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Abstract

Background: Recent cancer genomic studies have generated detailed molecular
data on a large number of cancer patients. A key remaining problem in cancer
genomics is the identification of driver genes. Results: We propose BetweenNet, a
computational approach that integrates genomic data with a protein-protein
interaction network to identify cancer driver genes. BetweenNet utilizes a
measure based on betweenness centrality on patient specific networks to identify
the so-called outlier genes that correspond to dysregulated genes for each
patient. Setting up the relationship between the mutated genes and the outliers
through a bipartite graph, it employs a random-walk process on the graph, which
provides the final prioritization of the mutated genes. We compare BetweenNet
against state-of-the art cancer gene prioritization methods on lung, breast, and
pan-cancer datasets. Conclusions: Our evaluations show that BetweenNet is
better at recovering known cancer genes based on multiple reference databases.
Additionally, we show that the GO terms and the reference pathways enriched in
BetweenNet ranked genes and those that are enriched in known cancer genes
overlap significantly when compared to the overlaps achieved by the rankings of
the alternative methods.

Keywords: Driver gene prioritization, bipartite graph, betweenness centrality,
network diffusion

1 Background
Cancer is a complex disease arising in many cases from the effects of multiple ge-

netic changes that give rise to pathway dysregulation through alterations in copy

number, DNA methylation, gene expression, and molecular function [1, 2]. Recent

cancer genomics projects such as The Cancer Genome Atlas (TCGA) have created

a comprehensive catalog of somatic mutations across all major cancer types. A

key current challenge in cancer genomics is to distinguish driver mutations that are

causal for cancer progression from passenger mutations that do not confer any selec-

tive advantage. Consequently, several computational methods have been proposed

for the identification of cancer driver genes or driver modules of genes by integrat-

ing mutations data with various other types of genetic data [3, 4, 5, 6, 7, 8, 9, 10];

see [11, 12, 13, 14] for recent comprehensive evaluations and surveys on the topic.

Rather than outputting a set of candidate driver genes or modules, a subclass

of cancer driver identification methods output a prioritized list of genes ranked

by their cancer driving potential. Early approaches in this group have utilized the

mutation frequency of each gene by comparing with background mutation rates

[15, 16, 17]. However with a careful review of the existing cancer catalogues it
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is easy to observe that most tumors share only a small portion of the set of all

mutated genes, giving rise to the so called tumor heterogeneity problem; methods

solely based on mutation rates suffer from low sensitivity due to the existence of

long-tail of infrequently mutated genes [4, 18].

One strategy that aims to tackle the long-tail phenomenon is to move from a

mutation-centric point of view to a guilt by association viewpoint where a corre-

lation between differentially expressed genes and mutated genes are sought. This

strategy assumes that even though different sets of genes are mutated in different

patients, each of the candidate driver mutations tends to affect a large number of

differentially expressed genes. Masica and Karchin present one of the early mod-

els based on such a strategy by employing statistical methods for setting up the

correlation between mutated genes and the differentialy expressed genes to iden-

tify candidate drivers [1]. Many different models follow a similar trail by further

incorporating biological pathway/network information for setting up such a corre-

lation [6, 19, 20, 21, 22, 23]. DriverNet is among the notable approaches employing

mutations data in addition to gene expression and biological network data [19]. It

prioritizes mutated genes based on their degrees of network connectivity to dysregu-

lated genes in tumor samples where dysregulation is determined via differential gene

expression. Many subsequent approaches are inspired by DriverNet [20, 21, 22, 23].

Among them DawnRank [20], the algorithm by Shi et al. [21], and Subdyquency [23]

employ, on top of the overall DriverNet model, versions of heat diffusion on the net-

works integrating data in the form of biological interactions, mutations, and gene

expression. Heat diffusion is a technique employed commonly in many cancer driver

gene or gene module discovery algorithms [9, 24, 25, 26, 27, 28]. It generally serves

two purposes simultaneously. On the one hand, since the employed interactions data

is usually erroneous, diffusing any type of information through the network of in-

teractions, fixes any potential issues arising from missing links in the network. On

the other hand, via the diffusion process, it is possible to observe the extent of an

effect such as mutation frequency of a gene, at various distant loci in the network.

