state of PT 

neurons as layer 2-3 neurons feed its information in almost unidirectional manner to layer 

5 neurons of M1 (Weiler et al. 2008).  Success and failure signals in layer 2-3 might induce 

distinct effects on inter-trial network activity in layer 5, either directly or indirectly via other 

brain regions such as premotor cortex, cerebellum or basal ganglia. For example, 

success signals may feed onto the PT network to promote network states similar to the 

previous successful trial. In contrast, failure signals may promote network states that will 

generate behavioral variation on the next trial. If failure signals are generic error 

messages, the effects could be to put the PT network into a state that allows more 

explorations on future trials, analogous to a strategy thought to be used in songbird 

learning (Kojima et al., 2018). On the other hand, if the failure outcome signals provide 

information about the nature of the error, they might influence the network to produce a 

more specific adaptive correction. Further work is needed to firmly establish the link and 
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distinguish between the different possible mechanisms that could link performance 

outcome signals and the change in the activity state of PT neurons and behavioral 

changes on subsequent trials.  

 

Our optogenetic experiments show that M1 cortex activity late in the trial is needed for 

adapting future behaviors to changes in task requirements. These findings are consistent 

with a role of outcome signaling in motor adaptation in light of the temporal overlap 

between the activation dynamics of success and failure related neurons and our 

optogenetic mediated network inhibition. However, a clear causal relationship cannot be 

proven by these experiments as we did not silence selectively the success and failure 

related neurons. Silencing selectively the success and failure related neuronal population 

poses an experimental challenge, and further methodological developments are needed 

to achieve this goal. It should be stressed that memory of outcome information in the 

inter-trial interval could be stored in other brain regions, but our results suggest that this 

memory still depends on normal M1 activity. Interestingly, similar perturbations during 

well learned behavior do not have an effect on task performance on the time scale of our 

experimental paradigm (~ up to 60-80 trials). This result indicates that the outcome 

signals we describe here, do not serve as an immediate trial by trial corrective error 

signals such as the signals described in Inoue et al. Rather, as these signals report end 

result of trials, they may serve as a reinforcement signals for learning over longer time 

scales. Our experiments were performed on trained animals that nearly plateaued their 

performance such that further improvement of task execution can only be achieved over 

long time scales. In this plateaued performance, ‘success’ signaling does not easily 

appear to drive further improvement of task execution and may be used to maintain the 

learned motor program. The absence of this maintenance signal may begin to degrade 

the model, but this might occur over longer time scales than those tested in our 

experimental paradigm. Moreover, here, cortical perturbations were done after both 

success and failure attempts, and therefore we have affected both outcome signals. The 

absence of either signal may lead to less circuit effects and consequently less effects on 

performance over short time scales.  
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Why should M1 use performance outcome signals over reward signals in the context of 

reinforcement learning? An important advantage of a performance outcome signal is that 

it is necessarily linked to the specific movement being learned. This is not the case for 

reward based signaling. Animals can acquire the same rewards using many different 

kinds of movements and environmental settings (Schultz, 2000). If an animal did use 

another effector (i.e. the tongue) to acquire the reward and a global reward signal was 

used, it could affect the stored program for the original effector. If the animal licked for the 

reward, the efference and reafference arm signals would be absent and other spurious 

inputs might be present. This could cause non-pertinent information to be incorporated, 

leading to degradation of the arm motor program. The absence of success and failure 

related signals during tongue reach and the presence of outcome signals in the plastic 

pellet tasks make a strong case that such interference is not an issue in M1. By being 

necessarily linked to the efference and reafference signals, performance based signals 

can ensure that modification to synapses or circuit dynamics are specific to circuitry 

relevant to the stored motor program. 

 

Subpopulations of neurons serving distinct functions is a fundamental concept in neural 

networks (Adesnik and Naka, 2018; Zeng and Sanes, 2017). Layer 2-3 neurons 

dramatically differ from layer 5 PT neurons in their input-output pattern, connectivity and 

intrinsic electrophysiological properties (Anderson et al., 2010; Harris and Shepherd, 

2015; Hooks et al., 2011; Tsubo et al., 2013), thus it is not surprising that these different 

neuronal populations may perform different computations in motor cortex. Previous work 

has shown activity differences between layer 2-3 and layer 5 neurons (Chen et al., 2017; 

Heindorf et al., 2018; Huber et al., 2012; Isomura et al., 2009; Komiyama et al., 2010; 

Masamizu et al., 2014), but here we report a new role of layer 2-3 neurons in generating 

performance outcome related signals during dexterous movements. An interesting 

hypothesis is that the observed separation of outcome evaluation (layer 2-3) and 

movement generation (layer 5) is beneficial in some way. Perhaps this is because the 

system needs to have an evaluation network not subjected to history effects, while such 

history effects are adaptive when employed in the movement command centers. 

Separation might also allow different plasticity rules to be operating in the different 
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networks (Raymond and Medina, 2018). Interestingly, artificial deep neural networks use 

layer separation to increase computational efficacy. 

 

In conclusion, positive and negative outcome signals exist within subnetworks of motor 

cortex, potentially allowing cortex to evaluate the past in order to adapt future behavior. 

The capacity to utilize performance signals may be a key reason why motor cortex is so 

essential for skilled dexterous behaviors (Whishaw, 2000). How outcome signals teach 

the pattern generators and forward models remain unanswered (Wolpert and Miall, 1996), 

but identifying a locus of representation of outcome signals is a necessary first step.  

  

Figure legends 

Figure 1. Cell-type specific activity in M1 cortex during prehension. A. Behavioral 

set up. Mice were head fixed and trained to grab a food pellet positioned on a rotating 

table. Insert, cartoon of the movement. Bottom, trial structure (12 sec). Tone (go signal) 

after 4 sec, pellet at position at 4.2 sec. B. An "ethogram" annotating the behavior of an 

expert mouse over consecutive trials (up to 4 sec after tone). Blue, hand lift; green, grab; 

red, food at mouth. Dashed line represents the tone (black). Bottom panel, peri-event 

histogram of the behavioral events over time. C. Average number of grabs during success 

and failure trials. 11 sessions over 6 mice (t-test **p<0.01). D. Average projections of two-

photon imaging of GCaMP6-positive, layers 2-3, M1 pyramidal neurons (230 µm from pia) 

in a Slc17a7-IRES-Cre mouse (left) and layer 5 PT neurons (580 µm from pia) labelled 

by injection of rAAV2-retro-GCaMP6 virus into the pons of a C57BL6 mouse (right). E. 

Upper panel, averaged (70 trials) calcium transients for all layer 5 PT neurons from a 

single imaging session during consecutive prehension trials. Color encodes the percent 

change in fluorescence (ΔF/F). Black trace, grand average over all neurons and trials. 

