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Abstract5

Single-cell transcriptome sequencing (scRNA-Seq) has allowed many new types of investigations6

at unprecedented and unique levels of resolution. Among the primary goals of scRNA-Seq is the7

classification of cells into potentially novel cell types. Many approaches build on the existing clustering8

literature to develop tools specific to single-cell applications. However, almost all of these methods9

rely on heuristics or user-supplied parameters to control the number of clusters identified. This10

affects both the resolution of the clusters within the original dataset as well as their replicability11

across datasets. While many recommendations exist to select these tuning parameters, most of them12

are quite ad hoc. In general, there is little assurance that any given set of parameters will represent an13

optimal choice in the ever-present trade-off between cluster resolution and replicability. For instance,14

it may be the case that another set of parameters will result in more clusters that are also more15

replicable, or in fewer clusters that are also less replicable.16

Here, we propose a new method called Dune for optimizing the trade-off between the resolution17

of the clusters and their replicability across datasets. Our method takes as input a set of clustering18

results on a single dataset, derived from any set of clustering algorithms and associated tuning19

parameters, and iteratively merges clusters within partitions in order to maximize their concordance20

between partitions. As demonstrated on a variety of scRNA-Seq datasets from different platforms,21

Dune outperforms existing techniques, that rely on hierarchical merging for reducing the number of22

clusters, in terms of replicability of the resultant merged clusters. It provides an objective approach23

for identifying replicable consensus clusters most likely to represent common biological features across24

multiple datasets.25

Improvements in single-cell transcriptome sequencing (scRNA-Seq) over the last decade have allowed26

the characterization of gene expression in collections of thousands to hundreds of thousands of cells. While27

datasets have grown in size by several orders of magnitude, cell type identification remains a primary step28

in the analysis process [1]. We will focus here on unsupervised clustering, which can be broadly defined29

as partitioning observations into clusters based on a set of features, without using any prior knowledge30

on the groupings. In the scRNA-Seq context, clustering aims to identify groups of cells that are defined31

by a unique and consistent transcriptomic signature. Such groups of cells can represent both transient32

features, such as cellular states, or more permanent features, such as celullar types.33

Many clustering algorithms have been proposed for scRNA-Seq, most of these being adaptations from34

the clustering literature at large. Popular methods include SC3 [2], Seurat [3], and Monocle [4]. However,35
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clustering remains a complex task. Kiselev et al. [5] outlined the various challenges – both biological and36

computational – of this step, including technical noise, biological heterogeneity, and the impact of tuning37

parameters for the clustering algorithms. In particular, obtaining replicable clusters can be difficult. In38

this work, we declare clusters as replicable if running the exact same clustering algorithm on a related39

dataset yields similar clusters. Duò et al. [6] offers a recent review and benchmark of some scRNA-Seq40

clustering algorithms, identifying SC3 and Seurat as the best methods overall. The selection of tuning41

parameters, however, remains an open question. While some methods, SC3 for example, provide a way42

to estimate the optimal value of its main tuning parameter, most do not, leaving the choice to the user.43

Consensus methods try to bypass this issue [2, 7], but they also rely on meta-parameters which can still44

have substantial impact on the results.45

The aforementioned clustering algorithms identify a pre-specified number of clusters either directly,46

as in k-means, or indirectly, through another tuning parameter. They rely on the assumption that there47

is only one relevant level of clustering resolution, i.e., an optimal number of clusters, in the dataset.48

We argue that this is often not the case, since cell types usually have a hierarchy. For example, Tasic49

et al. [8] propose a tree structure for the mouse anterolateral motor (ALM) and primary visual (VISp)50

cortical areas. At the higher levels, cells can be clustered as neurons and non-neurons. Then, neurons51

can be further split into GABAergic and glutamatergic neurons and so on and so forth. This hierarchical52

structure means that the concept of an “optimal” number of clusters is not appropriate. Instead, many53

datasets can be better characterized with ever-finer levels of resolution. At the higher levels, cells are54

grouped into large clusters that are quite coarse, but are easily identifiable and very replicable across55

datasets. As the resolution increases, there are more and more clusters, but these are less and less certain,56

meaning that they are less likely to represent real biological cell types and more likely to be reflecting over-57

partitioning (cf. overfitting) of the data or the presence of transient states. This resolution-replicabilty58

trade-off is not obvious to quantify and is heavily dataset-dependent: it is not only influenced by the59

biological setting under study and its complexity, but also depends on technical properties of the data,60

such as sequencing depth and number of cells [1].61

By far the most common method to establish a hierarchy for pre-defined clusters is agglomerative62

hierarchical clustering, a bottom-up method in which clusters are merged one-by-one until they are all63

merged into a single cluster. This procedure yields a tree structure linking clusters that are merged64

together. The tree can also be defined by merging clusters according to the fraction of differentially65

expressed (DE) genes between them [7, 8]. While several extensive benchmarks of clustering methods66

have been proposed [6, 9], these only focus on the resulting partitions rather than the full hierarchical67

structure. Zappia and Oshlack [10] proposed a representation of clustering trees to visually describe68

hierarchies but this type of analysis heavily relies on user-supervision.69

Here, we present Dune, a method that aims to reconciles multiple clustering results and extract the70

common structure that they all identify. Dune takes as input a set of clustering results (i.e., results71

from a variety of clustering algorithms and associated tuning parameters applied to a given dataset) and72

produces hierarchies of clusters by merging clusters within each partition using information borrowed73

from the other partitions. While different clustering algorithms run with different tuning parameters will74

naturally provide discrepant clusters, all good clustering methods should be able to identify a common75

higher-level clustering that is robust to the choice of tuning parameters. Dune identifies this common76

higher level of resolution shared by all methods without requiring any tuning by the user. Examining77

this level can provide both useful biological insight and help to compare various clustering methods.78

