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Abstract

In various cellular functions, post translational modifications (PTM) of protein play a
vital role. The addition of certain functional group through a covalent bond to the
protein induces PTM. The number of PTMs are identified which are closely linked
with diseases for example cancer and neurological disorder. Hydroxylation is one of
the PTM, modified proline residue within a polypeptide sequence. The defective
hydroxylation of proline causes absences of ascorbic acid in human which produce
scurvy, and many other dominant health issues. Undoubtedly, the prediction of
hydroxylation sites in proline residues is of challenging frontier. The experimental
identification of hydroxyproline site is quite difficult, high-priced and time-consuming.
The diversity in protein sequences instigates to develop a computational tool to
identify hydroxylated site within short time with excellent prediction accuracy to
handle such proteomics problems. In this work a novel in silico predictor is developed
through rigorous mathematical modeling to identify which site of proline is
hydroxylated and which site is not? Then performance of the predictor was verified
using three validations tests, namely self-consistency test, cross-validation test and
jackknife test over the benchmark dataset. A comparison was established for jackknife
test with the previous methods. In comparison with previous predictors the proposed
tool is more accurate than the existing techniques. Hence this scheme is highly useful
and inspiring in contrast to all previous predictors.

Introduction 1

In mammals collagens are extremely abundant protein comprised of proline modified 2

residue during the chemical process such as hydroxylation and produce 3

hydroxyproline [1]. Collagens are stringy and long in nature, most of the protein in 4

mammals consists of almost a quarter part of collagen [2]. In the treatment of wound 5

healing [3], burn and cosmetic surgeries [4, 5] collagen mainly works as a medicinal 6

drug. Most of the dominant human diseases like stomach and lung cancer [6, 7] are 7

closely related with the defects and irregularities in hydroxylation process. Thus the 8

identification of hydroxyproline (HyP) sites in proteins gives valuable data helpful to 9

both biomedical research and drug development [8]. Hydroxyproline obtained by the 10

addition of a hydroxyl group (-OH) to the proline (P) residue modifies the CH group 11

into the COH group [8] (see Fig. 1). 12
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Fig 1. Conversion of proline (Pro) residue into hydroxyproline. The figure is
to show that, hydroxylation action attaches the -OH group to proline (Pro) to convert
CH group to COH and modify proline residue into hydroxyproline.

The number of scientists has been making their contributions [9–12] in order to 13

understand the cellular biological process and finding out medicines for cancer and for 14

various other diseases. The prediction of hydroxylation sites in the lab by using 15

method mass spectrometry [13] is difficult to conduct, expensive and very lengthy 16

process. Every day, the large number of protein sequences is collected in the data bank 17

and to classify them according to their functional properties is a crucial. It is highly 18

worthy to build an efficient computational predictor for the classification of targeted 19

hydroxylation sites within polypeptide sequences with improved prediction accuracy. 20

Many researchers have been developed a couple of methods in this regard. Still, all 21

these previous methods are insufficient to incorporate all components of features vague 22

in the polypeptide sequence that become difficult to get exact prediction. Many 23

scientists had been shown their great interest in hydroxylation process. Colgrave, et al. 24

[1] was computed quantification of hydroxyproline by using multiple reaction 25

monitoring mass spectrometry. In order to understand the microbial activity and their 26

communities, a mathematical model has been developed [14]. A system was defined to 27

study the insufficiency of collagen in connective tissues that encountered by lack of 28

ascorbic acid [15]. 29

Halme et al. [16] and kiviriko et al. [17] were explained the separation and 30

classification of extremely purified protocollagen proline hydroxylase as well as proline 31

hydroxylation in synthetical proteins with pure procollagen hydroxylase. In human 32

proteome, the functional character of proline and polyproline based on distribution, 33

frequency and positioning was investigated by Morgan, et al. [18]. Yamauchi et al. [19] 34

were elaborated the Hydroxylation of lysine and cross-linking of collagens. By using a 35

position weight of 8 high-quality amino acid indices and via support vector machines, 36