Below, event-probability histograms for the behavioral events lift (blue), grab (green) and 

at mouth (red) aligned to trial onset. Dashed black line denotes the time of the tone. 

Middle panels, describe success trials and lower describe failure trials. Left column, layer 

5 PT neurons, right column, layer 2-3 neurons.  
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Figure 2. Cell-type specific outcome related activity in M1 cortex during 

prehension. A. Activity of three layer 2-3 “success related” neurons (left panels) and of 

three layer 2-3 “failure related” neurons (right panels). B. Activity of three layer 5 PT 

neurons. Left column, success trials, right column, failure trials. Trials sorted (ascending) 

by number of grab attempts. C. Indicative neurons were determined using a Support 

Vector Machines (SVM) classifier that quantified the percent of neurons that reliably 

reported success or failure trials with 95% confidence at each time bin. Right panel, layer 

5 PT (6 mice, 943 neurons) and left panel, layer 2-3 neurons (7 mice, 2293 neurons). D. 

Development of indicative neurons in layer 2-3 during learning. Left panel, average 

percent of indicative neurons for beginner and trained mice (1640 neurons from 4 mice, 

t-test p<0.01 compared to the beginner’s phase). Success rates were at 34±4% and 

67±7.2% for beginners and trained mice respectively (4 mice, t-test p<0.01 compared to 

the beginner’s phase). Right panel, percent of neurons (total 1640 neurons) that lost 

indicativity during training (“lost indicativity”), that were indicative in the beginner phase 

(“early indicative”), that became indicative in the trained phase (“late indicative”) and 

neurons that remained non indicative throughout the training (“non-indicative”). 

 

Figure 3. Relationship between movement parameters and layer 2-3 and layer 5 PT 

activity. A. Latency histograms of percent peak layer 5 PT neuronal activity (4 animals; 

1045 neurons; 375 trials) aligned to tone, lift, first grab, last grab and at mouth (left to 

right). B. Same as in A, but latency histograms of layer 2-3 neuronal activity (4 animals; 

2063 neurons; 1052 trials). C. Modeling calcium transients of layer 5 PT and layer 2-3 

neurons using a generalized linear model (GLM). Distribution of percent of neurons (1008 

neurons for layer 5 PT and 1111 neurons for layer 2-3) as a function of their R2 (values 

averaged over 5-fold cross validation on each time segment; left, for peri-movement time 

segment (tone -1 to tone +2 sec) right, for post-movement time segment (tone +5 to tone 

+ 8 sec). D. Percentage of neurons included in the analysis, i.e. neurons in which at least 

15% of the variance was modeled by the GLM. E. Bar graph of the relative contribution 

of modeled neurons (with at least 15% of their variance explained) for each of 6 predictors 

(tone, lift, grab, at mouth, hand trajectories, success/failure trial status) composing the full 

model. Left, peri-movement time segment, right, post-movement time segment. 
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Figure 4. Outcome related activity of layer 2-3 and PT networks during prehension. 

A. PCA embedding of layer 2-3 neurons from one session (70 trials). The 3D matrix of 

neuronal activity over time and trials was reduced into a 2D matrix of all neurons at all 

times for all trials using PCA. Trials are represented in first two PC space. (Red, failure; 

blue, success; orange, trials with grooming). Accuracy of separation was 0.97±0.06. 

Right, diffusion map embedding of same data points. B. PCA embedding of layer 5 PT 

neurons from one session. Accuracy of separation was 0.74±0.17. Right, diffusion map 

embedding of same data points (color code same as in A). C. Left panel, averaged 

temporal evolution of layer 2-3 network activity projected over the first three PC axes. 

Each PC is a linear combination of the neuron’s dimensional space (274 neurons in this 

example; same data as in A; color depicts time). The starting point (square), tone (circle) 

and 1.5 seconds post tone (triangle) are marked along the trajectory. Right panel, average 

temporal evolution of the network activity separated to success (blue) and failure (red) 

trials for layer 2-3 neurons (same experiment as in A). Examples of single trajectories 

each representing a single trial are overlaid. Average trajectory in bold. D. Left panel, 

average temporal evolution for PT neuronal activity (same data as in B). Right panel, 

average temporal evolution of the PT network activity separated to success (blue) and 

failure (red) trials (same experiment as in B). Examples of single trajectories, each 

representing a single trial are overlaid. Average trajectory in bold. E. Sensitivity index (d’) 

calculated to quantify the separation between the two trajectories (success and failure) in 

the different time windows, shown for layer 2-3 (black line) and for PT neurons (grey line). 

F. Top, SVM accuracy of success/failure trial separation for layer 2-3 activity (same 

experiment as in A, C) calculated in 1 sec time bins, with 0.5 sec overlap, using 10-fold 

cross validation (± SD shown in grey). Bottom, event-probability histograms for the 

behavioral events lift (blue), grab (green) and at mouth (red). Dashed black line denotes 

the time of the tone. G. Average SVM accuracy for success/failure classification, 

calculated for layer 2-3 neuronal activity in 8 mice, 25 sessions. 

 

Figure 5. Comparison of neuronal activity during hand and tongue reach 

experiments. A. Mice were trained for hand reach (left) and later trained for tongue reach 
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(right). Trial structure was identical. B. Activity of three layer 2-3 neurons during the hand 

reach behavioral paradigm. Activity during success (left column) and failure (right column) 

trials during one session. C. Same neurons as in B during a tongue reach session. D. 

Percentage of indicative neurons (left), SVM accuracy (right) for hand reach. E. 

Percentage of indicative neurons (left), SVM accuracy (right) for tongue reach.  

 

Figure 6. Outcome related signals in layer 2-3 neurons in the absence of appetitive 

reward. A. Activity of two layer 2-3 success related neurons during hand reach trials with 

normal pellets. B. Activity of two layer 2-3 failure related neurons during hand reach trials 

with normal pellets. C. Activity of two layer 2-3 success related neurons during hand reach 

trials with plastic pellets. D. Activity of two layer 2-3 failure related neurons during hand 

reach trials with plastic pellets. Example neurons are the same for plastic and normal 

pellets. E. Left panel, 2D PCA embedding for layer 2-3 neurons with normal pellets in one 

example experiment (red, failure; blue, success). Accuracy of separation 0.96±0.07. Right 

panel, average temporal evolution of the network activity separated to success (blue) and 

failure (red) trials for layer 2-3 neurons with normal pellets. F. Left panel, 2D PCA same 

as in E, for plastic pellets. Accuracy of separation 0.94±0.09.  Right panel, average 

temporal evolution same as in E, for plastic pellets. Same animal for normal and plastic 

pellets. 