LNDriver extends the DriverNet concept by taking into account gene lengths of

the mutated genes to filter out genes that are mutated with high probability due

to their lengths [22]. It should be noted that DawnRank and Subdyquency differ

slightly from other approaches; the former can identify patient-specific candidate

drivers and the latter employs subcellular localization information in addition to the

data made of use in the other methods. There are other driver gene prioritization

methods that deviate from the overall guilt by association framework, but never-

theless employ different types of genetic data together with the mutations data.

IntDriver utilizes an interaction network and gene ontology data within a matrix

factorization framework [29]. Dopazo and Erten employ paired data to generate

tumor and normal interaction networks filtered with mutations and gene expression

data, and measure the efficacy of various graph-theoretical measures in prioritizing

breast cancer genes [6]. Note that among the discussed methods DawnRank also

utilizes paired data, both from the tumor and the normal samples.

We propose BetweenNet algorithm for cancer driver gene prioritization. Similar

to the methods proposed in [20, 21, 22, 23], BetweenNet is also inspired by the

DriverNet framework in that it relates the mutated genes and the so-called outlier
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Figure 1 Main steps of the BetweenNet algorithm.

genes corresponding to the dysregulated genes in each patient through a bipartite

influence graph. However different from DriverNet and the previous other meth-

ods based on it, BetweenNet determines outlier genes based on the betweenness

centrality values of the genes in personalized networks. A second contribution of

BetweenNet is the employment of a random-walk process on the resulting influence

bipartite graph. Random-walks have been utilized in this context previously [21, 23].

However our application of random walk with restart on the whole influence graph

is quite different from the two-step or three-step employment of the diffusion process

on a per patient basis described in these methods. Through extensive evaluations

we demonstrate that BetweenNet outperforms the alternative methods in recover-

ing known reference genes and in providing functionally coherent rankings when

compared to the enriched GO terms or the enriched known functional pathways.

2 Methods
We describe the details of the main steps of the BetweenNet algorithm in this

section. Figure 1 provides an overview of the algorithm.

2.1 Input data sets and data preparation

In order to construct the pan-cancer cohort, we first identify the cancer types that

have more than 10 paired measurements from normal and tumor samples in the

TCGA cohort [30] (Supplementary Table 1). We then take the union of all the

samples from these cancer types to form the cohort. In addition to the pan-cancer

data, we perform separate evaluations on two cancer types. These are breast cancer

(BRCA) with 112 samples, lung cancer (LUSC + LUAD) with 109 samples. We

download the gene expression (RSEM normalized values [31]) and somatic muta-

tion data for these patients from the Firebrowse database (http://firebrowse.org ;

version 2016 01 28). We exclude the silent mutations in the calculation of mutation
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frequencies. In addition to the gene expression and mutations data, we also employ

protein-protein interactions data which we gather from the H. Sapiens PPI network

of the IntAct database [32]. We preprocess the PPI network so that multiple ids for

the same protein are merged to a single id. The resulting network contains 16,513

nodes and 189,520 edges.

2.2 Construction of personalized networks

Let G = (V,E) represent the reference H. Sapiens PPI network where each vertex

ui ∈ V denotes a gene i whose expression gives rise to the corresponding protein in

the network. Each undirected edge (ui, uj) ∈ E denotes the interaction among the

proteins corresponding to the genes i, j. Let P represent the set of patient samples.

For each patient p ∈ P , we define two graphs Np and Tp that represent the PPI

networks of the normal and tumor samples, respectively. To construct Np, we start

with the reference PPI network G and remove the nodes that correspond to the

genes that are not expressed in the normal sample of the patient p. We deem genes

with < 5 RSEM as not expressed. To construct Tp, we remove two sets of genes:

(i) genes with < 5 RSEM in the tumor sample; (ii) genes that contain non-silent

mutations in the tumor sample.