In this manuscript, we first introduce the Dune algorithm. Then, using a variety of scRNA-Seq and79

snRNA-Seq datasets from different sequencing platforms, we show that Dune outperforms agglomerative80

merging methods in navigating the trade-off between resolution and replicability and in identifying gold-81

standard high-level clusterings. Finally, we assess Dune’s robustness to poor inputs and to sample size.82

Results83

The Dune algorithm84

The Dune algorithm is a general framework that increases the agreement between different clusterings85

of the same dataset through iterative merging. It takes as input R sets of clustering results, generally86

produced from running R clustering algorithms (or the same algorithm with different tuning parameter87

values) on the same dataset. An example can be seen in Figure 1a, where a small subset of the AIBS88

snRNA-Smart dataset [11] (see the “Methods, Case Studies” section) is used to demonstrate some of89

the main concepts underlying Dune. The first row displays three examples of clusterings (i.e., sets of90

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.03.974220doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.974220
http://creativecommons.org/licenses/by/4.0/


Figure 1: Measuring and improving the concordance between clusterings. We used a subset of the AIBS
snRNA-Smart dataset as an example. Panel a. SC3, Monocle, and Seurat were run on the dataset and
their results are displayed using scatterplots of the first two t-SNE components, where the color of the
plotting symbol corresponds to the cluster label. Each pair of clusterings was then compared using a
confusion matrix, resulting in three such matrices. For a pair of clusterings/partitions, a confusion matrix
is a contingency table, where each entry corresponds to the number of observations in both a cluster from
the first partition and a cluster from the second. The size of the dot represents the number of observations
in both clusters and the color corresponds to the Jaccard index. Each confusion matrix produces one
ARI value. Panel b. Merging clusters 20 and 21 from SC3 into one cluster changes the confusion matrix
and increases the ARI.

cluster labels) produced by three different clustering algorithms applied to the same dataset, reduced91
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to two dimensions using t-SNE[12–14]. All three methods identify similar, but not identical clusters.92

Indeed, the algorithms output partitions with different levels of resolution. For example, Monocle splits93

the bottom region (in reduced dimension) into two clusters, while the other two methods find three94

clusters. Likewise, Monocle and SC3 find two clusters in the top region, while Seurat only finds one.95

These differences can be displayed using confusion matrices (second row of Figure 1a), where the overlap96

between two clusters from any pair of clusterings is displayed both in terms of the number of cells in97

the intersection and by the Jaccard index (i.e., the cardinality of the intersection of the two clusters98

over the cardinality of their union; [15]). Rows and columns are ordered so as to maximize, as much99

as possible, the sum of the diagonal entries. Confusion matrices can be further summarized using the100

adjusted Rand index (ARI). The ARI [16, 17] is a commonly used measure for the agreement between101

two sets of clustering labels, see the “Methods, ARI” section for more details. As can be seen in the102

confusion matrices, SC3 and Seurat have the highest level of agreement. Indeed, this is also reflected in103

the fact that they have the highest ARI of any pair.104

Dune merges together the clusters within each of the R partitions so that the R clustering results105

more closely match each other. An example of the merging is displayed in Figure 1. Clusters 20 and 21106

from SC3 are merged together, resulting in one larger cluster named 20. Doing so increases the agreement107

between SC3 and Monocle in the confusion matrix, as reflected by an increase in ARI from 0.59 to 0.66.108

This merge also improves the ARI between SC3 and Seurat (from 0.8 to 0.9) and hence increases the109

overall agreement between the three clusterings. This is the main idea behind Dune. Specifically, Dune110

performs an iterative search, where, at each iteration, it identifies the partition and pair of clusters within111

this partition that, when merged, most improve the average of the adjusted Rand index over all pairs of112

clusterings (ARI). Thus, the Dune algorithm can be viewed as an iterative algorithm for maximizing the113

average pairwise ARI of a collection of clustering results. A more formal definition of the algorithm is114

provided in the “Methods, Dune” section.115

We demonstrate how the Dune algorithm works in Figure 2, using the AIBS scRNA-Smart dataset, a116

scRNA-Seq dataset of 6,300 mouse brain cells further described in the “Methods, Case Studies” section.117

For this example, we ran SC3, Seurat, and Monocle to obtain our initial clustering results for input into118

Dune (R = 3). Figure 2a displays the confusion matrix for a pair of clusterings (SC3 and Monocle)119

before any merging and Figure 2b displays a pseudocolor image of the matrix of all pairwise ARIs for the120

three clusterings before any merging. The overlap between the three methods is moderate. Indeed, the121

pairwise ARIs vary between 0.55 and 0.68 in Fig. 2b. However, as can be seen in the confusion matrix,122

the clusterings do capture a shared underlying structure, which will serve as grounding for the Dune123

merging. Figure 2d shows the confusion matrix for the same two partitions as in 2a, after merging with124

Dune. We can see that we have, by design, fewer clusters in both partitions, but also that the concordance125

between the two partitions is greatly improved (as indicated by the color of the plotting symbols, which126

represents the Jaccard Index). This is further evidenced in Figure 2e, where the pairwise ARIs between127

the three partitions are displayed. The average ARI after all merging steps increased from ∼ 0.6 to128

∼ 0.89. Figures 2c and 2f demonstrate the evolution of the average ARI and of the number of clusters129

per partition through the Dune merging process. At each step, we merge the pair of clusters that leads130

to the greatest increase in average ARI. Hence, at each step, the average ARI increases (Fig. 2c) and131

the number of clusters in one of the partitions decreases by one (2f). The final partitions are achieved132

when the average ARI can no longer be improved.133

In the following sections, we evaluate Dune and compare it to two hierarchical tree merging methods,134

using four datasets: two mouse brain datasets from the Allen Institute *** HRB: waiting for main paper135

and two human pancreas datasets [18, 19]. We then discuss the value of Dune’s stopping rule. Finally,136

we investigate the stability of the Dune algorithm to the clustering inputs and the sample size.137