 

Figure 7. Memory and utility of outcome related signals in M1. A. Average temporal 

trajectories of layer 2-3 neurons were sorted according to previous and present trial 

outcomes resulting in 4 types of trajectories: previous and present successes (S-S, blue); 

previous failure and present success, (F-S, cyan); previous success and present failure, 

(S-F, violet); previous and present failures (F-F, red). Square marker denotes start of trial; 

circle denotes the time of the tone (4 sec after start). B. Left panel, SVM classifier (± SD 

shown in grey, dashed horizontal line represents chance level) for the data shown in A, 

did not successfully predict the behavioral outcome based on the activity of the next trial. 

Right panel, confusion matrix calculated for success and failure trials. C. Average 

temporal trajectories of layer 5 PT neurons, were sorted according to previous and 

present trial outcomes. Sorting as described in A. D. Left panel, SVM classifier for the 
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data shown in C, successfully identified the behavioral outcome based on the activity of 

the next trial. Right panel, confusion matrix calculated for success and failure trials. E. 

Example of PT neurons sorted according to previous success trials (left) or failure trials 

(right). F. Hand position on successive trials (blue success, red failure) in control pellet 

location, after movement of the pellet and back to control pellet location (arrow represents 

pellet location). G. Same as in F, except at trials where the pellet was moved to a new 

location, photoinhibition was activated 1000 ms after the tone (see scheme above). Same 

animal for F-G. H. Summary plot for success rate during control, new pellet location and 

back to control location when photoinhibition light was on (blue) or during control 

conditions with no photoinhibition (grey). Data from 9 new positions in 5 mice t-test, ** 

p<0.01. 

 

Figure S1. Behavioral ethograms. A. An "ethogram" annotating the behavior of an 

expert mouse over consecutive trials, performed by the modified JAABA software. Blue, 

hand lift; green, grab; red, food at mouth; dashed line represents tone. Lower panel, 

distribution of the number of grabs during the same session. B. Same as in A, for success 

trials. C. Same as in A, for failure trials. D. Forepaw trajectories (side view) performed 

with DeepLabCut. Behavioral events are overlaid on the trajectories (Blue, hand lift; 

green, grab; red, food at mouth). Same session as in A. E. Same as in D, for success 

trials. F. Same as in D for failure trials. 

  

Figure S2. rAAV2-retro expression in layer 5 PT neurons in M1. A. Schematic of the 

retrograde injection paradigm. To label PT neurons, rAAV2-retro-GCaMP6 was injected 

to the basal pontine nucleus (coordinates 4.0 mm posterior and 0.4 mm lateral to Bregma, 

depth 5.4, 5.6 and 5.8 mm). B. Histology of an injected brain (coronal section) showing 

GCaMP6 expression in PT neurons (green) and DAPI staining to visualize cell bodies 

(blue). 

 

Figure S3. Example “success” and “failure” related neurons aligned to different 

behavioral and trial events. Examples of neurons (same neurons as in Figure 2A), 

aligned to tone, last grab and at mouth. All success (42 trials) or failure (28 trials) in one 
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experimental session are presented for a single neuron. Each row shows ΔF/F of a single 

trial (color denotes the amplitude) aligned to one of the three events: A. Success related 

neurons aligned to tone. B. Success related neurons aligned to last grab. C. Success 

related neurons aligned to at mouth. D. Failure related neurons aligned to tone. E. Failure 

related neurons aligned to last grab. In all panels the black trace is the average over the 

presented trials; below, event-probability distribution for tone (black), lift (blue), grab 

(green) and at mouth (red). The dashed colored vertical lines demarcate the time of the 

aligned event (color according to the event). The onset of the calcium transients in 

success trials is denoted by grey dashed vertical line.  

 

Figure S4.  Alignment of behavioral events to calcium activity onset. Onset of activity 

of individual success and failure neurons could occur during different motor behaviors 

across attempts. A. Examples of alignment of the behavioral ethograms to the onset of 

success or failure related activity (denoted as “0”, dashed black line) of a single failure 

(right panel) and success (left panel) neuron. Onset of calcium transients was determined 

when the ΔF/F reached a value of 3SD above the mean. Behavioral events are color 

coded (see legend). B. Examples of single trials from a failure related (right panel) and a 

success related (left panel) neuron showing the calcium transient (upper panel), the 

behavioral events (lower trace). The time of activity onset is indicated by the black arrow 

head and the corresponding behavior at that time frame is shown on the right. C. Example 

of two trials from a failure (right panel) and success related (left panel) neurons taken 

from the same experimental session, showing failure and success signals during same 

behavior (hands on perch). Colored bar shows the color coded behavioral events. Note 

the similarity in the behavior before the cue onset and after hand movement ended (snap 

shots are shown below for each trial), the success or failure related signal appears only 

in the context of the behavioral outcome, either success or failure. 

 

Figure S5. Modeling single neurons calcium transients with GLM. A. To model the 

time course of calcium transients a set of 16 splines with fast (0.5 sec) and slow (2 sec) 

time course were generated. B. The splines were convolved with the different predictors 

tone, lift, grab and at mouth. Examples are shown for one session, peri-movement 
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segment (Tone -1 to Tone +2 sec). Upper panels are the annotated predictors and lower 

panels are the convolved predictors with the splines. C. Examples of modeled neurons in 

the peri-movement segment. Three neuron examples for layer 2-3. D. Three neuron 

examples for layer 5 PT neurons. Upper panels, experimental data; lower panels, 

modeled activity. 

 

Figure S6. Average cortical activity for hand reach, tongue reach, and hand reach 

with plastic pellets. A. Mice were trained in different experimental conditions either hand 

reach with normal pellets (left panel), tongue reach with normal pellets (middle panel) or 

hand reach with plastic pellets (right panel). B. Upper panel, averaged calcium transients 

for all layer 2-3 pyramidal neurons over success trials in a single session during 

consecutive hand reach trials. Color encodes the percent change in fluorescence (ΔF/F). 

Black trace, grand average over all neurons and trials. Event-probability histograms for 

the behavioral events lift (blue), grab (green), at mouth (red), lick (grey) presented aligned 

in time. Dashed black line denotes the time of the tone. Lower panel, for failure trials. C. 

Same as in B for tongue reach. D. Same as in B for hand reach with plastic pellets. 

 

Figure S7. Cortical activity during omission trials is similar to failure trials. A. 

Examples of L2/3 failure related neurons (cells 1 and 2) and success related neurons 

(cells 3 and 4). Activity is presented over success (upper panel), failure (middle panel) 

and omission (lower panel, omission 26% of trials) trials during one experimental session. 

