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Abstract 
 
Background While most research into predictors of problematic alcohol use has focused on 
adolescence, young adults are also at elevated risk, and differ from adolescents and adults in terms of 
exposure to alcohol and neurodevelopment. Here we examined predictors of alcohol use among 
young adults at a 1-year follow-up using a broad predictive modelling approach. Methods Data in four 
modalities were included from 128 men aged between 18 and 25 years; functional MRI regions-of-
interest from 1) a beer-incentive delay task, and 2) a social alcohol cue-exposure task, 3) grey matter 
data, and 4) non-neuroimaging data (i.e. psychometric and behavioural). These modalities were 
combined into an ensemble model to predict follow-up Alcohol Use Disorder Identification (AUDIT) 
scores, and were tested separately for their contribution. To reveal specificity for the prediction of 
future AUDIT scores, the same analyses were carried out for current AUDIT score. Results The 
ensemble resulted in a more accurate estimation of follow-up AUDIT score than any single modality. 
Only removal of the social alcohol cue-exposure task and of the non-neuroimaging data significantly 
worsened predictions. Reporting to need a drink in the morning to start the day was the strongest 
unique predictor of future drinking along with anterior cingulate cortex and cerebellar activity. 
Conclusions Alcohol-related task fMRI activity is a valuable predictor for future drinking among young 
adults alongside non-neuroimaging variables. Multi-modal prediction models best predict future 
drinking among young adults and may play an important part in the move towards individualized 
treatment and prevention efforts.  
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Introduction 

Alcohol consumption is highly prevalent during young adulthood, with 85% of young adults between 19-

28 years reporting having tried alcohol, 31% having engaged in binge-drinking at least once in the last 

two weeks and around 4% reporting drinking on a daily basis in the last 30 days (1). This heavy drinking 

is accompanied by broad health risks and large societal costs (2-4). Luckily, many individuals ‘mature 

out’ of heavy drinking and decrease their alcohol intake when getting older (5-8). Currently, however, it 

remains difficult to identify who will reduce their alcohol consumption, who will continue to drink heavily, 

and who might even develop an alcohol dependence after drinking heavily.  

Using machine learning, it is possible to predict complex clinical and behavioural outcomes by 

examining many variables (also referred to as “features”) simultaneously (9-11). Moreover, by 

considering predictors from a range of different modalities, the accuracy of predictions improves (e.g. 

(12)). Problematic alcohol use is a complex, multi-faceted behaviour related to biological, psychological 

and social factors (13-15), and is likely to be best explained by considering multiple predictors from 

multiple domains. A previous study that used such a multi-domain approach aimed to predict binge 

drinking in a large sample of adolescents (16). While the domains of personality and life history 

accounted for the majority of explained variance, other data domains also contributed unique variance 

(16). The results of two other machine learning studies revealed a variety of (f)MRI predictors for the 

initiation of alcohol use by the age of 18 (17), as well as non-neuroimaging predictors for the frequency 

of alcohol use among drinking and non-drinking adolescents (18). 

Whereas these studies identified important risk factors associated with the initiation and continuation 

of drinking in young adolescents (i.e. an average age of 13), it is worthwhile to widen the scope of 

research into predictors of alcohol use to include early adulthood. First, prevalence rates of heavy 

drinking are high in this population, whilst research in this age group is scarce. Second, this population 

differs from adolescent and older adult samples in that alcohol use has already been initiated, but the 

likelihood of alcohol-related brain changes remains low. More specifically, it has been found that factors 

that predict alcohol use in adolescence are not necessarily predictive in young adults (19-21) and this 

may be related to adolescents undergoing continuing profound neurobiological changes (22). Moreover, 

the importance of neurobiological versus psychometric and behavioural risk factors may be different 

before and after alcohol use initiation, and therefore in adolescents versus young adults. For example, 

alcohol expectancies change over time and specifically after initiation (23, 24). Examining a wide range 
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of possible predictors in young adults will help to identify risk factors that could contribute to intervention 

efforts specifically targeting this population.  