Shi, Shao-Ping, et al. [20] were proposed a novel technique named as PredHydroxy for 37

the forecast of the proline and lysine hydroxylation locales. Moreover, the functional 38

study of proline with mutable surroundings and the metabolism of proline, 39

hydroxyproline were examined in [21, 22]. ZR Yang [23] developed a tool for the 40

prediction of hydroxyproline sites by utilizing support vector machine. A 41

sequence-based formulation for identifying hydroxyproline and hydroxylysine were 42

developed by Hu, Le-Le, et al. [24]. Using dipeptide position and specific propensity 43

into pseudo amino acid composition Xu, Yan, et al. [8] predicted hydroxyproline and 44

hydroxylysine in proteins. Qiu, Wang-Ren, et al. [25] was suggested an enhanced 45

method over this technique by assimilating a sequence coupled effect into general 46

PseAAC. 47

Materials and methods 48

Benchmark Dataset 49

The acquiring of benchmark dataset is critical, as indicated by Chou’s 5-step rule [26] 50

that prompts the attaining of a powerful, assorted and improved dataset. In order to 51

obtain a stringent benchmark dataset, two resources have been used in the current 52

study. One of the supported datasets is obtained from the universal protein database 53

http://www.uniprot.org/, while the other dataset is borrowed from a posttranslational 54

modification database dbPTM 3.0 [42]. Thus, a stringent benchmark datasets are 55

obtained by employing the following two steps. 56
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Step-1: The extracted dataset from UniProt database, contains two sets of protein 57

sequences. One of the set represents hydroxylated protein sequences at proline site 58

and labeled as positive sample. Likewise, other set consists of non-hydroxylated 59

protein sequences at proline site, tagged as negative sample. An inquiry is produced to 60

choose polypeptide sequences in the PTM/processing field as hydroxyproline. Records 61

construed with any experimental assertion in Feature Table (FT) were only chosen. 62

After a thorough selection of the described query, a stringent benchmark dataset of 63

hydroxyproline was obtained. There were found records of 816 and 24980 for 64

hydroxylated and non-hydroxylated sequences. The records were reduced to 782 and 65

24971 respectively, after removing duplicates. 66

Step-2: Likewise, to obtain another stringent benchmark dataset the dbdtm 3.047 67

were utilized. The dataset was effectively accessible in FASTA format and 68

advantageously were downloaded for hydroxylation (hydroxylated and 69

non-hydroxylated). There were discovered 226 hydroxylated records and 3,865 70

non-hydroxylated samples. The primary dataset of hydroxylated and non-hydroxylated 71

proline sites can be found in Supplementary Tables S1, S2, S3 and S4 separately. 72

Method 73

In order to identify target proline sites with hydroxylation, an excellent methodology 74

is proposed as indicated in the Chou’s second and third step [26]. This technique is 75

developed by incorporating all indispensible components of polypeptide sequences that 76

can perfectly indicate their correlation to assemble the sequence in an effective way. 77

The alternate formulation was also employed by Ehsan et al. [31, 32], impart as 78

prominent prediction rate in proteomics problems. Consider a protein sample C 79

consists of Z amino acid residues. 80

C = U1U2U3U4U5U6U7 · · ·UZ (1)

Where U1 indicates the first amino acid residue with in string C, U2 is the second 81

amino acid component, U3 is third component and so on up till UZ last amino acid 82

residue of the protein sequence C as given in (1). In this methodology the formulation 83

is handled by upholding sequence information. By considering the sequence order 84

effect and composition of each term of sequence an advantageous factor introduced, 85

known as weight factor. This is used to maintain position and composition of all 86

components of sequence and denoted by Ti. While the significant terms L, M, and N 87

indicate the count factor of each residue with its contiguous residues in both forward 88

and reverse direction. The weight factor Ti is characterized as: the product of the 89

position with the occurrence of the each term of the sequence among the similar 90

residues. This whole scheme is based on expression (2) to handle the diverse length of 91

the polypeptide sequences. The term {L+M +N} describes the weighted mean of all 92

possible coupling between similar residues that is after the first residue and before it 93

occurred again. 94

(T1){L+M +N}+ (T2){L+M +N}+ (T3){L+M +N}+ ...+ (Tn){L+M +N}

T1 + T2 + T3 + ...+ Tn

(2)