B. 2D PCA embedding for layer 2-3 neurons in one example experiment with omission 

trials (red, failure; blue, success; black, omission; same experiment as in A). Accuracy of 

separation between failure and omission trials was 0.56±0.23 and between success and 

failure trials was 0.97±0.07. C. Average temporal evolution of the network activity of layer 

2-3 neurons separated to success (blue), failure (red) and omission (black) trials (same 

experiment as in A and B). Sensitivity index for success vs. failure was 20 and for failure 

vs. omission 9. D. SVM accuracy of separability for layer 2/3 activity in failure vs. omission 

trials (± SD shown in grey, dashed line represents chance level). Average accuracy 0.56, 

chance 0.5. Same experiment as in A, B and C. 
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Movie S1. Example of successful hand-reach with normal pellets. Side and front views 

captured with 200Hz cameras. After an auditory cue, pellet was delivered on a rotating 

table. The mouse grabbed the food pellet with its forepaw and consumed it. Playback at 

60 Hz.  

Movie S2. Example of successful tongue-each. Side and front views captured with 200Hz 

cameras. After an auditory cue, pellet was delivered on a rotating table. The mouse licked 

the food pellet with the tongue and consumed it. Playback at 60 Hz.  

Movie S3. Example of successful hand-reach with 3D printed plastic pellets. Side and 

front views captured with 200Hz cameras. After an auditory cue, pellet was delivered on 

a rotating table. The mouse grabbed the food pellet, brought it to its mouth, and then 

discarded the pellet. Playback at 60 Hz.  

Movie S4. Animation of averaged temporal trajectories of layer PT neuronal activity 

sorted according to outcome history. Average trajectories (3 first PCs) were sorted 

according to previous and present trial outcomes resulting in 4 types of trajectories: 

previous and present successes (S-S, blue); previous failure and present success, (F-S, 

cyan); previous success and present failure, (S-F, violet); previous and present failures 

(F-F, red).  Square marker denotes start of trial; circle denotes the time of the tone (4 sec 

after start). 
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 STAR★Methods 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and Virus Strains  

pAAV.Syn.Flex.GCaMP6s.WPRE.SV40 Addgene Addgene, 100845-
AAV1 

AAV-retro-Syn-GCaMP6s Tervo et al. 2016 Janelia virus core 

AAV1.CAGGS.Flex.ChR2-tdTomato.WPRE.SV40 Penn vector Core N/A 

pAAV_hSyn1-SIO-stGtACR2-FusionRed Mahn et al. 2018 Addgene, 105677-
AAV1 

Experimental Models: Organisms/Strains 

Mouse: C57BL6 ENVIGO N/A 

Mouse: Slc17a7-IRES-Cre Janelia research 
campus HHMI 

N/A 

Mouse: GAD2-cre Yizhar lab, 
Weizmann Institute 
of Science 

N/A 

Software and Algorithms 

JAABA Kabra et al. 2013 http://jaaba.sourceforg
e.net/ 

Matlab MathWorks http://mathworks.com 

DeepLabCut Mathis et al. 2018 https://github.com/Ale
xEMG/DeepLabCut/ 

LIBSVM Chang and Lin 2011 http://www.csie.ntu.ed
u.tw/~cjlin/libsvm 

 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jackie Schiller (jackie@technion.ac.il). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

All animal procedures were in accordance with guidelines established by the NIH on the care and 

use of animals in research and were confirmed by the Technion and Janelia Research Campus 

Institutional Animal Care and Use Committee. Adult male C57BL6, Slc17a7-IRES-Cre and 

GAD2-cre mice were used in this study. Animals were housed in a 12:12 reverse light:dark cycle. 

For behavioral training and experiments food intake was limited to 2.5–3 g/day with ad libitum 

water.  
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METHOD DETAILS 

Experimental Design. 

To investigate outcome representation in M1 we performed two photon calcium imaging 

experiments in awake head-restrained mice performing a skilled forelimb reach and grasp task. 

Chronic calcium imaging was performed with the genetically encoded Ca2+ indicator, GCaMP6, 

that was introduced to the cells via a viral vector injection which caused permanent expression of 

the indicator, allowing us to monitor the activity for many weeks. We selectively labelled layer 

2/3 pyramidal neurons or L5 PT neurons using Cre-dependent expression or a newly developed 

retrograde viral vector (Tervo et al. 2016), respectively. We implanted a chronic window over the 

M1 forelimb area that allowed us to image the activity for long time periods.   

Viral injections and cranial window surgery. 

Male mice were housed in a 12:12 reverse light:dark cycle. Surgical procedures were performed 

under isoflurane anesthesia (4% for induction and 1.5-2% during surgery) at the age of 2-3 months. 

We performed a circular craniotomy (2.5 – 3 mm diameter) centered at primary motor cortex 

forepaw area (0.6 mm anterior and 1.6 mm lateral to Bregma (Silasi et al. 2013)). The imaging 

window was constructed from two layers of 170 µm thick panes of laser-cut glass glued together 

with an optical UV adhesive (Norland). A custom-made headpost (Osborne and Dudman, 2014) 

was affixed to the skull using dental cement. Layer 2/3 pyramidal cells were labelled by locally 

injecting AAV-Syn-flex-GCaMP6s to the left M1 forepaw area (~300 µm depth, 60 nl) to Slc17a7-

IRES-Cre mice during the window implantation surgery. To label L5 PT neurons, AAV-retro-Syn-

GCaMP6s (Tervo et al. 2016) was injected to the left basal pontine nucleus (4.0 mm posterior and 

0.4 mm lateral to Bregma, depth 5.4, 5.6 and 5.8 mm, 100 nl per site) of C57BL6 mice. The 

injections were made through the thinned skull using a hydraulic micromanipulator (M0-10 

Narishige). Ketoprofen (5 mg/kg) and buprenorphine (0.1 mg/kg) were administered 

subcutaneously for analgesia during surgery and for 2 days post operational to reduce 

inflammation and analgesia respectively. Mice recovered for at least 1 week following surgery 

with ad libitum food and water. 

 

Behavioral training. 
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After recovering from surgery, animals were food restricted by limiting food intake to 2.5–3 g/day 

with ad libitum water. Training started when the animals reached 85-90% of their original body 

weight. Mice were habituated to head fixation in a custom-built apparatus (Osborne and Dudman, 

2014) in dark and quiet conditions, monitored by a webcam. Mice were initially trained to retrieve 

food pellets (14-20 mg; Test Diet; St Louis, MO) from a rotating plate placed directly below their 

mouth. The plate was rotated every 60 sec using a servomotor (Gecko Drive) driven by custom-

made Arduino software (200 msec duration) to present a food pellet. An auditory tone (200 msec, 

1 kHz) was used as a cue during plate rotation. Mice were trained daily for 20-30 min until they 

routinely responded to the auditory cue and grabbed the food pellet with at least 50% success, 

thereafter behavior was combined with two-photon imaging. Care was taken to reproduce the 

pellet location every session for every animal. Animals typically succeeded retrieving the food 

pellet using their forepaw for the first time after 3-5 training sessions. Mastering the task typically 

took approximately another 10 sessions.  