The current study aims to identify predictors of heavy drinking in young adults who have already 

started drinking, by using a broad predictive modelling approach. In line with recommendations 

regarding the development of prediction models in psychiatry (25), our findings are intended to inform 

the design of future studies aimed at creating tools to identify at-risk individuals. To pursue this aim, we 

used an existing dataset that included a variety of potential neuroimaging predictors (i.e. grey matter 

volume and functional data from two different tasks including brain responses to alcohol cues within 

social settings, as well as brain responses to the anticipation and receipt of sips of beer (26, 27)) and 

psychometric predictors (i.e. non-neuroimaging data including self-report questionnaires and approach 

biases). Even though this dataset was originally not designed for predictive modelling, we were able to 

utilize this longitudinal dataset (including variables examined in previous publications, see 

Supplementary Table 1), to conduct an initial exploration of factors predicting problematic drinking in 

early adulthood. 

 

Materials and Methods  

Participants and procedure  

The data used in this study were part of a larger project (see (27, 28) for a detailed description of the 

procedure and experimental tasks). At baseline, during two behavioural sessions and one fMRI session, 

a variety of measures were collected, using questionnaires or experimental task designs. One year later, 

data on alcohol use were obtained through self-report. Participants were men with varying levels of 

alcohol use (Table 2 for summary statistics). Differences between participants who did not complete 

follow-up measures (n = 19) and those who did (n = 128) did not survive multiple comparison (see 

Supplementary Figure 1 and Supplementary Table 2).  

 

>>>>> TABLE 1 <<<<<<<< 

 

Measures 

Outcome variable 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.03.974931doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.974931
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Alcohol use was measured using the AUDIT questionnaire (29). Our sample (n = 128) had a mean 

AUDIT score of 12.82 (SD = 6.52) at baseline, and of 12.26 (SD = 5.78) at follow-up. 

 

Input variables 

Psychometric (non-neuroimaging) 

The summary of demographic and cognitive variables (i.e. total scores or subscales) is reported in Table 

1. For several questionnaires, single-item responses were included alongside summary values (i.e. for 

the AUDIT, weekly drinking, DMQ, BIS, NRI, DRSEQ, and BDI), resulting in 197 total features. For the 

AUDIT, the summary baseline score was included as a covariate in all analyses predicting follow-up 

AUDIT score, and lifetime heroin use was not included due to the low variability in the variable.  

 

(f)MRI  

During the MRI session, structural and functional data during two tasks were collected. One task was a 

passive cue-exposure task with four stimuli conditions consisting of alcohol or soda pictures, in a social 

or non-social setting (SACE) (27) for which the contrasts alcohol>soda, social>non-social, and ((social 

alcohol>social soda)>(non-social alcohol>non-social soda)) were included. The other task was a Beer-

Incentive-Delay task with sips of beer or water as reinforcers (BID) (26), for which the contrasts 

beer>baseline, water>baseline, and beer>water for anticipation, outcome notification and delivery) of 

the task were included. See supplement for details of the pre-processing pipeline. Using a functionally 

defined atlas with 278 regions of interest (ROIs) (30), we extracted individual beta values for grey matter 

(278 features), and each of the SACE and BID contrasts (834 SACE features and 2502 BID features). 

 

Analyses 

To determine whether any identified predictors were specific to future drinking, we also performed the 

same analyses on current drinking. All analyses were carried out in MATLAB 2018b (scripts available 

at https://github.com/ljollans/multimodal_AUDIT_prediction). Given the relatively small sample size 

and large number of features for the BID and SACE task, standard multiple regression paired with 

bootstrap aggregation (bagging) was selected for all analyses (39), based on a previous empirical 

evaluation of the utility of various linear regression methods for prediction with neuroimaging data (31). 
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Models were built independently for the following four data domains: (1) fMRI ROIs for BID, (2) fMRI 

ROIs for SACE, (3) grey matter volume ROIs, and (4) non-neuroimaging variables. For each modality, 

a prediction model was built (“single-modality” model), generating an outcome prediction for each 

participant. Covariates included in all single-modality analyses were age and total AUDIT score at 

baseline. The four single-modality outcome predictions per participant were then treated as new 

predictors and entered into a further prediction model (i.e. an ensemble; (32)), with only those four 

variables (Figure 1). Outcome estimates from the ensemble reflect the extent to which combining data 

modalities results in a better prediction than using only data from one modality. To directly test this and 

measure the unique variance accounted for by each modality, the ensemble was also tested with each 

of the four data modalities excluded. 

