
Influence of spatial structure on protein damage susceptibility 
– A bioinformatics approach

Maximilian Fichtner1,*, Stefan Schuster1, Heiko Stark1,2

1Matthias Schleiden Institute, Department of Bioinformatics, Friedrich Schiller University Jena, 
Ernst-Abbe-Platz 2, 07743 Jena, Germany
2Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 
07743 Jena, Germany
*Corresponding author, email: maximilian.fichtner@uni-jena.de

Abstract

Aging research is a very popular field of research in which the gradual transformation of functional
states into dysfunctional states are studied. Here we only consider the molecular level, which can
also have effects on the macroscopic level. It is known that the proteinogenic amino acids differ in
their modification susceptibilities and this can affect the function of proteins. For this it is important
to know the distribution of amino acids between the protein surface/shell and the core. This was
investigated in this study for all known structural data of peptides and proteins. As a result it is
shown that the surface contains less susceptible amino acids than the core with the exception of
thermophilic organisms. Furthermore, proteins could be classified according to their susceptibility.
This can then be used in applications such as phylogeny, aging research, molecular medicine and
synthetic biology.

Keywords

Amino acid  score,  3-dimensional  protein  structure,  protein  shell,  protein  core,  protein  damage,
protein aging, concave hull

Introduction

Aging research is a very popular field of research that focuses on macroscopic and microscopic
alterations  during aging.  Aging is  a  biological  process  in  which a  functional  state  is  gradually
transformed  into  a  dysfunctional  state[1–3].  Macroscopic  changes  can  be  skin  aging,  reduced
mobility  and  organ  damage  (heart  failure,  autoimmune  diseases  such  as  age-related  macular
degeneration,  neurodegenerative  diseases  such  as  Alzheimer's  disease).  At  the  cellular
(microscopic)  level,  the changes affect  the signalling and metabolic  pathways as  well  as many
larger molecules. The changes of the molecules are of decisive importance as they can accumulate
in an organism and lead to macroscopic changes (e.g. lipofuscin, age pigment in the skin;[4]). For
many molecules there are  already detailed studies available.  Known are for misfolded proteins
caused  by  mutation:  α-synuclein,  cystic  fibrosis  transmembrane  conductance  regulator[5],
peripheral myelin protein 22[6], huntingtin (Htt)[7], ataxin-3, Down syndrome critical region 1[8].
There are fewer investigations for misfoldings due to non-enzymatic modifications. Nevertheless, it
is worth mentioning that ageing is characterized not only by a decline in function but also by a
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remarkable robustness of many features such as the hematocrit value [9], body temperature, overall
immune memory etc.

Score based estimation of peptide and protein susceptibilities
In our previous paper [10] we assembled score tables and proposed an approach to quantify peptide
and protein susceptibility. For the score tables we have selected known protein modifications from
four literature sources[11–14]. On this basis the susceptibilities for the 20 standard amino acids
(AAs) were determined. In a second step, the susceptibilities were weighted by text mining. In a
third step we weighted only with text mining, without the consideration of the modification table.
Finally, an average of all scores was calculated.
At first this was applied without consideration of the three-dimensional (3D) structure. Merely a
distinction  between  peptides  and  proteins  was  made  using  a  threshold  of  100  AAs.  It  can  be
expected  that  peptides  have  no  core  in  their  spatial  structures  due  to  their  short  length.  For
simplification, only if necessary we make a distinction between peptides and proteins, otherwise we
just use the term proteins for both in the following. In the present paper, we take the 3D structure
fully into account.
A similar approach in terms of structure scoring that connects well with our research has recently
been  published.  There,  the  authors  score  the  structures  of  proteins  for  their  susceptibility  to
aggregate and call it AggScore[15]. An additional study (review) addressed AAs in the context of
oxidation, which also ranked highest in our score (cysteine, tyrosine and tryptophan)[16]. They also
mention the problem in connection with storage of biotherapeutics for longer durations. It is notable
that  some other  AAs mentioned in  [16] like histidine,  methionine and phenylalanine  were just
ranked average in our score.