For tongue reach experiments, expert hand reach task mice were retrained to access the food pellet 

with their tongue.   

Two-photon calcium imaging.  

Images (512 X 512 pixels) were acquired at 30 Hz using a two-photon microscope equipped with 

a resonant scanner (resonant scanner frequency 8kHz; Brucker Corp. and custom made Janelia 

scope), 16X water immersion lens (Nikon, 0.8 NA, 3 mm working distance) and controlled by the 

software package PrairieView 5.3 or Scanimage. GCaMP6s was excited at 940 nm using a 

femtosecond pulsed laser (InSight X3, Spectraphysics or Coherent Chameleon Ultra II). Emission 

light was detected by a GaAsP photomultiplier tube (Hamamatsu).  

Each trial consisted of 12 sec total duration, with the tone and plate rotation introduced at 4 sec 

from trial start (Figure 1). Inter-trial intervals were typically 30 sec and a total of 50 - 120 trials 

were collected per single experimental session. The same field of view was imaged over all 

experimental sessions of the same animal. Behavioral performance was monitored at 200 Hz using 

two cameras (side and front view; Flea3 FL3-U3-13Y3M, PointGrey). The time coordination of 

two photon calcium imaging, behavioral task and video recording was accomplished via a National 

Instruments board (PCI-6110) using custom made software written in Matlab.  

Optogenetic silencing of M1. 
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We used two methods to silence post movement activity of M1: 1. We injected 

AAV1CAGGSFlexChR2-tdTomatoWPRESV40 (Penn vector Core) to M1 (0.6 mm anterior and 

1.6 mm lateral to Bregma, 60 nl) in GAD2-cre mice (n=3 mice) to activate resident interneurons. 

2. We injected pAAVhSyn1SIOstGtACR2FusionRed (Addgene; Mahn et al. 2018) to M1 in 

Slc17a7-IRES-Cre mice (n=2 mice) to silence preferentially pyramidal cell somata. A chronic 

window was placed over the injection area, a head post was affixed to the skull and animals were 

trained in the forepaw reach and grab task as previously described. To selectively silence the late 

activity without affecting the forepaw movement we first performed regular reach and grab task 

experiments and calculated the average time when most hand movements ended for each animal 

(𝑇𝑒, usually ~800 – 1000 msec after the tone). Optogenetic stimulation started at the calculated 𝑇𝑒 

for each animal and continued until the end of the trial. For ChR2 activation, a train of 10msec 

pulses was given at 10 Hz, using a 470 nm LED driven by a LEDD1B LED driver (ThorLabs) 

focused through a 16X water immersion lens (Nikon, 0.8 NA, 3 mm working distance), light 

intensity was 10 mW as measured coming out of the objective. For stGtACR2 silencing, one 

continuous pulse was given using a 447nm laser (OEM Laser Systems, Utah, USA) connected to 

an optic fiber placed over the window area, laser intensity was 4-8 mW as measured at the tip of 

the fiber. A blue LED was continuously lit in the vicinity of the animal to mask any light from 

laser activation. Control of the laser, behavioral task and cameras was achieved using custom 

routines written in Matlab. Both methods showed similar results and data were pooled for analysis.    

Histology.  

At the end of experiments, the animals were deeply anaesthetized and transcardially perfused with 

0.1 PBS followed by a solution of 4% paraformaldehyde. The brains were removed and stored in 

the fixative for 24-48 hours. Coronal sections were made at 50-100 µm thickness. The sections 

were mounted on slides embedded in Vectashield Hard Set mounting medium containing DAPI 

(Vector Laboratories) and imaged using a Pannoramic slide scanner (3D Histech). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Behavioral data analysis. 

We used a modified version of the Janelia Automatic Animal Behavior Annotator (JAABA) 

software package (Kabra et al. 2013) to classify behavioral events. The hand reach task was 
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segmented into discrete behavioral events (Lift, Grab and AtMouth). A subset of trials was 

manually labelled to train the classifier to recognize the behavioral events of interest. Then, 

machine learning based automatic classification was performed and behavioral events were 

extracted from all trials. The events were defined as follows: Lift was defined from initial 

separation between hand and perch until the hand reached maximum height, Grab was defined 

from the beginning of finger closure until the hand was lifted off the table (with or without the 

pellet), AtMouth was defined as hand with pellet in close proximity to mouth. 

In the tongue reach task, we added another behavioral tag, Lick, which was defined when the 

tongue was first visible out of the mouth and until it returned inside the mouth, AtMouth was 

defined from when the food pellet reached the lips until the animal started to chew.  

 Success trials were defined as trials where mice succeeded in grabbing and bringing the food pellet 

to the mouth for consumption (regardless of how many grab attempts were made). Failure trials 

were defined as trials where mice attempted to grab but missed the food pellet and thus did not 

consume the food pellet. For tongue reach experiments, success trials were defined as trials where 

animals licked for the food pellet and managed to bring it to the mouth for consumption (regardless 

of how many lick attempts were made), and failure trials were defined as trials where animals 

licked for the pellet but did not manage to successfully retrieve it to the mouth and consume it.  

 

We also used a machine-learning-based algorithm (DeepLabCut, Mathis et al. 2018) to 

automatically track the hand position in our behavioral videos. We manually labeled the position 

of the hand in a small subset of video frames to train the algorithm and then x and y locations of 

the hand were automatically extracted from each frame of the side and front videos.  

Two photon data analysis.   

The fluorescence data acquired by the two photon microscope was first registered to correct for 

brain motion artifacts. Our registration method was based on (Kowalczyk 1990), using Fourier 

transform based correlation between two successive images. The maximal value position in the 

correlation image specifies the relative shift between the two images, we designate them ut and vt.  

In this method a template specification and matching against an image stack is required. The 

template image 𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) was defined as the average of all images in the selected trial over time. 
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𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) =  
1

𝑁
∑ 𝐼(𝑥 − 𝑢𝑡 , 𝑦 − 𝑣𝑡 , 𝑡)

𝑡=1..𝑁

 

The set {𝑢𝑡, 𝑣𝑡}, 𝑡 = 1. . 𝑁 is an image shifted in the XY plane after alignment. We initially start 

with ut=0, vt=0 and then update their values according to the registration maxima. This procedure 

is repeated several times, when each time we compute the new template 𝐼𝑡𝑒𝑚𝑝(𝑥, 𝑦) using 

previously computed {𝑢𝑡, 𝑣𝑡} for each image. Typically, this procedure converges after several 

iterations, in our case 3 iterations. 