Where the weight factors T1, T2, T3, ..., Tn depends upon the repeated terms of the 95

sequence of type r̃ : 1 ≤ r̃ ≤ 20. Each Ti is estimated between the two consecutive 96

terms Ti and Ti+1 before r̃ and when it occurred again. All weight factors 97

characterization of amino acid of type r̃ in terms of mathematical form is represented 98

as: αr̃iβr̃i : i = 1, 2, 3, ..., n (α represent the occurrence of residue of type r̃ at their 99
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corresponding positions β in the sequence varies with i, represents n time appearance 100

of r̃) and L, M, N is the estimated count of the three correlated factors in both 101

forward and backward direction from r̃ with its contiguous residues except r̃ until r̃ 102

appeared again. The demonstration of the above process is mathematically expanded 103

in Eqs. (3) and (4) which collectively set up a mean,
∑

n
i
Ti{L+M+N}
∑

i
Ti

as given in 104

expression (2). Whereas i depends upon the number of compositions of residue of type 105

r̃ in concatenation. Moreover, non-occurrence will assign zero value corresponding to 106

the weight factor, so this weight is neglected and only considered the weight factors for 107

has occurred objects. 108

Ti = αr̃iβr̃i , i = 1, 2, 3..., n; αr̃, βr̃ ∈ N

Or

T1 = αr̃1βr̃1 , αr̃, βr̃ ∈ N

T2 = αr̃2βr̃2 , αr̃, βr̃ ∈ N

T3 = αr̃3βr̃3 , αr̃, βr̃ ∈ N (3)

...

Tn = αr̃nβr̃n , αr̃, βr̃ ∈ N

L =
1

39
[

20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃) + h0χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

h0χ(Ur̃, Um)]

M =
1

39
[

20
∑

m=1
m 6=r̃

h0χ(Um, Ur̃) + hr̃χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

h0χ(Ur̃, Um)]

N =
1

39
[

20
∑

m=1
m 6=r̃

h0χ(Um, Ur̃) + h0χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

hmχ(Ur̃, Um)] (4)

Where hm, 1 ≤ m ≤ 20 symbolizes the repeated coupling function χ of residue r̃ with 109

all amino acid residues also Um 6= Ur̃. For non-occurrence, it is denoted by h0. The 110

coupling function of Ur̃ with itself is denoted by χ(Ur̃, Ur̃) and the frequency of this 111

pair is represented by hr̃. For the sake of convenience, consider 112

χ(Ui, Uj) = ωi,j ; i = j = 1, 2, 3, ..., 20. Whereas ωi,j represents all possible coupling 113

factors for all amino acid residue with each other. A complete interpretation for all 114

possible correlation is given in matrix representation (5) and in term of L, M and N 115

separately assigned in (6). The matrix (6) is adopted by constraint (7), when the pair 116

χ(Ui, Uj) appeared, then ωi,j gives 1 otherwise it is attributed as number zero. 117















ω1,1 ω1,2 ω1,3 . . . ω1,20

ω2,1 ω2,2 ω2,3 . . . ω2,20

ω3,1 ω3,2 ω3,3 . . . ω3,20

...
...

...
. . .

...
ω20,1 ω20,2 ω20,3 . . . ω20,20















(5)
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0 0 0 0 . . . 0
1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 1 1 0 . . . 0
...

...
...

...
. . .

...
1 1 1 1 . . . 0





































1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1





































0 1 1 1 . . . 1
0 0 1 1 . . . 1
0 0 0 1 . . . 1
0 0 0 0 . . . 1
...

...
...

...
. . .