Spatial protein structures
While  we  mainly  consider  the  primary  structure  (complete  amino  acid  chain)  in  the  previous
paper[10], here we take spatial information into account. Obviously, the susceptibility of an AA to
spontaneous modification depends on its localization within the protein. AAs in the protein shell
(further called protein surface) are much more easily accessible to, for example, reactive oxygen
species,  than  those  in  the  core.  Since  the  secondary  and  super-secondary  structures  transition
relative quickly into  the  tertiary  structure they seem to be,  In  terms of  the  susceptibility, only
relevant for peptides or small proteins where they are fully accessible. In Table 1 we give a short
view  on  the  secondary  structures  alone,  that  means  without  consideration  of  their  spatial
arrangement in the protein[17–20].
Within the tertiary structure the composition of secondary structures is decisive for the accessibility
of the AAs. If, for example, there are more α-helices outside than β-sheet structures, a different
impact on the surface is to be expected. In the calculation of the whole protein surface this issue is
already addressed.

Table 1: Summary of secondary structures and possible spatial susceptibility. The spatial features
are derived from the chemical structures.

Secondary structure Spatial features

α-, 310-, π-Helix backbone lies covered

Collagen-helix AAs lie partly covered (periodic)

β-Helix backbone only attackable from one side

β-Sheet completely open

β-Turn backbone very lightly covered

Random coil variable accessibility
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Furthermore, the surface can be covered by other structures. In the quaternary structure, individual
proteins form protein complexes. After the formation of a protein complex, a new protein surface is
formed. In addition, a distinction can be made between the complete surface and the accessible
surface.  For  example,  proteins  can  be  embedded  in  membranes  and  are  thus  only  partially
vulnerable to the respective micro-environments (e.g. mitochondria, chloroplasts, ...). Especially for
enzymes, susceptible/functional areas can also be hidden in pockets. However, here we focus only
on the tertiary and possibly also the quaternary structure, since this represents the final form of the
proteins. It should be noted that the spatial structure is subject to fluctuations and this can lead to
differently measured data[21].

3D approach
The idea was to make a 3D approach where only the AAs which are lying on the outside of the
protein  surface  are  considered  for  the  calculation.  There  are  a  number  of  algorithms  for  the
calculation  of  protein  geometries,  which  calculate  the  protein  surface,  volumes  and
pockets[22,23,21,24,25]. Here the outer AAs need to be identified. In contrast, the remaining AAs
form the protein core. We assume that more susceptible AAs in the protein core are protected by the
AA on the protein surface and are therefore more susceptible to modification. Thus, the protein
surface AAs should be less susceptible to modification. It is  also known that certain AAs protect
proteins [26–28].
Additionally one can make a distinction between the backbone and the side chains. Depending on
the folding, the respective parts are accessible from the outside. The same applies to pockets, which,
depending on size and depth, offer more vulnerale surface.

Hypothesis
Compared to Fichtner et al.  [10], it can be expected that there will be a difference between the
whole and parts of the protein. The AAs in the core are protected by the protein surface and could
have more susceptible AAs. On closer inspection, the surface can also be analysed with regard to its
differences with and without backbone and with and without side chains. It is to be expected that
specific protein families form clusters with regard to their susceptibility.

Methods

Preprocessing
As a basis for the analysis, the spatial structures of all molecules (139,291) deposited in the Protein
Data Bank (PDB) were downloaded (see Suppl. 1). In the preprocessing only the compositions
which contain AAs in their sequence were considered (Suppl. 1). In addition, the data sets may
include also ligands and water. These were retained for the calculation, as they form the outermost
surface  and  can  act  as  protection.  A direct  comparison  for  multiple  spatial  structures  is  too
combinatorial  challenging (comparing  all  atoms with  each other),  that  is  why only  one spatial
structure per entry was considered (Suppl. 1). Additionally, the entries with redundant sequences
may differ in their spatial structure, resulting in different surface and core compositions, and were
therefore not summarized here. For our analysis we concentrate only on the PDB data. A connection
with further databases would be possible. For example to investigate the influence of domains. 

Whole protein
We have developed nine different approaches to compare the influence of the spatial structure. The
simplest one, ‘whole protein’ (WP) considers all AAs (like the theoretical approach [10]). Based on
these results, we again calculated the susceptibilities for all proteins for which we had the spatial
data (Suppl. 1). For that purpose we only used the score ALL of Fichtner et al. [10]. This allows us
to compare parts (surface, core) with the whole protein in terms of susceptibility. Score ALL is a
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mean of six scores with different focuses in terms of weighting and data base. With the mean it was
tried to combine the best characteristics of the scores.