2.3 Calculation of betweenness centrality values

The standard definition of the betweenness centrality ignores the length of a shortest

path. Since considering very long paths as functional relations may not be biologi-

cally meaningful, we use a variant of the betweenness centrality called k-betweenness,

where only shortest paths of length ≤ k are included in the calculations [33]. Given

an unweighted graph G = (V,E), k-betweenness value of a node that corresponds

to gene i is defined as follows:

∑
∀s,t∈V,s6=i 6=t

σst(i)

σst
(1)

where σst is the number of shortest paths of length ≤ k between genes s and t,

and σst(i) is the number of such paths that pass through gene i. We choose k to be

3 in this study and utilize the algorithm presented in Brandes et al. to efficiently

calculate the k-betweenness values [34]. Let BNp,i and BTp,i denote the 3-betweenness

centrality values of the gene i in the Np and Tp graphs of the patient p, respectively.

We define Bdiffp,i as |BNp,i −BTp,i|.

2.4 Selection of outlier genes

For each gene i, we plot the Bdiffp,i values across all the patients. We observe that

the distribution can be approximated with a truncated normal distribution (Sup-

plementary Figure 1). We use the truncnorm function in Python to estimate the

mean and standard deviation of the distribution. A gene i is defined as an outlier in

patient p, if Bdiffp,i is greater than one standard deviation from the mean. We repeat

this process for each gene and construct a set of outlier genes for each patient.
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2.5 Construction of the bipartite graph

Similar to DriverNet, we construct a bipartite graph B that models the relationship

between the set of mutated genes and the outliers. The mutations partition of the

bipartite graph consists of the genes that have a mutation in at least one patient

and the outliers partition consists of the outlier genes of all the patients in the

cohort. Note that a gene j can be an outlier for multiple patients. In such a case,

each occurence of a gene is represented with a distinct node in the outliers partition

of B. Assuming j is an outlier gene for patient p, let upj be the node corresponding

to it in the outliers partition. For a node ui in the mutations partition, edge (ui, u
p
j )

is inserted in B, if gene i is mutated in p and (ui, uj) is an edge in G.

2.6 Random walk on the bipartite graph

We apply a random walk on the bipartite graph B. The mutation frequencies of

the genes are assigned as initial heat values to be diffused throughout the network

during random walk. LetMF (i) denote the mutation frequency of gene i, that is, the

number of patients where i has a non-silent mutation divided by the total number of

patients. Note that heat values are assigned to genes on both sides of the bipartite

graph. The random walk starts at a node ui in B and at each time step moves to one

of ui’s neighbors with probability 1−β (0 ≤ β ≤ 1). The walk can also restart from

ui with probability β, called the restart probability. This process can be defined by a

transition matrix T which is constructed by setting Tij = 1
deg(uj)

if (ui, uj) ∈ E, and

Tij = 0 otherwise. Here, deg(uj) corresponds to the degree of the node uj . Thus Tij

can be interpreted as the probability that a simple random walk will transition from

uj to ui. The random walk process can also be considered as a network propagation

process by the equation, Ft+1 = (1− β)TFt + βF0, where Ft is the distribution of

walkers after t steps and F0 is the diagonal matrix with initial heat values, that

is F0[i, i] = MF (i). We compute the final distribution of the walk by calculating

the F matrix iteratively until convergence. We set β = 0.4 as in previous studies

where the effect of varying β has been found to be not significant [9, 28]. After

convergence, genes are prioritized by the sum of incoming edge weights.

2.7 Compiling reference gene sets

We compile known cancer genes from the databases Cancer Gene Census (CGC)

[35] and CancerMine [36]. From the former, we obtain the list of 728 genes that are

found to be associated with cancer. CancerMine uses text-mining to catalogue can-

cer associated genes where it also extracts information about the type of the cancer.

We compile two lists of genes that have at least 3 and 5 citations, respectively. Here-

after, these two reference gene sets are named CancerMine3 and CancerMine5. The

number of genes in CancerMine3 and CancerMine5 reference sets for each cancer

type (i.e., lung, breast) and for pan-cancer cohort are available in the Supplemen-

tary Tables 2-4. For lung cancer, we are unable to use CancerMine5 as a reference

due to its small size.

2.8 Enrichment analysis with Gene Ontology and pathway databases

For Gene Ontology (GO) [37] term analysis, we use goatools. We download go-

basic.obo file from http://geneontology.org/docs/download-ontology/ on June 26th
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CGC CGC (Rare) CancerMine3
a b c

Figure 2 The fraction of recovered reference genes is shown with a ROC curve for lung cancer
data a) CGC genes are used as reference. b) CGC rare genes are used as reference. c)
CancerMine3 genes are used as reference.

of 2019. We restrict the gene annotations to level 5 by ignoring the higher-level

annotations and replacing the deeper-level category annotations with their ancestors

at the restricted level.