...
0 0 0 0 . . . 0



















(6)

Where 118

ωi,j =

{

1 , when χ(Ui, Uj) exists for both i = j or i 6= j

0 , otherwise
(7)

Use Eqs. (3) and (4) in expression (2) to get feature vector reflecting the residue Ur̃ of 119

type r̃. The desired feature vector is given in Eq. (8) and compactly defined in Eq. (9). 120

λUr̃
=

1

39{(αr̃1βr̃1) + (αr̃2βr̃2) + (αr̃3βr̃3) + ...+ (αr̃nβr̃n)}
[(αr̃1βr̃1){

20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃)

+ hr̃χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

hmχ(Ur̃, Um)}

+ (αr̃2βr̃2){

20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃) + hr̃χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

hmχ(Ur̃, Un)}

+ (αr̃3βr̃3){
20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃) + hr̃χ(Ur̃, Ur̃) +
20
∑

m=1
m 6=r̃

hmχ(Ur̃, Um)} (8)

...

+ (αr̃nβr̃n){

20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃) + hr̃χ(Ur̃, Ur̃) +

20
∑

m=1
m 6=r̃

hmχ(Ur̃, Um)}]

Or 121

λUr̃
=

1

39
∑n

i=1(αr̃iβr̃i)
[

n
∑

i=1

(αr̃iβr̃i){

20
∑

m=1
m 6=r̃

hmχ(Um, Ur̃) + hr̃χ(Ur̃, Ur̃)

+
20
∑

m=1
m 6=r̃

hmχ(Ur̃, Um)}] (9)

In order to understand the mechanism of proposed model consider ith term Ui of 122

sequence (1), reflects the first alphabetical letter of amino acid residues, say, “A”. 123

Notice its occurrences as well as its corresponding positions in the sequence. Ui makes 124

pairing with its contiguous residues in reverse and forward direction. The ith residue 125

in term of χ(Um, Ui) and χ(Ui, Um) represented by green and blue curved lines (see 126
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Fig 2. A mechanism for sequence formulation. The figure is to show the
graphical demonstration of scheme feature vector for the residue “A”, representing
how “A” make pairs with its contiguous residues in both directions up to next residue.

Fig. 2). This process will be continued until next Uj occurs at jth position such that 127

Ui = Uj = A. Similarly, the same steps will be conducted for Uj . The feature 128

component corresponding to residue “A” is interpreted in Eq. (10). 129

λA =
1

39{(αr̃1βr̃i) + (αr̃2βr̃j )}
[(αr̃1βr̃i){

20
∑

m=1
Um 6=A

hmχ(Um, A) + hAχ(A,A)

+

20
∑

m=1
Um 6=A

hmχ(A,Um)}+ (αr̃2βr̃j ){

20
∑

m=1
Um 6=A

hmχ(Um, A) + hAχ(A,A)

+

20
∑

m=1
Um 6=A

hmχ(A,Um)}] (10)

Where the numeral values m = 1, 2, 3..., 20 indicates the twenty amino acid residues of 130

alphabetical order. For more convenience, assume that U1, U2, U3, ..., U20 represents 20 131

amino acids of alphabetical order labeled as: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 132

R, S, T, V, W and Y and U21 onwards the 20 residues cyclically repeats themselves 133

then λ1,λ2,λ3,...,λ20 be their corresponding feature components. The set of twenty 134

feature components is given in Eq. (11) as follows. 135
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λ1 =
1

39
∑n

i=1(αr̃iβr̃i)
[

n
∑

i=1

(αr̃iβr̃i){

20
∑

m=2
m 6=1

hmχ(Um, U1) + h1χ(U1, U1)

+

20
∑

m=2
m 6=1

hmχ(U1, Um)}]

λ2 =
1

39
∑n

i=1(αr̃iβr̃i)
[

n
∑

i=1

(αr̃iβr̃i){

20
∑

m=1
m 6=2

hmχ(Um, U2) + h2χ(U2, U2)

+

20
∑

m=1
m 6=2

hmχ(U2, Um)}]

λ3 =
1

39
∑n

i=1(αr̃iβr̃i)
[

n
∑

i=1

(αr̃iβr̃i){
20
∑

m=1
m 6=3

hmχ(Um, U3) + h3χ(U3, U3)

+
20
∑

m=1
m 6=3

hmχ(U3, Un)}] (11)

...