Dune outperforms other methods in recovering known biological subtypes138

To evaluate Dune, we first considered how well the resulting merged clusters compare to known biological139

subtypes. We used the output of Dune on the R = 3 clustering methods (namely, SC3, Seurat, and140

Monocle) applied to the AIBS scRNA-Smart dataset, as described above. For this dataset, we treated141

the labels from the original publication as the gold standard. At each merge (i.e., iteration), we computed142

the ARI between the the known subtypes and the Dune clusters. Figure 3a displays the ARI evolution143

for the clusters from SC3 as they are merged with Dune (blue curve). As merging occurs, the resolution144

(i.e., number of clusters) decreases and the ARI with the known cell subtypes increases. The entire ARI145

curve can be summarized by computing the the area under it, referred to herein as the area under the146

ARI curve (AUARIC), as depicted in Figure 3b.147
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Figure 2: Illustrating Dune on a dataset with three sets of clusters. We used the AIBS scRNA-Smart
dataset [11] as an example. Before any merging, the sets of cluster labels – or partitions – resulting
from running SC3, Seurat, and Monocle have a moderate agreement. Panel a displays the confusion
matrix between two of the partitions, where each entry corresponds to the number of observations in
both a cluster from Partition 1 and a cluster from Partition 2. The confusion matrix shows that while
many cells are clustered in similar clusters, i.e., along the main diagonal, many others are not. This
can be summarized by the ARI between Partitions 1 and 2. Panel b displays a pseudocolor image of
the matrix of all pairwise ARIs between the three partitions. Panel c illustrates that the average ARI
between partitions increases as pairs of clusters are merged when applying Dune. After running Dune,
the confusion matrix in Panel d and the pairwise ARI matrix in Panel e both show that the partitions
are indeed more similar. Panel f shows that, at each merging step, the number of clusters in one of the
partitions is decreased by one, in Dune’s greedy procedure to improve the average ARI by merging pairs
of clusters.

We compared the performance of Dune to other methods of merging, referred to as Dist and DE (red148

and green curves in Figure 3a, respectively). Both are hierarchical methods, that start by building a tree149

between the clusters. The Dist method then merges clusters in a bottow-up manner, starting with the150

two clusters that are closest in the tree and then iteratively until all clusters are merged. The second151

approach, DE, follows the method implemented in RSEC and merges clusters bottom-up based on the152

percentage of DE genes between clusters. It uses the limma package [20], where a gene is declared DE153

if its nominal false discovery rate (FDR) adjusted p-value is below 0.05 [21]. Pairs of clusters with less154

than a certain fraction of DE genes are merged. Increasing this threshold from 0 to 1 leads to an iterative155

merging procedure. More details on these two procedures can be found in the Method section.156

In Figure 3a, we see that Dune consistently outperformed the other two integration methods in terms157

of concordance with BICCN-curated clusters throughout the merging process and therefore also in term158

of AUARIC. We note that while Dune stops merging when the average ARI can no longer be improved,159

the hierarchical merging procedures have no meaningful stopping point and continue merging until only160
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Figure 3: Dune outperforms other methods in recovering known biological subtypes. Panel a. SC3 was
run on the AIBS scRNA-Smart dataset for θsc3 = 0 and merged down with either DE, Dist, or Dune
(with θMonocle = 45 and θSeurat = 1.2, for Dune). The ARI with the labels from the original publication,
treated as gold standard, was computed at each step of all three merging procedures. Panel b. For each
merging method from a, the area under the ARI curve (AUARIC) was computed. This was repeated
for three clustering methods, each with three different values of their respective tuning parameter θ,
and four datasets. The resulting 36 AUARIC are displayed in the pseudocolor image of Panel c. The
AUARIC values are scaled to have a column mean of zero and column variance of 1. This was done to
make AUARIC values comparable across datasets, clustering methods, and parameter values, since the
AUARIC can have different scales across scenarios.

one cluster is left. To provide a reasonable stopping point, we stopped the other methods when merging161

no longer improves the ARI, similar to the requirement of Dune, which means we did not penalize the162

other methods for not providing a natural stopping point. For each merging method, we computed an163

area under its ARI curve (AUARIC), as depicted in Figure 3b for the merging of the SC3 clusters of the164

AIBS scRNA-Smart dataset using Dune.165

Figure 3c show the results when repeating this process over a multiplicity of scenarii. Dune and166

the other merging methods rely on one or multiple clustering results – in this work, clusterings from167

SC3, Seurat, and Monocle. Because each of these methods have tuning parameters than can affect168

their performance, we ran each of the three clustering methods on a grid of tuning parameter values169

for all 4 datasets, as described in the “Methods, Data analysis” section. The AUARIC for the three170

merging methods across these 36 scenarios are displayed in Figure 3c and Table S2. Overall, Dune clearly171

outperformed the other two merging methods. Table S2 recapitulates all rankings. In particular, in 29172

out of the 36 evaluations, Dune resulted in the highest ARI increase and was the lowest performer only173

twice.174

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.03.974220doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.974220
http://creativecommons.org/licenses/by/4.0/


Dune outperforms other methods in terms of the resolution-replicability trade-175

off176

We then considered the replicability of the clusters found by Dune compared to the other two merging177

strategies. We measured replicability by evaluating whether the method finds similar clusters for multiple178

independent datasets – for example, datasets on the same biological system but from different labs or179

technologies. We considered two pairs of datasets: The two mouse brain AIBS Smart datasets from the180

Allen Institute and the two human pancreas datasets Baron and Segerstople. To measure replicability,181

we relied on the MetaNeighbor algorithm from Crow et al. [22], which identifies replicable clusters between182

pairs of datasets (see “Methods, metaneighbour” for description). The replicability of a set of clusters183

was then defined as the fraction of cells in replicable clusters. We used this measure to compare Dune to184

other merging procedures.185

Illustration of the trade-off between resolution and replicability186

Figure 4a displays replicability vs. resolution for a wide range of clustering results, where three clustering187

methods (SC3, Seurat, and Monocle) were run with a large grid of tuning parameter values, on the pair188

of mouse brain datasets. This clearly demonstrates the trade-off between replicability and resolution:189