For the pathway analysis, we use the AllEnricher tool with Reactome and Kyoto

Encyclopedia of Genes and Genomes (KEGG) [38] pathways. Both goatools and

AllEnricher use Fisher’s exact test to calculate p-values and False Discovery Rate

(FDR) for multiple testing correction. We use 0.05 as the p-value cutoff to determine

significant enrichments.

3 Results

We implemented the betweenness centrality measurement algorithm in C++ using

the LEDA (Library of Efficient Data types and Algorithms) library. The remaining

steps are implemented in Python using NetworkX library. All the code and neces-

sary datasets are available at https://github.com/abu-compbio/BetweenNET. We

compare BetweenNet results against those of five other existing cancer driver pri-

oritization methods: DriverNet, Subdyquency, DawnRank, IntDriver, and Dopazo

and Erten’s prioritization method based on betweenness centrality values, hereafter

named only Betweenness. Note that for the Betweenness method, although the

original method ranks all genes, here we only rank mutated genes using the same

method for a fair comparison, since all the other methods under consideration are

designed to rank mutated genes only. DriverNet is chosen due to its close connection

to our work. DawnRank and Subdyquency are included as they extend and improve

over DriverNet. Betweenness is included as a baseline since our method utilizes a

variation of betweenness differences in identifying outlier genes. Finally, IntDriver

is included to represent the performance of a distinct strategy that is based on ma-

trix factorization. We evaluate the methods with three datasets: lung cancer, breast

cancer, and pan-cancer samples.
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CGC CGC (Rare) CancerMine3
a b c

Figure 3 The fraction of recovered reference genes is shown with a ROC curve for breast cancer
data a) CGC genes are used as reference. b) CGC rare genes are used as reference. c)
CancerMine3 genes are used as reference.

CGC CGC (Rare) CancerMine3
a b c

Figure 4 The fraction of recovered reference genes is shown with a ROC plot for pan-cancer data
a) CGC genes are used as reference. b) CGC rare genes are used as reference. c) CancerMine3
genes are used as reference.

3.1 Evaluations with respect to reference cancer gene sets

We first compare the methods based on their ability to recover the sets of known

cancer genes. For this, we compute true positive and false positive rates for the top

1000 genes and calculate the area under the ROC (AUROC). Figure 2 shows the

ROCs obtained from lung cancer data. In Figure 2-a all CGC genes are used as

reference, whereas in Figure 2-b genes with mutation frequencies ≤ 2%, namely the

rare drivers, are included. Figure 2-c is obtained with CancerMine3 as the reference

set. BetweenNet achieves a higher AUROC value than all the alternatives for all

three reference sets, though the improved performance is more prominent for the

first two reference sets. With the CGC reference set, the second ranked method is

Subdyquency. This is followed by Betweenness and DawnRank with similar perfor-

mance with respect to each other. On the other hand, for the CGC-rare reference

set, Betweenness and DawnRank perform considerably better than the other three

methods. DawnRank’s good performance is in line with its focus on finding rare
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Lung
a b

Breast
c

Pan-cancer

Figure 5 GO consistency values for a) lung cancer b) breast cancer c) pan-cancer cohort.

drivers by identifying drivers in a personalized fashion rather than using the muta-

tion frequency of a gene across all the patients. Interestingly, Betweenness results

in poor performance with the CancerMine3 reference set where it ranks the second

worst method. For all three reference sets, the IntDriver method performs the worst.

Overall, these results illustrate the superiority of BetweenNet as it can find both

rare and common drivers more accurately.

Figure 3 depicts analogous results for the breast cancer data. As before, Be-

tweenNet achieves the top performance with all three reference sets. For the CGC

reference set, Subdyquency and DriverNet rank the second and third, respectively.

Betweenness and DawnRank have a similar performance which is worse than Sub-

dyquency and DriverNet. Finally, IntDriver provides the worst performance. For

CGC-rare we see a similar performance of the methods except that Betweenness

ranks third after BetweenNet and Subdquency. For CancerMine3, BetweenNet ranks

the best which is followed by DawnRank and Betweenness. Results with respect to

the CancerMine5 reference set are quite similar and are available in the Supplemen-

tary Figure 2-a.