λ20 =
1

39
∑n

i=1(αr̃iβr̃i)
[

n
∑

i=1

(αr̃iβr̃i){

20
∑

m=1
m 6=20

hmχ(Um, U20) + h20χ(U20, U20)

+

20
∑

m=1
m 6=20

hmχ(U20, Um)}]

The above set of twenty feature vectors depends upon three properties of amino acids 136

such that, hydrophobicity, hydrophilicity and side chain mass of amino acids, can be 137

calculated by employing Eqs. (12) to (14). These equations can expand as per choice 138

of attributes of amino acids other than these three properties of amino acid. For 139

extended properties l of amino acids a compact representation is elaborated in Eq. 140

(15). 141

χ(Ui, Uj) =
|ℵ∗

i1
(Uj)|

1 + |ℵ∗
i1
(Ui) + ℵ∗

i1
(Uj)|

+
1

23
[

|ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

1 + |ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

+
|ℵ∗

i2
(Uj)− ℵ∗

i2
(Ui)|

1 + |ℵ∗
i2
(Uj)− ℵ∗

i2
(Ui)|

+
|ℵ∗

i3
(Uj)− ℵ∗

i3
(Ui)|

1 + |ℵ∗
i3
(Uj)− ℵ∗

i3
(Ui)|

] (12)

χ(Ui, Uj) =
|ℵ∗

i2
(Uj)|

1 + |ℵ∗
i2
(Ui) + ℵ∗

i2
(Uj)|

+
1

23
[

|ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

1 + |ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

+
|ℵ∗

i2
(Uj)− ℵ∗

i2
(Ui)|

1 + |ℵ∗
i2
(Uj)− ℵ∗

i2
(Ui)|

+
|ℵ∗

i3
(Uj)− ℵ∗

i3
(Ui)|

1 + |ℵ∗
i3
(Uj)− ℵ∗

i3
(Ui)|

] (13)
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χ(Ui, Uj) =
|ℵ∗

i3
(Uj)|

1 + |ℵ∗
i3
(Ui) + ℵ∗

i3
(Uj)|

+
1

23
[

|ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

1 + |ℵ∗
i1
(Uj)− ℵ∗

i1
(Ui)|

+
|ℵ∗

i2
(Uj)− ℵ∗

i2
(Ai)|

1 + |ℵ∗
i2
(Uj)− ℵ∗

i2
(Ui)|

+
|ℵ∗

i3
(Uj)− ℵ∗

i3
(Ui)|

1 + |ℵ∗
i3
(Uj)− ℵ∗

i3
(Ui)|

] (14)

Or 142

χ(Ui, Uj) =
|ℵ∗

l (Uj)|

1 + |ℵ∗
l (Ui) + ℵ∗

l (Uj)|
+

1

2l

∑

l

[
|ℵ∗

l (Uj)− ℵ∗
l (Ui)|

1 + |ℵ∗
l (Uj)− ℵ∗

l (Ui)|
(15)

Whereas ℵ∗
i1
, ℵ∗

i2
, ℵ∗

i3
are the values of hydrophobicity, hydrophilicity and side-chain 143

mass of amino acid residues that are normalized by using Eq. (16) against the pair of 144

Ui and Uj . The normalization index that is used to normalize the values given in Eqs. 145

(12) to (14) lies between (-S, S), where S is the normalizing count for r̃ amino acids. 146

Here the number 5 is used for normalization. The original values for hydrophobicity 147

and hydrophilicity were taken from the main source, employed by Ehsan at el. [31, 32], 148

while the values for side-chain mass of amino acid residues was taken from any text 149

book of biochemistry. 150

ℵ∗
i1
(r̃) = {

2S

(ℵi1(max)
− ℵi1(min)