To align the imaging data over many trials we used a similar technique, utilizing the previously 

computed averaged templates for each trial. For each trial k, we performed a single trial registration 

using the template algorithm for 3 iterations. To align the image data over many trials, we treated 

the final templates 𝐼𝑡𝑒𝑚𝑝
𝑘 (𝑥, 𝑦) from each trial k as unaligned image data and repeated the same 

registration procedure to find offsets {𝑢𝑘, 𝑣𝑘} for each trial. These offsets along with previously 

found offsets {𝑢𝑡, 𝑣𝑡} account for the final image shift in XY plane. 

Regions of interest (ROIs) were detected manually using average fluorescence images and ΔF/F 

projection images which highlighted active neurons. The pixels within each ROI were averaged 

for every frame. The ROI "mask" was used to detect the same neurons on multiple imaging 

sessions on different days. 

ΔF/F was computed using the following formula:   

∆𝐹/𝐹𝑛[𝑡] =
𝐹𝑛[𝑡] − 𝑀𝑖𝑛10(𝐹𝑛[𝑡])

𝑀𝑖𝑛10(𝐹𝑛[𝑡]) + 𝐵𝑖𝑎𝑠
 

 

Where Min10(𝐹𝑛 [𝑡]) is a mean value of the lowest consecutive 10% values of the fluorescence 

signal 𝐹𝑛 [𝑡]. A small Bias factor in the denominator prevented zeros when the cell was completely 

silent.  

 

Statistical Analysis  

In each experiment, the mouse repeated the task for several dozens of times, performing a hand 

reach or a tongue reach task. The data were analyzed using a custom Matlab code, except for 

training and testing the SVM classifiers, for which we used the standard LIBSVM (Chang and Lin 

2011).  
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The imaging data collected in each experiment are stored in a 3-dimensional matrix (tensor) X  of 

size rN t T  , where rN  is the number of neurons, t  is the number of time samples per trial, and 

T  is the number of trials. Namely,  , ,X i j k  is the neuronal activity of the i-th neuron at the j-th 

time sample in the k-th trial.  

 

 

 

 

 

 

 
An example showing the 3D matrix consisting of imaging data. Each slice consists of the neuronal activity 

over time of all neurons (ROI’s) in a particular trial. 
 

2D PCA embedding of trials.  The 3D imaging data matrix X includes the activity of hundreds of 

neurons over hundreds of time samples. Particularly, in order to distinguish between the activity 

of the network during success trials and the activity of the network during failure trials, we used 

Principal Component Analysis (PCA) to represent each trial in a lower dimensional space.  

We defined the vector ,i kx
 as the temporal activity of the i-th neuron at the k-th trial, across time: 

 

      , ,1, , 2, , ,

1,...,

1,...,T

i k

r

X i k X i k X i t k

i N

k







x

  (1.1) 

We reshaped the 3D imaging data matrix X  as a 2D matrix of size [ ]rT N t , where each row 

consists of all time samples from all the neurons related to a specific trial: 
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1,1 2,1 N ,1

1,2 2,2 ,2

1,T 2,T ,

r

r

r

N

Tr

N T

 
 
 

  
 
 
 

x x x

x x x
X

x x x

  (1.2) 

We evaluated the sample covariance of TrX  by 

 
T

Tr Tr TrC X X   (1.3) 

and applied the eigenvalue decomposition 

 
1,...,

Tr l l l

l T

 



C
  (1.4) 

where lv  are the eigenvectors with the associated l  eigenvalues. The eigenvectors of the sample 

covariance give rise to the principal components of the imaging data tensor with respect to the 

trials axis. 

We used the first two principal components of each trial,     1 , 2 ,  1,...,l l l T   , to visualize 

the trials in a 2D Principal Component (PC) space, where the colors indicate the behavioral 

outcome (success – blue, failure - red) as depicted in Figure 4A and 4B. 

 

Tree partition of trials using diffusion maps. In the previous section we demonstrated that a 

compact representation of trials, obtained by PCA, leads to a good separation with respect to the 

behavioral outcome of the trials. In this section we further examine the differences and similarities 

of trials, when nonlinearly embedded into a new Euclidean space and partitioned to a hierarchal 

tree using a new manifold learning method (Mishne et al. 2016).  

In recent years, manifold learning has become a leading approach for detecting underlying 

structures and hidden parameters in data. Methods such as Laplacian eigenmaps (Belkin and 

Niyogi 2003), Hessian eigenmaps (Donoho and Grimes 2003) and diffusion maps (Coifman et al. 

2005, Coifman and Lafon 2006) view the data samples as nodes of a weighted graph. The weights 

of the graph edges are determined based on some affinity measure, capturing the pairwise 

similarities and dissimilarities of the nodes, i.e. the data samples. Common practice is to represent 

the weights of the edges by a kernel. The eigenvalue decomposition of the kernel establishes a new 

Euclidean space, often of lower dimensionality, in which the data is embedded. Ideally, the 

embedding of the data in the new space reveals the main structures underlying the data. 
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Diffusion maps embed the data samples into a Euclidian space where pairwise distances describe 

the relationship between data samples in terms of their graph connectivity. This means that local 

structures of the data samples can be captured through their distances in the embedded space, 

which is the main reason why diffusion maps is broadly and successfully applied (Mishne et al. 

2017, Shemesh et al. 2017, Yair and Talmon 2017, Shnitzer et al. 2016, Sulam et al. 2017). 

 

In this work we used Diffusion maps where Euclidian distances between embedded data samples 

describe the relationship between them in terms of their graph connectivity (Coifman and Lafon 

2006), which is just one of the reasons this method is used for many other data sources and 

computational purposes. Based on the matrix TrX , which is of size [ ]rT N t  and consists of the 

imaging data of each trial in its rows, we constructed a T T  affinity matrix where each element 

is computed according to a non-linear function of the pairwise Euclidean distances between the 

trials,  

 

2

, 2
exp

i j

i jW


  
  

  

x x
  (1.5) 

where   is a scaling tunable parameter and ix   is the i-th row of 
rTX . By normalizing the rows 

of W , we obtained a row stochastic matrix P  ,  

 
1

1

,
T

ii ij

j

D W



 P D W   (1.6) 

and computed its eigenvectors, 

 , 1,...,Tk k k k Pψ ψ   (1.7) 

where kψ  and k  are the eigenvectors and eigenvalues of P . 