The entire analysis was carried out within a nested 5-fold cross-validation (CV) framework, that is, 

with an additional layer of CV within the training set of the main CV framework (33). The single-modality 

models were constructed in a nested training set (80% of the training set or ~64% of the whole dataset) 

and applied to the nested test set (20% of the training set or ~16% of the whole dataset). In the main 

training set (~80% of the data), the nested test set predictions were used to build the ensemble. This 

ensemble model was then applied to the outer test set (20% of observations) to generate a final outcome 

prediction for each observation. The entire analysis was repeated 10 times with 10 different CV 

assignments. 

 To determine whether the modality-specific models and the ensemble predicted the outcome 

significantly better than chance, all analyses were repeated using a randomly permuted outcome instead 

of the true outcome for each participant (“null” model) to establish an empirical significance threshold. 

The primary metric for estimating model fit was root mean squared error (RMSE) (33). Statistical 

significance was evaluated using students’ t-tests to compare RMSE values to RMSE values from the 

null model. For the single-modality models this was done using RMSE in the nested test sets (5 values 

for each iteration), and for the ensemble this was done using RMSE for the main test sets of all analysis 

iterations (one value for each iteration). For the single-modality models, predictors that significantly 

contributed to the model were also determined based on the null model. More specifically, those 

predictors for which the magnitude of the regression weights exceeded the 95th percentile of the 

distribution seen in the null model were taken to contribute to the regression model above chance level 

(i.e. “passing the significance threshold”). Since the single-modality models generated in the nested CV 
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framework and ensemble models generated in the main CV framework were evaluated, the significance 

threshold was based on the following levels of examination: (1) Average regression weights for each 

main CV iteration (5 sets of values per analysis iteration), (2) average regression weights for each 

analysis iteration (1 value per analysis iteration) (3) overall average regression weight. Subsequently, 

only predictors that passed the significance threshold (1) in at least one CV fold of every iteration, (2) in 

the majority of analysis iterations, and (3) when considering overall average regression weights, are 

reported. A full list of features and their performance for these metrics can be found in the Supplementary 

materials. 

 

>>>>>> FIGURE 1 <<<<<<<< 

 

Results 

The ensemble model significantly predicted follow-up AUDIT score (pRMSE=6.38e-19, RMSEavg=0.6544, 

RMSEmin=0.6299, RMSEmax=0.6948). Pearson correlations indicate that between 51% and 60% of the 

variance in follow-up AUDIT score could be explained by the model (rmean=.7543, rmin=.7190, 

rmax=.7759,). All single-modality models were significantly better than chance (Table 2), but the 

ensemble was better than all single-modality models (pBID=1.5e-17, pSACE=6.5e-17, pGMV=5.7e-

33,pPsychometric=1.7e-12). 

 

>>>> TABLE 2 <<<<<< 

 

When comparing the ensemble model predicting follow-up AUDIT scores with all four modalities to a 

version of the ensemble where one modality was removed, removal of the psychometric and of the 

SACE task modality each resulted in a significant reduction in model performance after multiple 

comparison correction (Table 2). For baseline AUDIT scores, only the removal of the psychometric 

modality significantly reduced model fit, suggesting the SACE task modality is more useful for predicting 

follow-up AUDIT scores than for explaining baseline AUDIT scores (Supplementary Table 3).  

 

1.0 Non-neuroimaging predictors 
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Current smoking and a higher score on AUDIT item 6 (“How often during the last year have you 

needed a first drink in the morning to get yourself going after a heavy drinking session?”) predicted 

higher AUDIT scores at follow-up.  