)
(ℵi1(r̃)− ℵi1(max)

)} + S

ℵ∗
i2
(r̃) = {

2S

(ℵi2(max)
− ℵi2(min)

)
(ℵi2(r̃)− ℵi2(max)

)} + S (16)

ℵ∗
i3
(r̃) = {

2S

(ℵi3(max)
− ℵi3(min)

)
(ℵi3(r̃)− ℵi3(max)

)} + S

The provided modelling consist of 100 dimensions by comprising the protein features 151

and to classify them according to their functional properties and attributes. These 152

features are divided as: the very first twenty feature vectors corresponds to 153

hydrophobic property, while next twenty matches for hydrophilic attribute. Similarly 154

the succeeding twenty vectors indicate side chain mass property of amino acid residues 155

and last forty vectors related to the position and composition of each amino acids. For 156

the identification of diverse protein sequence this novel technique establishes a 157

wonderful result. For the sake of classification these extracted feature vectors are 158

further passed through a training-testing process by using the rigorous classifier, 159

neural networks (NN). 160

The neural network is an extraordinary tool for decision making problems and to 161

classify patterns in available diversified data sets. It is typically arranged in layers and 162

learn from its experience using input data and able to modify their weights according 163

to provided data. Subsequent to the training process is finished the system apparently 164

acts such that makes it fit to arrange each given input inside a worthy level of 165

precision. Its connectionist structural design comprises of 100 input layer neurons, 50 166

hidden layer neurons and two output neurons that classify hydroxylated and 167

non-hydroxylated protein samples. The back propagation method was used for 168

training of the multilayered neural network. In order to get the higher prediction rate 169

and to decrease the error rate a gradient descent method was employed with adaptive 170

learning rate. 171

The results were simulated on MATLAB R2017 version and were duplicated on 172

python ver 3.6 platform along with Scikit Learn 0.20 for neural network training and 173

simulation bearing identical results. This procedure is done in the flowchart as given 174

underneath (see Fig. 3). 175
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Fig 3. Flowchart describes the training and validation process. The
prediction process done in the following steps (a) extraction of two class dataset (b)
extract feature vectors using the proposed tool (c) train/test dataset using neural
network classifier.

Results 176

In order to build up a beneficial predictor for an organic development, the Chou’s 177

5-step rule [26] are noticeable. Undoubtedly, it is useful to develop a new predictor by 178

employing Chou’s 5-step rule. A number of researchers [27–30] had used this method 179

in their work, published very recently. The prediction analysis is done in some steps: 180

firstly the stringent benchmark data set is collected for training and testing purpose of 181

proposed predictor, in a second step, a powerful mathematical tool developed that 182

select the major and most significant features of the amino acid polymers. Then the 183

developed feature vector incorporated into an identifying formulation for the sake of 184

training. When the process of training is completed, the trained model is completely 185

tested and validated. Finally, a web-server is created for open use of the proposed 186

predictor. In the current study, the initial four steps have been carefully performed, 187

while, the last step has been kept open for future work. 188

Statistical Measures 189

To evaluate the performance of the proposed model “iHyd-ProSite”, a set of four 190

metrics are followed, which were employed by Ehsan et al. [31,32]. The following these 191

four metrics are: sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthews 192

correlation coefficients (MCC) respectively, used for proposed algorithm evaluation. 193

Either the set of traditional metrics copied from maths books or the intuitive metrics 194

derived from the Chou’s symbols [33, 34] is valid only for the single-label systems 195