We defined k  as the diffusion map of the trials to a Euclidean space d
R  by 

 

 

 

 

1 1

2 2

k

d d

k

k

k





 

 
 
  
 
  
 

  (1.8) 

where d T . As shown in (Belkin and Niyogi, 2008), the matrix P  can be viewed as a transition 

probabilities matrix of a Markov chain defined on the graph, whose nodes are the trials. The 
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Euclidean distance between trials in the embedded space (1.7) constitutes the diffusion distance, 

which is related to aggregation of the transition probabilities on the respective graph.  

We built a binary partition tree of the trials based on the diffusion distance, i.e. the Euclidean 

distance between their low dimensional representations in the embedded space (1.7). The 

construction of the partition tree is carried out in iterations in a top-down manner. In the first 

iteration, the embedded trials were partitioned into two clusters, which constitute the top level of 

the tree, just below the root. In the subsequent iterations, each cluster was further partitioned into 

two sub-clusters, forming the next level of the tree. These iterations were carried out until all the 

sub-clusters contained a minimal number of 12 trials. This particular number was set since it 

empirically led to good results in our experiments.  

 

PCA trajectories. In this section we analyzed the dynamics of the network within each trial to 

demonstrate the differences between the temporal evolution of success and failure trials as well as 

the differences between Layer 2-3 and PT neurons. 

We represent the temporal evolution of the entire network in each trial as a 3D trajectory using 

PCA, and therefore enable a more intuitive representation of the network’s dynamics. Focusing on 

the neurons axis, we reshaped the 3D imaging data matrix X  as a 2D matrix of size [ T]rN t , 

where each row consists of all the time samples from all the trials of a specific neuron as illustrated 

below.  
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Re-organization of the 3D imaging data matrix into a 2D matrix of size [ T]rN t . Borders of each 

trial are presented as solid lines and dashed lines demark the tone. 

 

 

Formally, similarly to (1.2), we denote this matrix by 

 

1,1 1,2 1,T

2,1 2,2 2,T

N ,1 N ,T ,r r r

N

N T

 
 
 
 
  
 

x x x

x x x
X

x x x

  (1.9) 

where ,kix  is defined in (1.1).  

We computed the sample covariance of NX , denoted by NC , and applied eigenvalue 

decomposition to obtain its principal components lu , 

 
1,..., N

N l l l

rl





C u u
  (1.10) 

Projecting the imaging data onto the three principal components 

  1 2 3, ,N N Y u u u X   (1.11) 

resulted in a 3 [ T]t matrix, denoted by NY . This matrix consists of a compact representation of 

the dynamic evolution of the network of neurons in a 3D coordinate system prescribed by the 

principal components. Explicitly, the elements of NY   can be written as 
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1,1 1,2 1,T

2,1 2,2 2,T

3,1 3,2 3,T

N

 
 

  
 
 

y y y

Y y y y

y y y

  (1.12) 

where ,i ky  consists of the temporal activity of the network of neurons at the k-th trial, projected 

onto the i-th principal component. 

Figure 4C and 4D present the temporal evolution of the network as 3-dimensional trajectories (fine 

lines) and the mean trajectories, averaged over the success and failure trials (thick lines, blue and 

red respectively). 

 

Sensitivity index. To quantify the difference in terms of the dynamics of the network in the PCA 

space (1.10) between success trials and failure trials, we evaluated the sensitivity index (also 

known as d’ – d-prime) for each PC, i.e. NY  , as a function of time: 

  
    

      

2

2

2 2
' 1, 2,3 1,2,...,

1

2

i i

s f

i
s f

i i

n n
d n i n t

n n

 

 


  



  

where  
i

s n  and  
i

f n  are the mean values of the i-th PC at time sample n , averaged over all 

success and failure trials, respectively. In the same manner,  s

i n  and  f

i n  are the standard 

deviation (STD) values of the i-th PC at time sample n , associated with success and failure trials, 

respectively. The overall difference in terms of the dynamics between success and failure trials 

was obtained by the average value of the first 3 PCs, namely, by 

       2 2 2 2

1 2 3' ' ' 'd n d n d n d n    

The sensitivity index as a function of time evaluated for layer 2-3 and PT neurons is presented in 

Figure 4E. It clearly indicates that the PCA trajectories indeed evolve differently through time, 

however, this separation is statistically more significant in Layer 2-3, than in PT neurons. 

The sensitivity index provides an objective evaluation for the success/failure separability, 

assuming an underlying statistical model consisting of two Gaussians representing the two classes. 

In the next section we describe another separability measure - the classification accuracy – which 

does not rely on this particular statistical model. 
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Classification Accuracy. To further quantify the difference between success and failure trials as 

conveyed by the dynamics of the neuronal activity, we use a linear SVM classifier (Joachims 

2006). The classification accuracy was evaluated for each day of experiment separately. We used 

a sliding window of 1 second with 0.5 second hop. In every time window, we evaluated the average 

activity of each neuron at each trial,  

    
time bin 

1
, , ,b

n b

x i k X i n k
B 

   ,  (1.13) 

Where b  is the index of time window and B  is the window length measured in samples. The 

activity of the network in each time window for each trial was represented by the following 1rN 

vector 

 

 

 

 

,

1,

2,

,

1,2,...,T

b

b

b k

b r

x k

x k

x N k

k

 
 
 
 
  
 



x
  (1.14) 

For each time bin, we paired the set  , 1

T

b k k
x , representing the averaged activity of the network 

across trials, with the associated success and failure labels, 

  

 

 1 2, , ,

1 success on trial 

0 otherwise

T

k

y y y

k
y




 


y

  

We used the standard LIBSVM toolkit (Chang and Lin 2011) and fed the SVM module with 

  , 1
,

T

b k k
x y , as feature vectors and labels. Training and testing were performed using a 10-fold 

cross-validation procedure. Trials were divided into 10 equally sized and disjoint sets; in each fold, 

one of the sets (10% of trials) was used for testing and the remaining 9 sets (90% of the trials) 

were used for training the classifier. In each fold, the SVM regularization parameter was 

determined using a grid-search optimization using another (internal) 10-fold partition of the 

training data. Overall, the 10-fold cross-validation testing process resulted in 10 accuracy rates per 
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time bin b , denoted by , , 1, 2,...,10b fa f  . We evaluated the mean and STD values across folds 

as a function of their respective time window b , 

 

 

    

10

,

1

10
2

,

1

1

10

1

9

b f

f

b f

f

a b a

s b a a b







 




  (1.15) 

Figure 4F and 4G present the mean and STD values evaluated using eqn. (1.15) as a function of 

the time bin b , where typically the accuracy level starts climbing right after the tone and peaks 

about 1.5-2 seconds afterwards.  