Protein core and protein surface
By defining the protein parts, we can mainly examine the ‘protein core’ (PC) on the one hand and
the ‘protein surface’ (PS) on the other. In addition, we make a distinction in the surface between and
‘surface side chains’ (SSC) and ‘surface backbone’ (SBB) which only consists of the backbone
elements in the surface. Depending on the spatial structure the corresponding protein parts can lie
outside or inside. For our scores we have only considered the side chains. In the protein surface, the
backbone may or may not point outwards and be susceptible. That is why we have devised another
approach where we analyse the whole surface and then we exclude the backbones from the analysis
(SSC). For the sake of completeness, we have also devised an approach in which the side chains are
subsequently removed (SBB). Thus, it is possible to analyse the number of side chains of individual
proteins in comparison to the backbone on the protein surface.
For the determination of the PS, SSC, SBB the concept of the  ‘concave hull’ is used. This is a
complex problem in information theory. That is because there is no agreed definition for it, since we
have to decide at which point we stop chasing deeper gaps. That is why the concave protein surface
will be defined depending on the requirements of the problem in question. For this purpose we
chose a small radical (hydroxyl radical), which is reactive at any pH value. With the help of the
software ‘Avogadro’ Version 1.1.1[29,30] we determined the minimum distance for chasing deeper
gaps. While the Van-der-Waals radii of bound proteinogenic atoms are larger, the radii of isolated
atoms are between 1.1 Å and 1.8 Å [31,32]. Here an oxygen radical (1.52 Å) was moved through
two carbon atoms (1.7 Å) and the distance was measured (6 Å to 7 Å).  These values are to be
understood as the lowest limit. It should be noted that this is not a fixed limit and is therefore only
an approximation. A rough formula could be: X + 2 * ½ Y = X + Y where X is the Van-der-Waals
diameter of the penetrating atom and Y is the Van-der-Waals diameter of the two surface atoms that
are not bound with each other. The respective formula for radii would then be 2 X + 2 Y.
For the definition of our PS (biological term) we use the standard Graham Scan algorithm[33]. The
Graham Scan is an algorithm for calculating the convex hull (mathematical term) of a finite set of
points. We calculate the convex hull for one protein based on all atoms of the protein. After that we
divide each edge by the minimal distance (6 Å to 7 Å) and the new nodes to the closest points are
calculated. In this way, we obtain the concave hull, but only for topologies with genus zero (i.e.
without holes).  The surface contains the external atoms of the molecule and in a second step the
corresponding AA to these atoms were determined (Fig. 1). After this assignment, surface and core
of the protein can be separated. The algorithm described here was implemented in the program
Cloud2  Version  14.3.20  (Heiko  Stark,  Jena,  Germany,  URL:  https://starkrats.de)  for  the
differentiation of the different protein parts (Suppl. 1).
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Figure 1: Representation of the amino acids and water components of the protein oxyhaemoglobin
(PDB entry: pdb1hho). A dot represents the averaged centre of an amino acid (red when on the
protein surface (PS), yellow in the protein core (PC)) or water molecule (blue). Red lines show the
cross-linking by the surface calculation, by which the surface (concave hull) is defined. All unlinked
dots are assigned to the PC.

Scoring
As a first step, the entries with multiple conformations were removed for reasons of complexity.
This included 8039 (5.77%) entries. From this data, an AA count was performed for validation. In
addition, the sequences for the different protein parts (WP, PS, SBB, SSC, PC) were weighted with
the score ALL of Fichtner et al. and a modified scoring program (Suppl. 1; [10]). In a second step
the AA sequences with more than 5% X were removed (named with ‘X correction’; this makes 5.40
% of all entries). The 5% were taken from Fichtner et al. [10].

Classification
Based on the annotations in the protein lists, a classification of special protein groups (collagen,
cytochromes, ribosomes, …), organisms and enzymes was possible. This has been realized with the
tool  Enzyme2 Version  8.3.20  (Heiko  Stark,  Jena,  Germany, URL:  https://starkrats.de).  For  this
purpose, the complete list was searched for specific patterns (e.g. enzymes – lyases, isomerases,…
see Suppl. 5; organisms – human, mouse,… see Suppl. 6) and plots were created.
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Results