Since current smoking was also predictive for baseline AUDIT scores, AUDIT item 6 was the only 

unique predictor of follow-up AUDIT scores (Supplementary Table 4 for unique predictors for 

baseline AUDIT scores)  

 

2.0 Neuroimaging predictors  

2.1 SACE 

2.1.1 Alcohol>Soda 

During the presentation of alcohol>soda pictures, higher activity in the medulla and 

left inferior parietal lobule (BA40), and lower activity in the lateral cerebellum and left 

ACC (BA24) predicted higher follow-up AUDIT scores.  

The results for the prediction of baseline AUDIT scores showed that higher activity in 

the medulla was also predictive of higher baseline AUDIT scores, making activity in 

the inferior parietal lobule, cerebellum and ACC unique predictors for follow-up AUDIT 

scores (Figure 2).  

2.1.2 Social>Non-social 

During the presentation of social>non-social pictures, lower activity in the left ACC 

and left cerebellum predicted higher follow-up AUDIT scores.  

In contrast, the results for the prediction of baseline AUDIT scores showed that higher 

activity in the cerebellum predicted higher baseline AUDIT scores, with no effect for 

the same ACC region (Figure 2).  

2.1.3 Interaction ((social alcohol>social soda)>(non-social alcohol>non-social soda)) 

During the interaction contrast, higher activity in the right anterior PFC (BA10), and 

lower activity in the left occipital lobe (BA18), left thalamus, and cerebellum predicted 

higher follow-up AUDIT scores. 

The results for the prediction of baseline AUDIT scores showed that lower activity in 

the same occipital ROI was also predictive for higher baseline AUDIT scores, making 
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activity in the anterior PFC, thalamus, and cerebellum unique predictors for follow-up 

AUDIT scores (Figure 2). 

 

>>>>> FIGURE 2 <<<<<<<<< 

 

2.2 BID  

For conciseness of the manuscript only the beer>water contrast for the three phases of the task is 

described here. A full description of all predictors for baseline as well as follow-up AUDIT scores in 

all contrasts can be found in Supplementary Table 4.  

 

2.2.1 Anticipation  

During the anticipation of beer>water, higher activity in the left anterior dlPFC (BA 10 

and BA 47) and right caudate nucleus (BA 48), and lower activity in the left primary 

motor cortex (BA 4) predicted higher follow-up AUDIT scores. With all areas except 

for the primary motor cortex being significant for baseline AUDIT prediction, the 

primary motor cortex activity was uniquely predictive of follow-up AUDIT (Figure 3). 

2.2.2 Outcome notification 

During the outcome notification of beer>water, higher activity in the following areas 

predicted higher follow-up AUDIT scores:  the bilateral OFC (BA 11) extending into 

the left nucleus accumbens (BA49), hypothalamus and subthalamic nuclei (BA49), 

the inferior frontal gyrus (BA45), left posterior cingulate cortex (BA30) extending into 

the caudate and fornix and adjacent to the lateral ventricle, left vermis (BA 19), left 

inferior temporal gyrus (BA 20). Moreover, lower activity in the right cerebellum and 

left ACC (BA24) was predictive of higher follow-up AUDIT scores.  

The results for the prediction of baseline AUDIT scores showed that lower activity in 

the OFC and accumbens predicted higher baseline AUDIT, the effect being in the 

opposite direction to the follow-up AUDIT prediction. Results for the cerebellum, 

inferior frontal gyrus, and caudate/fornix were in the same direction for the baseline 

AUDIT prediction as for the follow-up AUDIT prediction. Vermis, inferior temporal 
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gyrus, posterior and ACC activity were thus unique predictors of follow-up AUDIT 

(Figure 3). 

2.2.3 Delivery 

During the delivery of beer>water, higher activity in the right cerebellum, the right 

anterior PFC (BA10), right premotor cortex (BA 8), left occipital cortex (BA 19), and 

brainstem predicted higher follow-up AUDIT scores. Moreover, lower activity in the 

left temporal cortex (BA 20, 21, 38) predicted higher follow-up AUDIT scores (Figure 

3).  