Lastly, Figure 4 shows the results with respect to the pan-cancer dataset. Be-

tweenNet’s gene ranking results in the highest AUROC in all three cases, though

the difference between BetweenNet and the second best performing method is more

prominent for the CancerMine3 reference set. For the CGC reference gene set, Be-

tweenNet, Subdquency, and DriverNet perform significantly better than the other

three methods. For the CGC-rare reference set, DawnRank’s performance gets much

closer to that of the leading methods, as we previously observe for the other datasets.

For the CancerMine3 set, DriverNet and Betweenness can be considered as the sec-

ond ranking group of methods, whereas DawnRank and IntDriver perform signif-

icantly worse than the others. Results with CancerMine5 are similar to those of

CancerMine3 and are available in the Supplementary Figure 2-b.

3.2 Evaluations based on functional and pathway analysis

Reference cancer driver gene sets might be incomplete and biased. As such, rather

than only finding exact matches between the output gene sets and the reference gene

sets, we also define other metrics that measure how well the associated functions

of the genes of the two sets match. One such metric is based on GO consistency
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Lung
a b

Breast
c

Pan-cancer

Figure 6 Reactome pathway consistency values for a) lung cancer b) breast cancer c) pan-cancer
cohort.

(GOC) and the other is based on pathway information. For the former, we find the

GO terms enriched in the output gene sets and in the reference gene sets, and check

whether the corresponding GO terms overlap. The underlying assumption is that the

reference cancer genes and the predicted cancer genes should have similar biological

functions. We find the enriched GO terms in the ranked gene sets of varying total

sizes from 100 to 500 in the increments of 100 for each method under consideration.

We repeat the same GO term enrichment analysis with the reference gene set. We

then compute the GOC value between the enriched GO terms of the ranked gene

set and those of the reference set, which is defined as the ratio between the size

of the intersection of the two sets and the size of the union [39]. Figure 5 shows

the GOC values calculated for each cancer type and pan-cancer cohort. We observe

that BetweenNet ranked genes perform the best for almost all total size values.

For lung cancer, BetweenNet ranks the best in three out of five total size values,

whereas Betweenness performs the best in the remaining two cases. DriverNet and

Subdquency rank the third and fourth, respectively. This is followed by DawnRank

and IntDriver with notably large differences between the performances of these

two methods. For breast cancer, BetweenNet performs significantly better than

the other methods. All the rest of the methods except IntDriver exhibit similar

performances whereas IntDriver performs significantly worse than the others. For

pan-cancer data, the methods can be ranked as follows: BetweenNet, DriverNet,

Betweenness, Subdyquency, DawnRank, and IntDriver.

We repeat the same type of analysis with pathways as well, this time replacing

GO term enrichment with pathway enrichment. Namely, we identify the pathways

enriched in the reference set of genes and the set of genes output by a ranking

method. We then compute the number of pathways common in both of these sets.

Figure 6 shows the results with Reactome reference pathways for all cancer types.

For all cases, BetweenNet outperforms the other methods with a large margin. For

lung cancer, the second best method is Betweenness, whereas for breast and pan-

cancer it is difficult to identify the second best method as it varies for each total size

value. For breast and pan-cancer, IntDriver performs worse than the other methods.

Results obtained with KEGG look similar and can be found in the supplementary.
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Analysis of BetweenNet ranked genes
We further explore BetweenNet’s top 20 ranking genes for each cancer type and

identify those that do not appear in the cancer reference gene set CGC. We in-

vestigate the literature for existing work that study these genes within the context

of cancer biology. For lung cancer, the gene ranked the sixth by BetweenNet, the

Vascular cell adhesion molecule-1 (VCAM-1) gene has been found to have higher

expression in cancer-associated fibroblasts and blocking it attenuates the prolifer-

ation and invasion of lung cancer cells [40]. VCAM-1 can easily be missed by the

models solely based on mutation frequency, as it is mutated in only three patients

across the lung cancer cohort. Indeed, only BetweenNet ranks this gene within the

top 20. Another gene that ranks in our top 20 for lung cancer is Ryanodine receptor