As the number of clusters increased, the fraction of cells in replicable clusters decreased, regardless of190

the clustering method used. While the actual trade-off is specific to the biological context and the pair191

of datasets that are being considered, it should be noted that a similar trade-off is clearly visible when192

applying the same type of analysis to the human pancreas datasets (Figure S2). Note that although193

it might be tempting to use this figure to contrast and benchmark clustering methods, this would not194

appropriate. Indeed, pre-processing steps were not identical between the three methods – as described195

in “Methods, Data analysis” – and, as such, no direct comparison is possible.196

Comparison of merging methods197

As pairs of clusters are merged, the resolution decreases, so a well-performing merging method is one198

that improves the replicability of the clusters. Therefore, a natural way to benchmark merging methods199

is to measure how and if replicability improves as the number of clusters is reduced. For example, in200

Figure 4b, Seurat was run with θSeurat = 1.7 on each of the two AIBS Smart datasets. The two sets201

of clusters were then merged using the three different merging methods, independently on each dataset.202

Dune also used the clusterings from SC3 (θSC3 = 15) and Monocle (θMonocle = 15). At each step of203

the merging, we then tracked how replicability evolves. All three merging methods outputted sets of204

clusters with increasing replicability as resolution decreases, but Dune produced clusters that have higher205

replicability compared to the other two. The area under the replicability curve (AURC) was computed206

for each merging method. This was repeated for the three clustering methods, each with three values of207

their respective tuning parameter θ, and two pairs of datasets, which lead to 18 comparisons, depicted208

in the pseudocolor image of Figure 4c. Dune outperformed the other two merging methods in all 18209

comparisons. Note that, as in the previous section, merging for the other methods was stopped at the210

resolution level where Dune stopped, which provided these methods with more information than they211

would otherwise have had.212

Dune has a natural stopping point213

Unlike other merging methods, Dune provides a meaningful stopping point, i.e., it keeps merging clusters214

until no improvement in average ARI occurs. By contrast, the two hierarchical merging methods continue215

to merge until there is only one cluster, which is not biologically meaningful or interesting.216

Each clustering method has some strengths and drawbacks: Dune’s stopping point identifies the level217

of resolution where all clustering algorithms are close to full agreement. Furthermore, at the stopping218

point, the clusters overlap very well with gold-standard clusters. In Figure S3a, the outputs from SC3,219

Seurat, and Monocle were used as inputs to Dune on the AIBS snRNA-Smart dataset. After merging220

with Dune, the clusters from SC3 overlap well with the Allen Institute subclass labels. Indeed, the ARI221

between the SC3 clusters and the subclasses increases from ∼ .63 before merging to ∼ .83 after merging.222

Dune robustness analysis223

Robustness to poor clustering inputs Since Dune takes as input the results from clustering algo-224

rithms, it is sensitive to the quality of the clusterings produced by these algorithms. In general, Dune will225
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Figure 4: Dune correctly navigates the resolution-replicability trade-off. Panel a. SC3, Seurat, and Monocle
were run on the two AIBS snRNA-Smart datasets, as described in Methods, for a wide range of tuning
parameter values. Then, the MetaNeighbor method was used to find the clusters that replicate between
these two datasets. Replicability was then computed as the fraction of cells in replicable clusters. There
is an apparent trade-off between resolution and replicability. Panel b. For a given point from a, we
merged the clusters and tracked how replicability evolved as we decreased resolution. Panel c. For each
of the curves in b, we computed an area under the replicability curve (AURC). This was repeated over
the three clustering methods, each with three different values of their respective tuning parameter θ, and
for the two pairs of datasets. AURC were scaled column-wise for display in the pseudocolor image.

not be able to produce good clusters when merging only clusters that capture no underlying biological226

signal. However, we showed that Dune is robust to a mix of “good” clustering inputs and “bad” clus-227

tering inputs. We used as “good” inputs the results of SC3, Seurat, and Monocle and as “bad” inputs228

fully random clusters (see the “Methods, Data analysis” section). Then, the replicability of the “good”229

clusterings was measured as merging happened and the AURC was computed and compared to the AURC230

when there was no “bad” inputs. As more and more “bad” clusters were added (Figure S3b), Dune still231

improved the replicability of the “good” clusters as it merged them, even when half of the clusters used232

as inputs were random. Hence, Dune can recover from very poor clustering inputs.233

Robustness to sample size We investigated how Dune handles datasets with an ever-smaller number234

of cells. To simulate such datasets, we downsampled the two pancreas datasets. Downsampling could235

affect both the quality of input clusters and the merging procedure of Dune. To disentangle these two236

effects, we downsampled the two human pancreas datasets after running SC3, Seurat, and Monocle, but237

before running Dune. We then measured how and whether merging still improved the cluster replicability238

by computing the AURC and constrasting it to its value without downsampling (see the “Methods, Data239

analysis” section for more details).240

When the datasets were downsampled to between 90% and as low as 10% of the original number of241
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cells, Dune still correctly navigated the trade-off between resolution and replicability (Fig. S3c). Only242

when fewer than 10% of the cells were used (which amounts to datasets of fewer than 200 cells) did Dune’s243

capacity to improve cluster replicability worsen noticeably. This demonstrates that the method is very244

stable to the number of cells.245

Discussion246

We have introduced Dune, a new method for navigating the resolution-replicability trade-off in cluster247

analysis and for aggregating clustering results from multiple algorithms. We stress that Dune is not a new248

clustering algorithm; instead, it relies on different clustering methods to identify the highest resolution249

at which cluster quality (i.e., replicability across datasets) remains high. In doing so, Dune identifies the250

commonalities of the input clusterings and uses this to improve each of these clusterings. The method is251

stable with respect to the quality of the input clusterings as well as to the number of cells/observations252

to be clustered. Furthermore, as a result of merging clusters, Dune provides a sensible hierarchy on the253

clusters based on their commonality across different methods. As we go up in this hierarchy, the number254

of clusters is reduced, but their replicability improves. In this regard, Dune outperforms more commonly255

used hierarchical merging methods.256

Dune automatically stops at a meaningful resolution level, where all clustering algorithms are in257

agreement, while the other methods either keep merging until all clusters are merged into one or require258

user supervision to stop early. This feature helps users in identifying reliable structure in their scRNA259

and snRNA datasets. The manual choice of a stopping point is difficult since, in practice, it is often260

impossible to measure replicability given the lack of a second appropriate dataset.261