 

Confusion matrices. In the previous section, the effectiveness of the classifier was evaluated by 

the accuracy rate, which is the amount of trials predicted correctly divided by the overall amount 

of examples. However, more can be learned about the performance of a classifier from the 

confusion matrix M , where  .M i j  is the percentage of trials for which examples related to label 

i were predicted as label j. Therefore, the elements of the main diagonal count the examples 

correctly classified. In our case, the examples were the trials and the labels were success and 

failure. Thus, the confusion matrix is a 2-by-2 matrix whose off-diagonal elements consist of the 

incorrect classification: success classified as failure and vice-versa, as presented in Figure 7B and 

7D.  

 

Indicative Neurons. In addition to evaluating the separability of success and failure trials based 

on the neuronal activity of the entire network as a whole, we also aimed to examine whether or not 

single neurons are able to reliably report success or failure. 

We evaluated the average activity of each neuron i  and time bin b , for all trials, as described in 

eqn. (1.12) and paired them with the associated success and failure labels,    1
, ,

T

b k
x i k


y , where 

1,2,..., ri N . 

We fed the SVM module with    1
, ,

T

b k
x i k


y  and evaluated the accuracy rate using a 10-fold 

cross-validation process. In each fold, 90% of the trials were used for training and the remaining 

10% were used for testing. The regularization parameter of the SVM was set using an additional 
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10-fold cross-validation process based on 90% of trials. We obtained the mean and STD values of 

the accuracy rate, per neuron and at each time window, by averaging over folds,  

  

10

, , ,

1

10
2

, ,i, ,

1

1

10

1

9

1,2,...,

i b b i f

f

i b b f i b

f

r

A a

S a A

i N







 





   (1.16) 

To determine whether or not a neuron is indicative, we compared its respective mean accuracy rate 

to the prior probability of success and failure, evaluated by 

 
 max ,failure succcess

prior

failure succcess

N N
P

N N



  (1.17) 

where successN  and failureN   are the number of success and failure trials, respectively. In each time 

window, we marked a neuron as indicative if its mean accuracy rate was higher than the prior 

probability, priorP , with a 95% confidence interval, i.e. 

  
 ,1 0.95

,
0

i b priorP A P
I i b

otherwise

  
 


  (1.18) 

 

Latency histograms. In this section we aimed to temporally correlate between different behavioral 

events and neuronal activity as measured by calcium imaging. We first extracted time stamps of 

tone and four behavioral events per trial: the first lift, the first attempt to grab (noted as ‘first grab'), 

the last attempt to grab (noted as ‘last grab') and pellet at mouth. We aligned the imaging data per 

trial (across neurons) according to the time stamps of each of the three events. We obtained the 

maximal value of neurons with a peak response greater than 3 standard deviations above baseline; 

the baseline signal was obtained as the mean value of the aligned imaging data taken from 2 

seconds before the tone till the tone. We then evaluated the delay between the aligned event (tone, 

first lift, first grab, last grab or at mouth) and the onset of the calcium transients. Latency 

histograms depicted in Figure 3A and 3B, present the percentage of neurons activated within a 

certain delay from the event. 
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GLM. We modeled single neuron calcium transients of both layer 5 PT and layer 2-3 neurons 

using a Generalized Linear Model (GLM) (Ramkumar et al. 2016, Engelhard et al. 2019). With 

the GLM we nonlinearly construct predictor signals from the behavioral information of each trial, 

and then linearly combine them to fit the calcium signal of each neuron.  

The predictor signals were of three types: 

1. Hand trajectories. Time series of hand trajectories were extracted using DeepLabCut software 

(Mathis et al. 2018) from videos taken with side and front view cameras. We extracted x and 

y locations, altogether 4 predictors. 

2. Time varying and binary events – tone, lift, grab and at mouth. Movement events were 

extracted using the modified JAABA software (Kabra et al. 2013). 

3. Whole trial binary event – success/failure trial status (outcome). 

To model the time course of single neurons calcium signals, we convolved the time varying binary 

events with a set of 7 degree-of-freedom regression splines. We used a set of short duration (0.5 

seconds) and long duration (2 seconds) splines generated using the ‘bSpline’ package in R. We 

had 16 spline functions in total which resulted in 16 X 4 =64 convolved signals used as predictors. 

Altogether we had 69 predictors (64 convolved predictors + 4 hand trajectories +1 whole binary 

success/failure outcome status). We performed our analysis in two time segments: peri-movement 

– from one second before the tone till 2 seconds after the tone; and post-movement – from 5 

seconds after the tone till 8 seconds after the tone. We did not model the intermediate time segment 

(2-5 seconds after the tone), as in layer 5 PT neurons the calcium transients during this segment 

were dominated by the residual of the calcium responses evoked by movement events, which 

occurred during the initial time segment. 

On each time segment   we train a linear predictor for the neuronal activity of a neuron i  based 

on the corresponding predictors such that: 

 

  

 

i,1

i,2 0

, , ,

i,T

T

T

i i i

T

w   



 
 
    
 
 
 
 

x

x
A w ε

x

  (1.19) 
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where ,kix  is the temporal neuronal activity of a neuron i on trial k, as defined in (1.1), clipped to 

the segment  , A  consists of the corresponding temporal predictor signals and  0

, ,,i iw w  are 

the evaluated model parameters. All models were trained per neuron and time segment using 

LASSO (Tibshirani 1996) with 5-fold cross validation.  

We first trained a full model based on all 69 predictors and measured  2 ,fR i  , which is the 

variance of the explained signal normalized by the variance of the neuronal activity.  

We analyzed 1008 neurons for layer 5 PT and 1111 for layer 2/3 neurons. For our further analysis 

we included the subset of neurons having at least 15% of their variance explained by the full model 

and excluded the rest from further analysis (for layer 5 PT neurons, 552 neurons for the peri-

movement segment and none for the post-movement segment; for layer 2/3 neurons, 227 neurons 

for the peri-movement segment and 78 neurons for the post-movement segment). 

In order to quantify the relative contribution of each variable, we grouped the predictors into six 

categories: tone, lift, grab, at mouth, trajectories and outcome. 

For each neuron on each time segment, we trained a set of 6 partial models, each by excluding 

predictors related to one of the categories. The contribution of the excluded component was 

evaluated as 

 

  
 

 

2

2

, ,
, , 1 1,...,6

,

p

f

R i c
i c c

R i


 


     (1.20) 

where  2 , ,pR i c  is the variance of the explained signal using the partial model c, c=1,2 …,6.  

For some neurons the contribution was negative, indicating poor modeling due to noise or 

irrelevance of the predictors to the activity and therefore the value was cropped to zero (Engelhard 

et al. 2019). Figure 3E presents the relative contribution,     
6

1

, , / , ,
c

i c i c   


 
 
 
  of each 

component c per time segment  , averaged across neurons. 

DATA AND CODE AVAILABILITY 

The code supporting the current study has not been deposited in a public repository but is 

available from the corresponding author on request. 
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