Raw data
The first step was to evaluate the raw data for the various analyses (Tab. 2). It should be noted that
WP contains  all  proteins.  The calculation  for  PS resulted  in  as  many entries  as  WP (since  all
proteins have a surface). The file size for 6 Å is larger than for 7 Å, since the penetration depth of
the concave hull is larger, more AAs are found here (this applies to all calculated surfaces). With
SBB almost no proteins are lost compared to PS. However, when comparing the file size of SBB
with PS it is noticable that less AAs are selected. With SSC the number of proteins is reduced, i.e.
there  are  proteins  without  an  external  side  chain  atom. In  the  7 Å  variant,  this  is  even  more
pronounced because here the net has a lower density. When comparing the file size of SBB with
SSC it is noticable that there are many more side chains outside than backbones. Not every protein
has a core (PC), that is why here the number of proteins is lower compared to WP.

Table 2: Results of the number of proteins per calculation and file size. File sizes where taken 
without headers.

Peptides/Proteins Cavity 6 Å – count
[file size without header]

Cavity 7 Å – count
[file size without header]

WP 139,291
[111.5 MB]

PS 139,291
[39.9 MB]

139,291
[36.8 MB]

SSC 138,921
[34.6 MB]

138,921
[32.0 MB]

SBB 139,256
[17.9 MB]

139,243
[15.1 MB]

PC 137,309
[71.8 MB]

137,517
[74.9 MB]

Comparison linear versus spatial approach
The amount of molecules (139,291) is smaller compared to that analysed in Fichtner et al.  [10]
(422,091), since the spatial structure is not known for each molecule. A direct comparison of the
histograms  between  these  two  studies  shows  a  good  correlation  with  regard  to  the  normal
distribution (Fig. 2). A further comparison of the distribution with respect to PS, SSC, SBB and PC
shows that the normal distribution is shifting (Tab. 3 and 4). The SBB has the lowest mean and PC
the highest. PS, SSC and WP are, in that order, situated in between. Our analysis showed that the
choice of the AAs belonging to the PS is decisive for the way the susceptibility is calculated. There
is a difference between 6 Å or 7 Å cavities (Tab. 3 and 4). The peptides show a higher standard
deviation (SD) and lower mean values compared to the proteins.
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Figure  2: Comparison  between  the  normalized  histogram  of  [10] (blue)  and  the  normalized
histogram for the spatial approach (red). The red peak on the left (~3.757) is mainly due to multiple
entries of endothiapepsin of the organism Cryphonectria parasitica in the data set. The second and
highest peak (~4.357) is mainly due to lysozyme of the organism  Gallus gallus. The  black line
indicates the mean score of a random artificial protein.

Table 3: Statistics of the influence of the spatial structure on the susceptibility for a cavity of 6 Å.
Proteins

[Peptides]
Min Median Max Mean SD

WP 0
[0]

4.421 
[3.910]

8.594
[13.149]

4.385
[2.710]

0.498
[2.301]

PS 0
[0]

4.225
[4.193]

8.403
[13.149]

4.185
[3.780]

0.555
[1.458]

SSC 0
[0]

4.261
[4.251]

8.251
[14.750]

4.228
[3.889]

0.554
[1.379]

SBB 0
[0]

3.962
[3.921]

6.194
[13.115]

3.898
[3.815]

0.626
[0.935]

PC 0
[0]

4.585
[4.625]

8.582
[12.415]

4.572
[4.522]

0.465
[1.276]

Table 4: Statistics of the influence of the spatial structure on the susceptibility for a cavity of 7 Å.
Proteins

[Peptides]
Min Median Max Mean SD

WP 0
[0]

4.421 
[3.910]

8.594
[13.149]

4.385
[2.710]

0.498
[2.301]

PS 0
[0]

4.209
[4.194]

7.927
[13.149]

4.170
[3.840]

0.561
[1.373]

SSC 0
[0]

4.247
[4.251]

7.872
[14.750]

4.219
[3.932]

0.548
[1.318]

SBB 0 4.247 7.872 4.219 0.548
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[0] [4.251] [14.750] [3.932] [1.318]

PC 0
[0]

4.578
[4.582]

8.360
[12.319]

4.561
[4.443]

0.459
[1.334]