Dune relies on the adjusted Rand index (ARI) to decide which clusters to merge. Because of this,262

it currently cannot be used with clustering methods that do not cluster all cells unambiguously, e.g.,263

with soft or fuzzy clustering methods which could assign some cells to multiple clusters based on weights.264

Other approaches, such as RSEC, leave some cells unclustered. For now, using such methods as input to265

Dune would require forcing a hard assignments of the cells (possibly to their nearest cluster) or excluding266

ambiguous/unclustered cells. Extensions of the ARI to fuzzy clustering have been proposed [23, 24] and267

would need to be evaluated.268

This manuscript focuses on the question of unsupervised clustering. Recent work in supervised clus-269

tering [25–28] has proposed labeling cells in a new dataset by relying on information contained in other270

datasets or even cell atlases. In practice, these methods define marker genes for known cell types and271

build classifiers to assign new cells to these cell types. In particular, Garnett [29] allows a hierarchical272

clustering structure, but one that needs to be predefined, and scClassify [30] uses the HOPACH [31] al-273

gorithm to establish a hierarchy in the training dataset. Most of these algorithms can also identify new274

cell types not present in the reference. It is therefore possible to use a supervised clustering method to275

identify the cells of a dataset that have a known cell types. If these cells do not provide information to276

help cluster the rest of the cells, we can remove them, and then use unsupervised clustering methods and277

Dune on the remaining cells.278

While the method we propose has only been benchmarked on scRNA-Seq and snRNA-Seq datasets,279

it is a general framework that can be applied to any clustering setting.280
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Methods307

Consider a – possibly high-dimensional – dataset of n observations, X = {x1, . . . , xn}, where xi ∈ RJ ,308

i = 1, . . . , n. For instance, in scRNA-Seq, xi corresponds to the J gene expression measures (i.e.,309

normalized read counts) of cell i. Represent the results of any (non-fuzzy) clustering method as a310

partition, P, which splits the set of n observations into k disjoint subsets or clusters, {C1, . . . , Ck}, where:311

1) Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k}, and 2) ∪i∈{1,...,k}Ci = X. Accordingly, a collection of R clustering312

results may be represented as multiple partitions, P1, . . . ,PR, with partition Pr containing kr clusters,313

r = 1, . . . , R. For each observation xi, denote by ci,r ∈ {Cr1 , . . . , Crkr
} the cluster to which it belongs in314

partition Pr.315

The focus of the present manuscript is to develop a general approach to combine clusters within316

the different partitions, P1, . . . ,PR, in order to balance the trade-off between cluster resolution and317

replicability. In the remainder of this section, we first present the Rand index, a well-known measure of318

concordance between two partitions, and its adjusted version. We also review popular clustering methods319

in the scRNA-Seq literature and alternative approaches to merge clusters. Finally, we formalize the two320

key notions of cluster resolution and cluster replicability.321

Adjusted Rand index322

The Rand index [16] measures the concordance between two partitions P1 and P2. Denote by a =323

|{(xi, xj) ∈ X2|(ci,1 = cj,1)&(ci,2 = cj,2)}| the number of pairs of observations that are in the same324

cluster for both partitions P1 and P2 and by b = |{(xi, xj) ∈ X2|(ci,1 6= cj,1)&(ci,2 6= cj,2)}| the number325

of pairs of observations that are in different clusters for both partitions P1 and P2. The Rand index is326

then the ratio of a+ b over the total number of pairs of observations327

RI(P1,P2) =
a+ b(

n
2

) ∈ [0, 1]. (1)

Thus, intuitively, the Rand index is the proportion of pairs of observations for which the two partitions328

are in agreement.329

However, the Rand index does not account for the fact that a pair of observations might be in the330

same (different) cluster(s) in the two partitions purely by chance. The adjusted Rand index (ARI) [17]331

adjusts for the level of concordance expected by chance, yielding a value between −1 and +1. Specifically,332

considering P a fixed partition and R a random permutation of P, then E[ARI(P,R)] = 0, where the333

expected value is over all cluster permutations (i.e., permutations of the cluster assignments of the334

observations, while keeping the number of clusters and the sizes of the clusters fixed). Negative values335

indicate less than the expected level of concordance and positive values indicate more than the expected336

level of concordance. The ARI relies on the contingency table of two partitions P1 and P2, with the337

(i, j)th entry ni,j defined as the number of observations both in cluster i of partition P1 and cluster338
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Table 1: Adjusted Rand index. Contingency table for two partitions P1 and P2.

C21 C22 . . . C2k2
Sums

C11 n1,1 n1,2 . . . n1,k2 a1
C12 n2,1 n2,2 . . . n2,k2 a2
...

...
...

. . .
...