(where each sample only belongs to one class). For the multilabel systems (where a 196

sample may simultaneously belong to several classes), whose existence has become 197

more frequent in system biology [28, 35], system medicine [36] and biomedicine [37], a 198

completely different set of metrics as defined in the study represented as a 199

reference [38] is absolutely needed. 200
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Consider ¶+ and ¶− represents the all correctly predicted positive and negative 201

records for hydroxylated and non-hydroxylated site in proline (Pro) within 202

polypeptide sequences. Similarly, if the positive records are wrongly predicted as 203

negative records, is denoted by ¶+
− and when negative records are wrongly predicted in 204

terms of positive records is represented by ¶−
+. It is relevant to discuss the following 205
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cases of the above Eq. (17). If ¶+
− = 0, then there is no incorrectly predicted positive 206

records as negative records, then produce Sn = 1. In another case when ¶+
− = ¶+

207

indicating that all positive records were incorrectly predicted in terms of negative 208

records so, the sensitivity is Sn = 0. Similarly for ¶−
+ = 0 gives specificity Sp = 1 209

representing no any negative record peptide was incorrectly predicted in terms of 210

positive records, while for ¶−
+ = ¶− gives specificity Sp = 0 denoting all negative 211

instances were wrongly predicted as positive instances. On the other hand the 212

prediction accuracy Acc = 1 when, there is no any incorrectly predicted sequences 213

were found both positive and negative cases such that, ¶+
− = ¶−

+ = 0. When 214

¶+
− = ¶+ and ¶−

+ = ¶−, brings out misclassification so the overall accuracy is 215

Acc = 0. Furthermore, the performance of binary classifications is often measured by 216

Matthew correlative coefficient (MCC). There are three cases here, for 217

¶+
− = ¶−

+ = 0 indicating that there is no incorrectly predicted record were found for 218

both positive and negative instances so we obtain MCC = 1. In the second case when 219

¶+
− = ¶+

2
and ¶−

+ = ¶−

2
we obtain MCC = 0 indicating the inaccurate prediction. 220

Lastly, when ¶+
− = ¶+ and ¶−

+ = ¶− we obtain MCC = −1 denoting the totally 221

wrong binary classification and disagreement between observed and predicted values. 222

Renowned Validation Tests 223

In order to validate the quality of the proposed predictor the following three test 224

methods, self-consistency test, K-fold cross validation test and jackknife test are often 225

used. These tests are applied to score the metrics given in Eq. (17). To approve the 226

predictor’s quality these tests are viewed as valuable. By employing the statistical 227

measures, a comparison was made using the jackknife test with the existing 228

predictors [8, 25]. In the current study, to test the performance of proposed scheme all 229

above test methods were employed. Additionally, for validation purpose the 230

benchmark datasets were taken from two sources, one is from uniprot and other one is 231

from dbptm. The results obtained by using both datasets are given in Table 1. Table 1 232

is divided into two main columns. The first column is explaining the values of metrics 233

for dbptm dataset by employing all above tests. Whereas, second column is giving the 234

values in validation of uniprot dataset. It is noticed that the values for MCC were 0.91 235

and 0.90 for jackknife test. The comparison of the proposed scheme with the existing 236

techniques for jackknife test is given below. 237

Table 1. The values Table by using proposed predictor “iHyd-ProSite”.

Metrics values for dbptm dataset Metrics values for uniprot dataset

Tests Sn (%) Sp (%) Acc (%) MCC Sn (%) Sp (%) Acc (%) MCC
Self − Consitency 99.30 98.20 99.31 0.96 99.48 98.84 98.69 0.95
Cross − V alidation 98.95 95.87 97.85 0.94 94.87 95.20 95.06 0.92
Jackknife 98.90 95.82 97.80 0.91 94.82 95.15 95.01 0.90

The results obtained by employing the proposed predictor by using self-consistency test, cross-validation, test and jackknife
test on the set of metrics for dbptm and uniprot datasets for identifying hydroxyproline sites.