2 (RYR2). This gene is found to be strongly associated with a subtype of lung ade-

nocarcinoma that shows high tumor mutational burden [41]. RYR2 mutations were

also found to be significantly higher in non-small cell lung cancer patients that live

in highly polluted regions as compared to control regions [42]. Lastly, TP53BP1 is

another gene that is only identified by BetweenNet within the top 20. TP53BP1

is a critical component of DNA damage response (DDR) machinery and defects of

this machinery are involved in multiple processes of tumorigenesis [43, 44, 45]. A

recent study showed that TP53BP1 protein expression is significantly reduced in

several cancer tissues including lung carcinoma suggesting a role as tumor suppres-

sor [46]. FN1 is within the top 20 genes of the Betwenness ranking for breast cancer.

A recent study confirms that increased fibronectin is linked to metastasis through

its role in facilitation of cancer cell attachment and spreading in 3D suspension

culture of MDA-MB-231 cell line [47]. As such, existing studies indicate that FN1

is not a driver but play critical roles in metastasis which can still be of interest for

therapeutic purposes. Another top ranking gene for breast cancer is GABARAP.

GABARAP has been shown to involve in tumorigenesis in vivo by delaying cell

death and its associated immune-related response [48].

In pan-cancer data, CDC5L, VCAM1, TP53BP1, FN1, MKI67, and PLEC are

among the top 20 ranking genes that do not appear in CGC. For each of these

genes, there are multiple studies in the literature indicating roles for cancer devel-

opment and progression. Additionally, many of these genes also appear in top 20 for

individual cancer types we study, that is in lung and breast cancer. For instance,

CDC5L is a transcription factor that is associated with tumorigenesis in multi-

ple cancer types including prostate, hepatocellular, colorectal, and bladder cancer

[49, 50, 51, 52]. VCAM1 is linked to tumor immune evasion in more than ten cancer

types [53, 54, 55, 56, 57, 58, 59, 60] , TP53BP1 also appears in our CancerMine3

list and its role in cancer development is recently reviewed in [61]. There are stud-

ies showing FN1’s aberrant expression in multiple cancer types [62, 63, 64, 65].

Lastly, MKI67 expression has been shown as a biomarker for multiple cancer types

[66, 67, 68, 69, 70].

Discussion
Having shown that BetweenNet performs better than existing methods, we finally

investigate whether all components of BetweenNet contribute to this performance

by testing against simpler alternatives. We test a version of BetweenNet where the
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random walk step is omitted. In this version, there are no edge weights and ranking

is simply based on the degrees of the bipartite influence graph nodes corresponding

to the mutated genes. We also include DriverNet in this comparison to evaluate

the effects of the outlier selection process. Comparing the version of BetweenNet

without the random walk step against DriverNet reveals the added value of defining

outlier genes based on betweenness centrality values rather than gene expression.

Supplementary Figures 4-6 compare these three models on lung, breast, and pan-

cancer data. Except for experiments with CancerMine3 in lung cancer and CGC

in pan-cancer, we observe that BetweenNet achieves the top performance for all

cancer types and for all reference gene sets.

Conclusions
We propose BetweenNet, a novel cancer driver gene prioritization approach that

integrates genomic data with the connectivity within PPI networks. One contribu-

tion of BetweenNet is the identification of patient specific dysregulated genes with

a measure based on betweenness centrality on personalized networks. BetweenNet

ranks mutated genes by their effects on dysregulated genes. To characterize these

effects, a bipartite influence graph is formed to represent the relations between the

mutated genes and dysregulated genes in each patient. Another contribution of Be-

tweenNet is the employment of a random-walk process on the resulting influence

bipartite graph. Through careful comparisons, we show that both the use of be-

tweenness centrality metric and the employment of random walk have added values

in identification of cancer driver genes. We also demonstrate that BetweenNet out-

performs the alternative methods in recovering known reference genes and in pro-

viding functionally coherent rankings with three large-scale TCGA datasets: lung

cancer, breast cancer, and pan-cancer samples. Additionally, we find that many of

our top ranking genes that do not appear in reference cancer gene sets have roles in

cancer development based on existing literature. Taken together, our results indicate

that BetweenNet effectively integrates genomic data and connectivity information

to prioritize cancer driver genes.
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