...
C1k1

nk1,1 nk1,2 . . . nk1,k2 ak1

Sums b1 b2 . . . bk2

j of partition P2 (Table 1). Examples of contingency tables between two partitions can be found in339

Figures 1a, 1b, 2a, and 2d.340

Given the contingency table notation, the adjusted Rand index is defined as341

ARI(P1,P2) =

∑
i,j

(
ni,j

2

)
− 1

(n
2)

∑
i

(
ai

2

)∑
j

(
bj
2

)
1
2

(∑
i

(
ai

2

)
+
∑

j

(
bj
2

))
− 1

(n
2)

∑
i

(
ai

2

)∑
j

(
bj
2

) . (2)

For R partitions, the level of concordance can be quantified by the average ARI for all possible pairs342

of partitions343

ARI(P1, . . . ,PR) =
1(
R
2

) ∑
{(r,s)∈{1,...,R}|r<s}

ARI(Pr,Ps). (3)

Note that, in the case of R = 2 partitions, this is simply the ARI between the two partitions. If one344

considers the matrix of pairwise ARIs between partitions, such as displayed in Figures 2b and e, then the345

average ARI is defined as the mean of the upper(or lower)-triangular matrix.346

ARI merging with Dune347

Given R partitions (possibly the result of different clustering algorithms or different tuning parameter348

values for the same clustering algorithm or both), P1, . . . ,PR, with Pr containing kr clusters, r =349

1, . . . , R, Dune seeks to improve the overall agreement among these, as measured by the average ARI,350

through an iterative process of merging clusters within partitions.351

Specifically, Dune searches over each partition Pr and over each of
(
kr

2

)
pairs of clusters in Pr for the352

pair which produces the largest improvement in ARI when merged, i.e.,353

(r∗, i∗, j∗) := arg max
r∈{1,...,R}

i,j∈{1,...,kr}

∑
{s∈{1,...,R}|s 6=r}

ARI(Pi∪j
r ,Ps)−ARI(Pr,Ps), (4)

where Pi∪j
r is the partition created by merging clusters Cri and Crj in partition Pr

Pi∪j
r :=Pr\{Cri , Crj } ∪ {Cri ∪ Crj }

={Cr1 , . . . , Cri−1, Cri+1, . . . , Crj−1, Crj+1, . . . , Crkr
, Cri ∪ Crj }.

Dune amounts to a greedy algorithm for maximizing the average ARI, ARI. At each step, we find the
pair of clusters that, when merged, lead to the greatest improvement in ARI. Once we have identified

this pair of clusters, we update the collection of partitions: {P1, . . . ,PR} → {P1, . . . ,P
i∗∪j∗
r∗ , . . . ,PR}.

We continue iterating until no beneficial merge can be identified, that is, we stop updating when

max
r,i,j

∑
s 6=r

ARI(Pi∪j
r ,Ps)−ARI(Pr,Ps) < 0.

This greedy approach means that each update step is constrained to merging a single pair of clusters354

from a single partition. As such, we never merge three clusters together in one iteration or two pairs of355

clusters in the same or in separate partitions. This ensures that, in our applications, we do not converge356

to the naive optimal solution of merging all clusters, which does represent a full agreement between the357

partitions but is of no practical interest.358

While Dune provides a natural stopping point for merging, it is also possible to stop earlier in the359

merging process, by tuning the merging parameter mDune, which is defined as the fraction of ARI improve-360

ment over the total ARI improvement. For example, mDune = .5 means that Dune returns the merged361

partitions that have a mean ARI halfway between the mean ARI of the original partitions and the mean362

ARI of the final ones.363
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Computational implementation and run time364

The Dune algorithm has been implemented in an open-source R package available on Github: https:365

//github.com/HectorRDB/Dune. It is implemented in a fully-parallel and efficient manner. Run time for366

a large dataset of ∼ 100, 000 cells with 3 partitions is under 15 minutes with 10 CPUs. The package also367

contains plotting functions used to create many panels of the paper, as well as options to create GIFs368

and track the evolution of mean ARI or confusion matrices across the merging steps.369

Clustering algorithms for scRNA-Seq data370

Any combination of clustering algorithms and associated tuning parameters, applied to an appropriate371

dataset, can produce a set of partitions that can be used as input to Dune. However, as our work was372

motivated by the classification of cells based on transcriptomic signatures, we will focus on this particular373

setting to benchmark Dune.374

In the descriptions below, we use the notation from the original papers to describe the tuning param-375

eters of each method; the same notation may therefore correspond to different parameters depending on376

the algorithm.377

SC3 [2] is a consensus clustering method that involves performing k-means clustering on different378

dimensionality reductions of the input dataset. A hierarchical clustering method is then applied to the379

resulting consensus matrix. The main parameter is the number of clusters k, which is used both in k-380

means and to cut the hierarchical clustering tree. The method provides an estimate of the optimal value381

of this parameter, k0, based on the number of eigenvalues of the centered and scaled distance matrix that382

are significantly different from 0 (see Kiselev et al. [2] for more details). For large datasets, there exists383

a hybrid version of the algorithm, where the full SC3 clustering method is run on only a fraction of the384

cells to identify the clusters and the rest of the cells are assigned to the clusters using a support vector385

machine (SVM) algorithm.386

Seurat’s clustering algorithm (SEURAT,RRID : SCR 007322) has evolved over the different versions387

of the software; here, we focus on version 3 [3] (we specifically use version 3.1.1). The algorithm first388

reduces the dimension of the data by selecting the first p principal components (PCs) and then computes389

a k-nearest neighbor (k-NN) graph. After refining the graph, it groups cells together using, as default,390

the Louvain algorithm [33]. The two main tuning parameters are the number of neighbors k used to build391

the k-NN graph and the resolution parameter for the Louvain algorithm.392

Monocle’s clustering algorithm has also changed and we focus on version 3 [4] (implemented in the393

Monocle3 package, although we keep the name Monocle for simplicity; we specifically use version 0.1.3).394