Validation of amino acid distribution in the protein surface
It is well known that, in cytosolic proteins, hydrophilic AAs are mainly found in the surface and
hydrophobic AAs in the core[34]. These findings agree with our results and show that our algorithm
correctly discriminates against the surface (Fig. 3; further analysis see Suppl. 2 and 3). Notice that
in our data set the PC contains 64.3 % and the PS 35.7 % of all the AAs. The basic AAs lysine (K)
and arginine (R) and the acidic AA glutamic acid (E) are hydrophilic and stand out due to a higher
proportion in the PS. It should be mentioned here that K, R and E have a medium susceptibility,
with E having the lowest value (Fichtner et al.  [10]). Furthermore,  the AAs glutamine (Q) and
aspartic  acid  (D)  show an  equal  distribution  between  PS and  PC.  In  contrast  to  K,  R and E,
however, they show the lowest susceptibility. In addition, it is shown that the most susceptible AAs,
i.e. tyrosine (Y), cysteine (C), tryptophan (W) and leucine (L), are represented above average in the
core.
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Figure 3: Real  values  of  the  occurrence of  the 20 standard  amino acids  in  the  data  and their
distribution over protein surface (PS) and protein core (PC). The blue lines under the letters mark
the hydrophobic amino acids. For further analysis see Suppl. 2 and 3.

Comparison of protein core and protein surface
In the paper by Fichtner et al., reduced susceptibilities were shown for some proteins, among others
for flagellin and spidroin[10]. A more precise differentiation between PS and PC shows that the
surface  of  these  proteins  is  less  susceptible  than  the  core  and  thus  appears  in  the  lowest
susceptibility score for PS (Fig. 4;  flagellin P value = 0.00471; spidroin P value = 0.243). For
further analysis see Suppl. 4.
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Figure 4: The mean difference of the protein core (PC) and protein surface (PS) comparisons for
the flagellin and spidroin protein are shown in the above Cumming estimation plot. The raw data is
plotted on the upper axe.  Mean differences are  depicted as  dots;  95% confidence intervals  are
indicated by the ends of the vertical error bars. Each mean difference is plotted on the lower axes as
a bootstrap sampling distribution (5000 bootstrap samples; confidence interval is bias-corrected and
accelerated) [35]

When analyzing the surface, the location of the backbone or side chain is important for the analysis.
For example, the heatshock protein shows that the proteins significantly influence the susceptibility
calculation for the backbone (Fig. 5; SBB-PS P value 7.1e-08; SCC-PS P value 0.327). However,
this does not apply to all proteins. For the antifreeze protein it can be shown that there are only
minor differences between these different approaches (Fig 5; SBB-PS P value 0.0123; SCC-PS P
value 0.118).

a)       b)

Figure 5 a, b: The mean difference of the surface comparisons (PS, SBB, SCC) for the heatshock
and antifreeze protein are shown in the above Cumming estimation plot. The raw data is plotted on
the  upper  axes.  Each  mean  difference  is  depicted  as  a  dot.  Each  95% confidence  interval  is
indicated by the ends of the vertical error bars. On the lower axes, mean differences are plotted as
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bootstrap sampling distributions (5000 bootstrap samples; confidence interval is bias-corrected and
accelerated).

Discussion

Protein core and protein surface properties
Our hypothesis was that PS involves  evolutionarily less susceptible AAs than the PC because it
interacts more with the environment (Fig. 7). We could confirm this hypothesis for the mean values
of the most proteins (see Results). However, there are some exceptions with regard to the sorting by
organisms  (see  next  subsection).  It  should  be  noted  that  the  organisms  (unicellular  versus
multicellular) may be exposed to different environments. However, there are proteins that differ
from our hypothesis and for which the surface is important for protein interaction[36]. This can lead
to a change in the susceptibility of the PS. This is desirable, for example, in order to subsequently
industrially modify proteins[37]. An important benefit for synthetic biology is the knowledge about
the  susceptibility  of  proteins  to  oxidation  in  connection  with  storage  and  the  associated
degradation[16].  It is also known that proteins with susceptible AAs (tyrosine) on the surface are
relevant for biological aging and age-related disease[38].
An important argument concerning the PS is how far it lies in or on membranes and how much it is
protected by them. For example, the proteins of the respiratory chain are embedded in membranes
while one side is in contact with a more aggressive environment[39]. It is well known that many
proteins in the intermembrane space (IMS) contain conserved cysteine-rich sections[40]. There is
still no explanation for the function of these tracts[40]. It should be noted that according to our
previous  results,  the  second  most  susceptible  AA  is  cysteine  [10].  Specific  information  on
membranes could not be taken into account by our approach because the exact location of every
protein was not in the data base. The same applies to complexes, which can protect parts of the
protein surface from modification, except for the ones that where contained in the data base.