Activity in the right anterior PFC and right cerebellum were also predictive of baseline 

AUDIT, making premotor, occipital, brainstem, and temporal activity unique predictors 

of follow-up AUDIT (Figure 3). 

 

>>>>>> FIGURE 3 <<<<<<< 

 

2.3 GMV 

Greater grey matter volume in the left insula (BA13), and lower grey matter volume in the 

right OFC (BA10) stretching into the anterior PFC (BA11) predicted higher follow-up AUDIT 

scores.  

The results for the prediction of baseline AUDIT scores showed that more grey matter 

volume in the insula was also predictive for baseline AUDIT scores, making grey matter 

volume in the OFC and anterior PFC unique predictors for follow-up AUDIT scores (Figure 

4).  

 

>>> FIGURE 4 <<<<< 

 

Discussion 

Using a broad predictive modelling approach, the aim of this study was to identify variables that predict 

future heaviness of drinking in young adults, measured using AUDIT scores (29). The results revealed 

that an ensemble model, combining non-neuroimaging and neuroimaging data, predicted future drinking 

best. When testing all domains separately, they all performed better than chance, but only the removal 
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of non-neuroimaging and cue-reactivity during the social cue-exposure task significantly increased error. 

Individuals reporting the need to drink in the morning was the strongest unique predictor. Thus, future 

drinking in young adults is most strongly predicted by disorder-like aspects of current drinking and BOLD 

responses to alcohol and social cues. Notably, neuroimaging data did not improve prediction of current 

alcohol use. 

To the best of our knowledge, this is the first study to employ a data-driven machine learning 

approach to reveal variables that predict future alcohol use in young adult drinkers. While our results 

are in line with previous findings showing lower predictive value of neuroimaging compared to non-

neuroimaging data for the prediction of heavy alcohol use over time (16, 34), we also demonstrated that 

the likelihood of heavy drinking is best explained by a combination of different assessment domains, 

implying complex and multi-faceted causal factors (16).  

We identified that the need to drink in the morning, a variable not typically examined in similar studies 

(16-18), was the single strongest predictor of future drinking. This is therefore the first study to identify 

this simple self-report item as a possible target for risk assessment in young adults. Notably, this one 

item from the AUDIT questionnaire remained an important contributor to the prediction model despite 

controlling for overall AUDIT score. However, as previous similar studies have not tested this item 

specifically, replication is needed before use of this item as a screener in healthcare settings can be 

endorsed.   

The results further demonstrate that BOLD responses to alcohol-related cues that include social 

environmental contexts contribute significantly to the prediction of future alcohol use, although inferential 

statistics reported in a previous publication did not find a relationship between social alcohol cue 

responses and actual drinking in social settings (27). Higher follow-up AUDIT scores were generally 

predicted by 1) lower activity in the ACC and cerebellum in response to alcohol (compared to soda) 

cues and in response to social (compared to non-social) cues, 2) higher activity in the inferior parietal 

lobule ( (IPL) in response to alcohol (compared to soda) cues, 3) as well as higher activity in the PFC 

and lower activity in the thalamus and cerebellum in response to social alcohol (over social soda, 

compare to non-social alcohol over non-social soda) cues. These findings are not in line with the 

increased BOLD responses in reward-related brain areas that would be hypothesized based on the cue-

reactivity literature (35-37). Instead, our findings seem to highlight the role of more cognitive control-

related areas such as the ACC (38-40) during alcohol cue-reactivity as predictors of future use. Reduced 
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activation in these areas is in line with dual-process theories (41) and the involvement of a fronto-parietal 

brain network in substance use. The current evidence is not sufficient to draw strong conclusions but 

supports increased attention to areas outside of the reward system in young adult substance use. In line 

with this argument, specific attention may be given to the role of the cerebellum. The cerebellum is a 

brain region that has consistently demonstrated volumetric (42-47) and functional abnormalities (48-51) 

in individuals with heavy alcohol consumption. To date, there have been few investigations of cerebellar 

function in young adults in relation to impulsive behaviour and substance use. However, reduced reward 

responses in binge-drinkers in the cerebellum have previously been observed (52), and our findings 

suggest that aberrant cerebellar function is associated with future drinking.  