Monocle’s clustering algorithm is similar to the one implemented in Seurat, with a few differences. After395

initial dimensionality reduction based on principal component analysis (PCA), Monocle performs another396

dimensionality reduction step using uniform manifold approximation and projection (UMAP) [34, 35] and397

relies on that representation to build the k-NN graph. It then clusters cells using, by default, the Leiden398

algorithm [36].399

Resampling-based sequential ensemble clustering (RSEC [7]) is a consensus method over user-supplied400

clustering algorithms and their associated tuning parameters. In order to improve the stability and tight-401

ness of the clusters, it also provides the option to perform clustering on subsamples of the observations, as402

well as sequential clustering. However, in this paper, we mainly use RSEC for its final step of hierarchical403

merging, see section Existing methods to merge clusters.404

Method parameters405

For each method, we only tune the main parameter. For Seurat, however, there are two main tuning406

parameters. The k parameter controls the number of neighbors used to build the k-NN graph, while the407

resolution parameter defines the neighborhood in the Louvain clustering algorithm. In practice, the k408

parameter has much less impact than the resolution parameter (see Figure S1). Moreover, depending on409

the value of the resolution, increasing k either increases or decreases the final number of clusters. As a410

result, we only consider changing the resolution parameter.411

For ease and generality of notation, we will denote each method’s main tuning parameter by θ and412

define θ such that increasing θ increases the number of clusters. Thus, for the methods described above,413

θSC3 = k, θSeurat = Resolution, and θMonocle = −k. Each combination Θ = {θSC3, θSeurat, θMonocle} of414

the three parameters defines a set of partitions that serves as input for Dune.415
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Existing methods to merge clusters416

Once a set of clusters has been identified, one can build a hierarchical tree for these clusters and then417

merge clusters that are similar. This involves specifying a measure of distance or similarity between418

individual observations (i.e., cells) as well as between clusters. It should be noted that the distance used419

to build the tree of clusters need not be the same as the distance used to merge clusters.420

For scRNA-Seq datasets, commonly used between-cell distance measures include the Euclidean dis-421

tance and one minus the Spearman correlation coefficient. Between-cluster distances include classical422

linkage measures used in hierarchical clustering, e.g., maximum/minimum/average of all pairwise dis-423

tances between observations in two clusters or distance between the cluster averages or medoids. For424

scRNA-Seq, another sensible between-cluster distance measure is the proportion of differentially expressed425

(DE) genes between clusters [7, 8]. A detailed discussion of such measures is out of the scope of this426

manuscript[37].427

Here, we consider two possible ways of merging. In both cases, we compute the cluster medoids428

(median of the cluster) based on the log-transformed count matrix (adding 1 to avoid taking the log429

of zero). We then build a hierarchical tree of clusters using the Euclidean distance between the cluster430

medoids. The first merging approach directly uses this tree to decide how to merge clusters. Specifically,431

clusters are merged bottom-up, starting with the two clusters that are closest in the tree and then432

iteratively until all clusters are merged. The parameter mDist = nmerges, the number of merges (between433

0 and the initial number of clusters minus one), controls the amount of merging. The second approach434

follows the method implemented in RSEC. It computes the percentage of DE genes between clusters, using435

the limma package [20] (LIMMA,RRID : SCR 010943), where a gene is declared DE if its nominal FDR436

adjusted p-value is below 0.05 [21]. The main tunable parameter is mDE = α ∈ [0, 1], the threshold for the437

percentage of DE genes below which we merge. We name these two methods Dist and DE, respectively.438

Cluster replicability using MetaNeighbor439

We quantify the replicability of clusters across datasets by applying a modified version of unsuper-440

vised MetaNeighbor [22] (MetaNeighbor,RRID : SCR 016727). MetaNeighbor requires as input a set441

of unnormalized datasets, a set of cluster labels, and a set of highly variable genes. It uses a cross-442

dataset validation scheme to quantify how well clusters match across datasets. Given any two datasets,443

MetaNeighbor builds a cell-cell similarity network based on the Spearman correlation over the set of444

highly variable genes. One of the datasets is treated as a test dataset, where all cluster labels are hidden,445

the other dataset is treated as a training dataset, whose labels are propagated to the test dataset through446

the cell-cell similarity network. Each pair of clusters (one in the training dataset, the other in the test447

dataset) receives a score based on how well the training cluster predicts the labels from the test cluster.448

This score is the area under the receiver operator characteristic curve (one-vs-one AUROC). We define449

the best matching cluster as the test cluster which dominates all other test clusters (one-vs-one AUROC450

> 0.5). Finally, we reduce the test set to the two best matching clusters, recompute an AUROC, which451

we call one-vs-best AUROC, and record this as the pair’s final score. Then the role of the test and452

training datasets are reversed. A cluster is considered replicable if there is a cluster in the other dataset453

such that the clusters are reciprocal best hits with a high AUROC score (one-vs-best AUROC > 0.6 both454

ways). See Crow et al. [22] for details.455

The replicability score of a cluster is defined as the fraction of cells contained in replicable clusters.456

More specifically, for a comparison of two datasets, we enumerate replicable clusters in each dataset, then457

deduce the number of cells that are in replicable clusters, sum this number across datasets, and divide458

by the total number of cells.459

We used MetaNeighbor’s variableGenes procedure to select genes that were detected as highly460

variable across all datasets. For performance reasons, the variableGenes procedure was applied to a461

random subset of 50,000 cells for datasets exceeding that size. However, the full datasets were use for462

the rest of the analysis. In the end, we obtained a set of 541 highly variable genes for the Allen brain463

datasets and 2, 147 genes for the pancreas datasets.464

Case studies465

AIBS Smart mouse brain datasets466

We used the two AIBS Smart datasets produced as part of the Brain Initiative Cell Census Net-467

work (BICCN: RRID : SCR 015820) and described in Yao et al. [11], one is single-cell (Zeng sn468
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SSv4 https://assets.nemoarchive.org/dat-k7p82j4) and the other is single-nuclei (Zeng sc SSv4469

https://assets.nemoarchive.org/dat-55mowp9). We use the subclass labels as gold-standard clus-470

ter labels for these datasets. Those datasets can be downloaded from the Neuroscience Multi-omics471