Comparison Analysis 238

Observe Table 2 for a comparison analysis with the existing techniques 239

“iHyd-PseAAC” [8], and “iHyd-PseCp” [25]. The comparison was also made with the 240

most recent publication “iHyd-PseAAC (EPSV)” [32] for identifying the 241

hydroxyproline sites. All these techniques attained the metrics records, employing the 242

jackknife test method. It can be noticed from Table 2 that the accuracy (Acc), 243
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stability (MCC), sensitivity (Sn), and specificity (Sp) assess measured via operating 244

proposed scheme are more predominant than the those values given by the former 245

methodologies. There are two benchmark datasets borrowed from (a) dbptm and (b) 246

uniprot database for comparison purpose with the existing schemes. Indeed, the newly 247

proposed methodology is absolutely better suggestion throughout the past 248

methodologies. There are a number of scientific and theoretical reasons can be 249

explained for the improved quality of the developed scheme. Few of them are covered 250

here. First of all, the proposed formulation is established by incorporating position 251

and composition of primary protein structure and is beneficial to deal with the 252

different length protein sequences in a thoughtful manner without missing any hidden 253

data and also organize pairwise couplings in every possible permutation of amino acid 254

residues. Second, it produces uniform dimension vectors, which contribute invariant 255

size feature vectors that uniformly classify proteins corresponding to their properties. 256

This concept allows the predictor to meticulously separate and appropriately 257

distinguish each instance. Third, the correlation aspect is the principle concept that 258

impart for computing feature vector. It has been assembled by considering each 259

attribute group. Each expression deals with some specific metric and statistical 260

measures. For the sake of convenience, every property of amino acids was standardized 261

numerically within a suitable range. Also, it has been noticed that in comparison with 262

previous methods proposed, the predicted outcomes are more superior and better than 263

the former prediction rate. 264

Table 2. A comparison analysis of the proposed predictor with the existing predictors using well-known
jackknife validation tests for the metrics given in Eq. (17).

Comparison Table

Predictors Sn (%) Sp (%) Acc (%) MCC
iHyd− PseAAC 80.66 80.54 80.57 0.51
iHyd− PseCp 86.35 99.12 96.58 0.89
iHyd− PseACC(EPSV )a 98.68 94.82 96.80 0.90

iHyd− PseACC(EPSV )b 97.02 94.57 96.01 0.88
iHyd− ProSitea 98.90 95.82 97.80 0.91
iHyd− ProSiteb 94.82 95.15 95.01 0.90

A comparison is made for jackknife test using benchmark datasets obtained from (a)dbptm and (b)uniprot database
sources. It can be seen that the results obtained by using proposed predictor “iHyd-ProSite” is much better than all
previous methodologies.

Discussion 265

Table 2 explain that, the values of sensitivity, specificity, accuracy and methew 266

correlation coefficient for proposed predictor are higher than all the values obtained by 267

utilizing former schemes. Sensitivity test describes the correctly predicted 268

hydroxylated sites which are extraordinary larger than all reported values for previous 269

methodologies. Also the stability of the predictor is measured by MCC value, and it 270

can be observed that MCC values obtained by using proposed scheme are greater than 271

above reported values. Undoubtedly, the proposed scheme is much helpful for 272

diagnosing the biological problems efficiently. 273
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Conclusion 274

The novel proposed technique “iHyd-ProSite” is a new predictor to find 275

hydroxyproline sites in protein sequences. Undoubtedly, it can be observed from the 276

comparison Table 2 that the results obtained by using the proposed method are 277

higher-up than all previous methods. For example, the accuracy calculated with the 278

proposed tool (iHyd-ProSite) were 97.80 and 95.01 corresponding to two benchmark 279

datasets obtained from databases (a) dbptm and (b) uniprot which is superior than 280

the accuracies obtained by all previous predictors. Also MCC value were 0.91 and 0.90 281

with is greater than all schemes iHyd-PseAAC, iHyd-PseCp and iHyd-PseAAC 282

(EPSV). Also the set of two data sets taken from dbptm and uniprot database were 283

utilized for the proposed predictor validation. This technique is convenient to handle 284

all types of biological data and can gently classify the unpredictable biological 285

sequences. If the researchers are interested in the classification problems they should 286

use this handy predictor, it can be helpful for future prediction problems. 287

Bold the title sentence. Add descriptive text after the title of the item 288

(optional). 289
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