While the contribution to the multi-modal ensemble model was not statistically significant, BOLD 

responses during the anticipation and obtaining of sips of beer nevertheless predicted future AUDIT 

scores better than chance. Previous work using inferential statistics again found no association between 

BOLD responses during this task and different levels of problematic drinking (26). Without drawing 

strong conclusions, we want to highlight that higher activity in reward-related brain areas (OFC and 

ventral striatum) during anticipation was predictive of current and future drinking, suggesting that 

anticipation of beer rewards during this task is associated with real-life alcohol use. Moreover, lower 

activity in the ACC during outcome notification of beer compared to water predicted future drinking, but 

not current drinking. As noted above, low ACC activity during the cue-reactivity task was also a predictor 

of a higher follow-up AUDIT score, highlighting ACC responsiveness to alcohol stimuli as a risk factor 

for future heavy drinking.  

Finally, while grey matter structure again predicted follow-up AUDIT scores better than chance, this 

modality predicted drinking with the lowest accuracy. Nevertheless, reduced grey matter volume in the 

insula and adjacent regions was associated with both current and future AUDIT scores, in line with a 

large body of work showing alterations in insular structure and function associated with substance use 

(53). We further found that reduced grey matter volume in the OFC and anterior PFC predicted future 

drinking only. Previous studies have found lower OFC volumes in heavy drinkers (54) and relapsers 

(55). Whether OFC volumetric changes are a pre-existing risk factor for alcohol use thus remains to be 

examined.  

There are some important considerations to be noted regarding findings in this study. First, despite 

contributing the largest amount of explained variance to the prediction, only two of the non-neuroimaging 
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variables reached the threshold for statistical significance. However, it is not necessarily the case that 

these two predictors contribute more to the AUDIT prediction than all other features. Since we examined 

findings at multiple stages of the cross-validation framework, the significance threshold was 

correspondingly very strict to minimize the chance of false positive findings. Furthermore, we did not 

exclude variables based on collinearity, and we included single-item values as well as the resulting scale 

summary values to maximize the information included in our dataset. Interaction effects or shared signal 

between features may thus have led to regression weights being distributed across features. Any 

individual feature sharing in such an effect may thus not have reached the significance threshold despite 

its inclusion contributing meaningfully to the model. As our primary aim was to quantify the overall 

contribution of different data modalities, further analyses to quantify the contribution of individual 

features or feature groups to the prediction was beyond the scope of this study. Second, despite 

including a large sample of participants for a neuroimaging study (n = 147 for current and n = 128 for 

future drinking), the sample is still relatively small in the context of machine learning. To mitigate this 

and enhance the reliability of our findings, we used multiple resampling techniques. With the field 

progressing towards larger sample sizes with more power (56), we encourage future studies to keep 

moving in this direction. Third, the implications of our findings are limited by the original study design. 

More specifically, only a relatively short time period elapsed between our baseline and follow-up 

measure, and our outcome measure consisted of self-report of heaviness of drinking (i.e. AUDIT) rather 

than a measure of real-time alcohol use.  

In conclusion, here we used machine learning tools to gain insight into the relative contributions of 

predictors from different assessment domains for estimating future young adult alcohol use. We report 

four single-modality models reflecting brain structure, brain function, and non-neuroimaging variables 

including approach biases, life history, and personality factors, all of which were able to predict future 

alcohol use significantly above chance level. Furthermore, combining assessment domains into a single 

ensemble model significantly improved predictions. We can conclude that brain function and structure, 

as well as a wide array of self-report variables, can serve as valuable predictors for future heaviness of 

drinking among young adults. We found that the specific assessment of the urge to drink alcohol in the 

morning might be an important novel marker to identify future heavy drinkers. Based on our findings, we 

would further suggest a closer examination of the role of ACC and cerebellum activity and OFC grey 

matter volumes as potential risk factors associated with heavy drinking in young adults over a prolonged 
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timeframe. Moreover, we illustrated that multi-modal prediction models can contribute valuable 

information to our understanding of the aetiology of heavy alcohol use and we encourage future studies 

to continue this line of research to eventually move towards individualized treatment and prevention 

efforts.  
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Legends for tables and figures 
 