Figure 7: Cut of the Protein almond Pru1 (PDB entry: pdb3fz3) that has a strong diversity between
the surface (low susceptibility – white) and the core (high susceptibility – red).
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Further properties – enzymes
The distinction between protein surface and core is particularly important for enzymes, since the
active  site  is  usually  hidden in pockets  and is  either  presented by a  conformational  change or
accessible  by the key-lock principle.  Here  no distinction is  made between enzymatic  and non-
enzymatic proteins and thus the active sites are not examined in detail. But these hidden pockets can
be an advantage in addition to substrate specificity in terms of avoiding modifications. One example
is the ALDH enzyme, where the oxidation of a specific AA (Cys302) inactivates the enzyme[28]. In
that paper, it was shown that neighbouring cysteine AAs protect the catalytic cysteine by covalent
bonds.
When  it  comes  to  protein  damage,  a  loss  of  functionality  does  not  necessarily  imply  a  heavy
damage leading to aggregation. The required modifications for that purpose are very variable. On
one hand, it was stated that nearly every modification leads to a loss of function due to changes in
the conformation or in the functional domain[13]. For this, the active and passive forms would have
to  be taken into account.  On the  other  hand there is  an earlier  finding of  multiple  methionine
modifications not leading to a loss of function[27]. Altogether we suspect that functionality has had
higher priority compared to robustness in evolution.

Organism specific issues
The  analysis,  taking  into  account  the  organisms  revealed  a  differentiation  with  regard  to
susceptibility, which could be due to the multicellularity and the adaptation to the environment
(Suppl. Fig. 8). As the analysis of the PS and PC data suggested, the environment for unicellular
organisms showed a shift of surface/core susceptibilities.  For the individual consideration of the
organisms a differentiated picture may occur. For example in Sulfolobus against our hypothesis the
PS is more susceptible than PC in contrast to most of the other organisms (Suppl. Fig. 9). The genus
Sulfolobus is characterized by optimal growth rate at pH 2-3 and temperatures of 70-75 °C[41].
While it keeps a pH-value of 6.5 in the cytosol[42], the high temperature could be related with the
more  susceptible  PS. This  susceptibility  pattern  also  applies  in  attenuated  form  to  all  other
unicellular organisms which, in contrast to multicellular organisms, have a higher reproduction rate.
This allows them to get rid of damaged proteins by asymmetric division or apoptosis. Multicellular
organisms, on the other hand, do the same, but the damaged proteins remain in the intercellular
spaces or have to be expensively transported away (immune cells, [43,44]). We hypothetize that the
outer cell layers (e.g. a major constituent of the skin is collagen) of multicellular organisms have a
typical proteome that protects them from an aggressive environment.

Possible extensions
In this paper we have investigated the susceptibility of AAs in proteins with respect to their spatial
location. A further interesting classification model is quantitative structure-activity relation (QSAR)
analysis[45,46]. Here, in contrast to our analysis, a relationship is established between the structure
and the activity. This can also be combined with our classification model relating structure and
aging (susceptibility).
Another approach would be to describe the exact spatial orientation of the AA susceptibilities using
a  tensor. The different  proteins  could  be sorted  according to  linear, planar  or  spherical  spatial
susceptibility. It is to be expected that e.g. membrane proteins  (Fig. 8), which pass through the
membrane, could show a linear part and surface-associated proteins show rather planar properties.
Unbound proteins are more likely to have spherical susceptibilities because they can be attacked
from all sides.
A further approach would be to study the accessibility on the atomic level in the form of a spherical
representation with calculated surface fraction[22]. This is a possible extension of our work since
the surface fractions can be used as weightings and the single atoms can be scored in terms of their
susceptibility. For reasons of simplification, however, we have limited ourselves to the AAs. This
has the advantage that the inaccuracy of the spatial structure has less influence on the weighting.
Inaccuracies can be e.g. the degrees of freedom of individual AAs, as well as the free energy, the
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volume or  the  entropy. An  example  are  the  transcription  factors  (some of  them involve  many
random coils), which often have an undefined surface and are therefore difficult to calculate.

Figure 8: Surface susceptibility of the protein phosphodiesterase 4B (PDB entry: pdb5ohj)
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