Archive (RRID : SCR 002001; nemoarchive.org). More details on the parent data set (https:472

//assets.nemoarchive.org/dat-ch1nqb7 ) and data access can be found in Yao et al. [11].473

Human pancreas datasets474

We focus on two datasets from [18] (8, 568 cells) and [19] (3, 514 cells) which we name Baron and475

Segerstople, respectively. Both datasets were downloaded from the https://hemberg-lab.github.io/scRNA.seq.datasets/476

on October 1st, 2018. We use the clusters from the original publications as gold-standard cluster labels.477

Data analysis478

Except when otherwise specified, all methods and algorithms were run with default parameters or, if no479

available default, with the parameters recommended in the vignette or tutorial.480

Pre-processing: Count matrices were filtered to remove lowly-expressed genes with fewer than i reads481

in j cells. See Table S1 for values of i and j for each dataset.482

As indicated below, we follow different normalization strategies before running Seurat and Monocle483

in order to obtain more diverse clustering results. This is appropriate, as the goal of the manuscript is484

not to compare different clustering methods, but rather different merging methods for given clustering485

results. The merging methods that Dune is compared to rely on only one clustering input; we therefore486

seek to benchmark merging methods using a variety of clustering inputs.487

Seurat: Following the tutorial, we run FindVariableFeatures and ScaleData to normalize the data.488

Counts are log-transformed (adding 1 to avoid taking the log of zero) and normalized by sequencing depth.489

For the two pancreas datasets, batches are also normalized using the scaleData function. Following490

principal component analysis, FindNeighbors and FindClusters are run for a number of neighbors k in491

{30, 50, 70} and resolution θ from 0.3 to 2.5 in increments of 0.1492

SC3: The algorithm is run on a dataset normalized as above with the Seurat pipeline. The optimal493

value of k, k0, is computed using the sc3 estimate k function. The parameter θ is transformed to be494

θSC3 = k − k0. SC3 is then run for values of θ ranging from −15 to +15.495

Monocle: zinbwave [7] is first used for normalization and dimensionality reduction on the filtered count496

data. For the two pancreas datasets, batches are included as model covariates. We select K, the number497

of reduced dimensions, based on a visual representation for each dataset, see Table S1. This first step498

of dimensionality reduction is followed by another using UMAP [35] with two dimensions. The resulting499

two-dimensional representation is then used to build the k-NN graph, with k ranging from 10 to 150 in500

increments of 10.501

Dune: For a given set of values for Θ = {θSC3, θSeurat, θMonocle}, we get three sets of cluster labels that502

we can use as input to Dune.503

Building the hierarchical tree: The output of each clustering method is used as input to RSEC’s504

makeDendogram function. Then, we either cut the tree using R’s cutree function or RSEC’s mergeClusters505

function.506

Producing “bad” clusters: For each value of the tuning parameters Θ, on the pancreas datasets, we507

add fully random inputs to Dune. That is, we create “bad” clusterings by randomly assigning each cell a508

number (or cluster label) between 1 and (kSC3 + kMonocle + kSeurat)/3, where k denotes the number of509

clusters for a particular clustering algorithm. Since cells are assigned randomly, the size of the clusters510

will vary, but all clusters have the same expected size. To account for the stochastic nature of this511

procedure, we repeat this 10 times.512
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Downsampling: Downsampling the number of cells at the beginning of the analysis pipeline would513

affect both the quality of the clustering results and the quality of the merging with Dune. As such, to test514

only the stability of Dune to the number of cells, we downsample the cells just before running Dune, that515

is, the clustering algorithms are run on the full dataset but only a subset of the dataset is used to decide516

which clusters to merge and in which order. Afterwards, cells that are not in the subsample are assigned517

to the merged clusters based on their original cluster labels. That is, if Cluster 1 and 2 are merged, all518

cells that were originally in Cluster 1 and 2, even those not selected in the downsampling and used as519

input to Dune, are assigned to the merged cluster.520

Most of the code was run using xsede [38].521
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Supplementary Material686

Supplementary methods687

Table S1: Parameters for processing the datasets. Each dataset is filtered such that we keep all genes
with a least i reads in j samples. Then, zinbwave is run with K dimensions.

Dataset i j K
AIBS scRNA-Smart 50 50 30
AIBS snRNA-Smart 50 50 14

Baron 5 5 10
Segerstople 5 5 20

Figure S1: Impact of Seurat’s two main tuning parameters on the number of clusters. The Seurat algorithm
is run on the two AIBS snRNA-Smart datasets, for a grid of tuning parameter values. The average number
of clusters found in both datasets is then computed. For increasing values of the resolution parameter
and fixed values of the k parameter, the number of clusters is always increasing. On the other hand, for
increasing values of the k parameter and fixed values of the resolution parameter, the number of clusters
can either increase or decrease. This can be seen in the fact that the curves are all increasing but intersect
multiple times.
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Table S2: Ranking of merging methods over all 36 comparisons for improving ARI with gold standard.
See Figure 3

1 2 3
DE 2 21 13
Dist 5 10 21
Dune 29 5 2

Figure S2: Resolution-replicability trade-off on the Pancreas datasets. Seurat, SC3, and Monocle are run
on the two Pancreas datasets, as described in Methods, for a wide range of tuning parameter values.
Then, the MetaNeighbor method is used to compute replicability scores for the resulting clusters between
these two datasets. An apparent trade-off between replicability and resolution is visible.
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Figure S3: Dune robustness analysis. Panel a. Fully merging SC3 with Dune produces meaningful high-
level biological clusters, as can be seen by the overlap between the clustering and the Allen subclass labels.
Panel b. Adding an increasing number of random clustering inputs to Dune impacts only slightly the
resolution-replicability area under the curve when merging the other correct clusters. Panel c. Likewise,
Dune is stable to decreasing the number of input cells, as low as 10% of the original sample size.
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