Table 1. Sample descriptives of psychometric variables  

Table 2. Single-modality and ensemble model fit 

 
Figure 1. Representation of the analysis flow for ensemble learning models. BL: Baseline, FU: Follow-
up (29), Beer-Incentive-Delay task (26), SACE: Social-Alcohol-Cue-Exposure task (27), GMV: Grey 
Matter Volume. 
 
Figure 2. ROIs during the social alcohol cue-exposure task that were associated with the prediction of 
baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 
 
Figure 3. ROIs during the beer-incentive delay task that were associated with the prediction of 
baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 

 
Figure 4. GMV ROIs during the beer-incentive delay task that were associated with the prediction of 
baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 
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Table 2. Sample descriptives of psychometric variables  

 
Variable Summary Statistics at 

Baseline (n = 147) 

Demographics   

 Age in years (M/SD) 22.75 (1.84) 

 Education (%)a 

Low 3% 

Middle 22% 

High 75% 

 BMI (M/SD) 22.82 (2.86) 

Alcohol-related 

measures 
  

 AUDITb (M/SD) 12.82 (6.42) 

 Age of first alcohol (M/SD) 14.04 (2.14) 

 Alcohol use last 4 weeksc (M/SD) 3.35 (.77) 

 Binge drinking last 4 weeksd (M/SD) 4.42 (1.81) 

 Weekly drinkinge (M/SD) 18.25 (13.25) 

 Drinking motivesf (M/SD) 

Social 3.50 (.67) 

Coping 1.71 (.62) 

Enhancement 2.98 (.76) 

Conformity 1.65 (.60) 

 Liking ratings BID taskg (M/SD) 
Beer 5.80 (1.72) 

Water 6.93 (1.33) 

 Bias scores SRC taskh (M/SD) 

SA 83.73 (83.34) 

NA 86.13 (79.03) 

SS 49.07 (108.83) 

NS 61.59 (89.29) 

Interaction 10.12 

(180.35) 

 Imitation scores BarLabi (M/SD) 2.23 (1.27) 

 Social drinking scores Barlabi (M/SD) 2.78 (1.82) 

 Drinking context 

Parties 87% 

Discos 48% 

Friends’ homes 69% 

Sports bars 19% 

Cafes 70% 

Other 19% 

Substance use   

 Smoking ever (% yes) 69% 

 Smoking currently (% yes) 16% 

 Lifetime sedative usej (%) 

never: 75% 

once/twice: 10% 

3-5 times: 8% 

6-9 times: 3% 

10-19 times:  3% 

20-39 times: 1% 

>40 times: 0% 

 Lifetime cannabis usej (%) 

never 22% 

once/twice 10% 

3-5 times 16% 

6-9 times 4% 

10-19 times 14%  

20-39 times 9% 

>40 times 25% 

 Lifetime cocaine usej (%) 

never 89% 

once/twice 3% 

3-5 times 5% 

6-9 times 1% 

10-19 times 1% 

20-39 times 0% 

>40 times 1% 

 Lifetime speed usej (%) 
never 87% 

once/twice 5% 
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3-5 times 4% 

6-9 times 0% 

10-19 times 1% 

20-39 times 3% 

>40 times 0% 

 Lifetime Ecstasy (MDMA) usej (%) 

never 60% 

once/twice 13% 

3-5 times 11% 

6-9 times 5% 

10-19 times 7% 

20-39 times 3% 

>40 times 1% 

 Lifetime psychedelic usej (%) 

never 80% 

once/twice 10% 

3-5 times 5% 

6-9 times 0% 

10-19 times 3% 

20-39 times 1% 

>40 times 0% 

 Lifetime heroin usej (%) 

never 98% 

once/twice 1% 

3-5 times 0% 

6-9 times 0% 

10-19 times 0% 

20-39 times 0% 

>40 times 1% 

 Medication use currently (% yes) 9% 

Other   

 Current psychosocial help (% yes) 14% 

 Education level parentsa (%) 

Low 14% 

Middle 50% 

High 36% 

 Impulsivity (BIS)k (M/SD) 

Attention 10.72 (2.03) 

Cognitive instability 5.95 

(1.69) 

Motor 14.64 (2.99) 

Perseverance 7.51 

(1.65) 

Self-control 11.85 (2.55) 

Cognitive complexity 

10.97 (2.45) 

Total 61.66 (8.54) 

 Self Efficacyl (DRSEQ)j (M/SD) 

Emotional Relief 4.04 

(1.04) 

Opportunity 3.91 (.90) 

Pressure 5.55 (1.10) 

Total 4.39 (.84) 

 NRIm (M/SD) 

Support 3.53 (.52) 

Argue 1.48 (.49) 

Power 2.02 (.57) 

 Delay discountingn (M/SD) .513 (.22) 

 Depressiono (BDI) (M/SD) Total 6.44 (5.03) 

Note aEducation characterized as low, middle and high according to the Dutch education system bAlcohol use disorder 

identification test (AUDIT), range 1-29 (29) cfrequency ranging from 1-5: 1=no alcohol, 2=1-3 days a month, 3=1-2 days a week, 

4=3-4 days a week, 5= every day. dfrequency ranging from 1-7: 1= never, 2= once, 3= twice, 4 = 3-4 times, 5= 5-6 times, 6= 7-8 

times, 7= 9 or more. eNumber of alcoholic drinks based on a 7-day timeline follow-back, range 0-71 (57) rDrinking Motives 

Questionnaire (DMQ), range 1-5 (58) gSubjective scores on liking sips of beer or water during the Beer-Incentive-Delay (BID) task, 

range 1-10 (26) hCognitive bias scores during the Stimulus-Response-Compatibility (SRC) task (27)(Supplement for details) 
iDrinking scores in the BarLab, range 0-4 (27) (Supplement for details) jFrequency of use according to the ESPAD categories (59, 

60) kBarrat Impulsiveness Scale (BIS) (61) lDrinking Refusal Self-Efficacy Questionnaire (DRSEQ) (62) mNetwork of Relationship 

Inventory (NRI) nDelay Discounting task (63) oBeck Depression Inventory (BDI) (64).  
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Table 2. Single-modality and ensemble model fit 

 BID SACE GMV Psychometric 

Single-modality RMSE  

(p compared to null) 

.7810  

(p=9.4e-51) 

.7833 

(p=3.1e-56) 

.9172  

(p=2.1e-41) 

.7612  

(p=6.5e-45) 

Individual model r2  

(p compared to null) 

.3918  

(p=2.4e-57) 

.4137 

(p=3.6e-61) 

.3282  

(p=4.6e-50) 

.4353  

(p=3.3e-54) 

Increase in ensemble RMSE when 

excluding this modality  

(p compared to full ensemble) 

3.76%  

(p=.0462) 

6.62% 

(p=.0010)* 

2.50%  

(p=.0978) 

13.09% 

(p=5.9e-8)* 

*p<.0125     

 

 

 
Figure 1. Representation of the analysis flow for ensemble learning models. BL: Baseline, FU: Follow-
up (29), Beer-Incentive-Delay task (26), SACE: Social-Alcohol-Cue-Exposure task (27), GMV: Grey 
Matter Volume. 
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Interaction 

 

Figure 2. ROIs during the social alcohol cue-exposure task that were associated with the prediction of 
baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 
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Figure 3. ROIs during the beer-incentive delay task that were associated with the prediction of 

baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 
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Figure 4. GMV ROIs during the beer-incentive delay task that were associated with the prediction of 

baseline AUDIT score (purple), follow-up AUDIT score (orange), or both (yellow). 
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