
Storing and analyzing a genome on a blockchain

Gamze Gürsoy1,2,†, Charlotte M Brannon1,2,†, Sarah Wagner3 and Mark Gerstein1,2,3*

*Correspondence: pi@gersteinlab.org

1. Program in Computational Biology and Bioinformatics, Yale University, Whitney Avenue,

06520 New Haven, CT, USA

2. Department of Molecular Biophysics and Biochemistry, Yale University, Whitney Avenue,

06520 New Haven, CT, USA.

3. Department of Computer Science, Yale University, Prospect Street, 06520 New Haven, CT,

USA.

†These authors contributed equally to this study.

Keywords: blockchain, multichain, personal genome, blockchain database

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Abstract
The genomic characterization of individuals promises to be immensely useful for biomedical
research and healthcare. However, a critical barrier to expanding personal genome sequencing
is achieving secure, high-integrity storage of raw data. While cloud storage offers solutions to
access such data from any place and device, the vulnerabilities of centralized storage in relation
to security, data integrity, and robustness, such as single points of failure, have not yet been
addressed. Blockchain is a potential alternative to these storage modes. However, storing
large-scale data on blockchain can be challenging due to slow transaction speeds, the potential
for chains to reach large sizes, and limitations on querying data stored on-chain. Currently,
several genomic storage applications incorporate blockchain, but likely because of these
challenges, many use blockchain only to facilitate and log data-access transactions, rather than
to store raw genomic data on-chain. While this secures the process of data access, it does not
secure the data itself, which is often stored off-chain (i.e. in a cloud or file-hosting services).
Here, we developed a novel method of storing reference-aligned reads on-chain in a private
blockchain network. We also developed tools for accessing and analyzing the on-chain data.
We addressed the challenges of on-chain data storage by minimizing the data inserted to the
chain using reference-based data compression techniques and by binning the on-chain data by
genomic location to reduce retrieval times. Our tools provide open-source blockchain-based
storage and access for advanced genomic analyses such as variant calling.

Introduction
Modern advances in personalized medicine have resulted in an increasing number of individuals
willing to sequence their own genome for disease-risk predictions and ancestry analysis, which
has brought us closer to an era of genomic data-driven health care and biomedical research.
Given the widespread interest in understanding one’s own genomic data, and the promise of
these data for advancing biomedical research, it is almost inevitable that genome sequencing
will become part of routine clinical care in the future and that the number of sequenced human
genomes will continue to grow (Khan and Mittleman 2018).

Growth of personal genomic data has been limited by bottlenecks in computational
requirements and server capacity (O’Driscoll et al. 2013). The NIH and several other institutions
are moving toward cloud-computing-based services in order to overcome these bottlenecks
(Patterson 2018; Navale and Bourne 2018; GovernmentCIO 2019). However, cloud-based
storage and data analysis tools present security concerns, as they are based on a centralized
architecture and are therefore vulnerable to single-point-of-failure losses (Ozercan et al. 2018).
They also require trust in a third-party company (i.e. Google or Amazon), which may not be
desired. These are critical problems; as genomic data becomes increasingly integral to our
understanding of human health and disease, its integrity and security must be a priority when
providing solutions to storage and analysis. Corruption, change, or loss of personal genomes
could create problems in patient care and research integrity in the future. Another issue
associated with data storage is data ownership. When an individual purchases a sequencing
service from a company such as 23andMe, they are often giving that company the right to

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

monetize their genomic data by selling it to pharmaceutical companies (Rosenbaum 2018).
Ideally, individuals would retain ownership and be able to benefit from their own data (Grishin et
al. 2018). Yet, the storage infrastructure to achieve this goal is lacking.

An ideal implementation of personal genomic data storage would 1) protect from loss and
manipulation, 2) provide appropriate access to clinicians and biomedical researchers, and 3)
allow the individual control over their own genomic data. In recent years, Blockchain has
emerged as a potential solution that would achieve these requirements. Blockchain has several
key properties which could make it an ideal solution, including a decentralized, distributed
architecture, and cryptographic protocols that yield immutability. Already today, there are
multiple personalized-medicine startups that aim to use blockchain to improve genomic data
storage.

Proposed in 2008 as a global cryptocurrency network (Nakamoto 2008), blockchain is now used
to solve a variety of problems. Blockchain consists of an append-only data structure shared in a
decentralized, distributed network, which can be public or private. The network relies on a
consensus mechanism to add to the chain. Most widely known is proof-of-work (PoW), in which
nodes in the network participate in a mining competition. Others are proof-of-stake (PoS) and
proof-of-authority (PoA). Public blockchain networks typically make use of PoW, which is
suitable for large networks of individuals of unknown identity and intent. On the other hand,
private blockchain networks consisting of individuals with known, semi-trusted identity tend to
use PoA. A previous study highlights the specific benefits of blockchain for biomedical research
applications (Kuo et al. 2017). These include decentralized management, immutable audit trail
creation, data provenance, robustness and availability, security and privacy. A recent review
points out possible use cases of blockchain in genomics research. These include distributed
computation, data storage and distribution, voting on standardization protocols, crediting data
ownership, and infrastructure for large scale organizations such as GA4GH, ELIXIR, TCGA, and
ICGC, which must implement rules and regulations (Ozercan et al. 2018).

There are a few different blockchain platforms one might consider for developing a data-storage
application. One is Bitcoin, a public cryptocurrency network. However, here we are concerned
with private blockchain networks, as genomic data is sensitive and should only be shared with a
set of individuals or institutions (e.g. sequencing centers, physicians, biomedical researchers)
(Figure 1a). Whereas anyone in the world can participate in the public Bitcoin blockchain, only
permissioned individuals can sync a private blockchain. Furthermore, Bitcoin supports only
simple transactions and transfers of small amounts of data (~80 bytes) from one user to
another. Another is Ethereum, which supports more complex transactions via Smart Contracts,
self-executable on-chain programs which write to their own storage. Ethereum is a public
network, but permits the creation of private networks. One of the most prominent platforms for
private-blockchain development is MultiChain, a Bitcoin-like platform. Different kinds of
blockchains are suitable for different use cases. For example, the Bitcoin blockchain is perfectly
suitable for cryptocurrency exchanges. It simply acts as a ledger of transactions between
different accounts. However, for more complex transactions or storage protocols, Ethereum

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

becomes more suitable. MultiChain does not permit on-chain computation as Ethereum does,
but it has several features that make it especially suitable for data storage use cases. Both the
MultiChain platform and Ethereum Smart Contracts have been previously used in medical
genomics applications, but in limited settings (Gursoy et al. 2020; Pattengale and Hudson 2020;
Ozdayi et al. 2020; Ma et al. 2020; Gursoy and Brannon et al. 2020).

Previous reviews outline the current status of commercial and academic proposals that use
blockchain technology to improve genomic data sharing (Ozercan et al. 2018; DeFrancesco and
Klevecz et al. 2019). Among these platforms are CrypDist, Zenome, Nebula Genomics, the
Cancer Gene Trust, and Encrypgen/Gene-Chain. Each of these platforms utilizes blockchain for
different aspects of the genomics data storage and sharing process. For example, Zenome
makes use of Ethereum Smart Contracts to facilitate access to genomic data files and exchange
of ‘ZNA tokens’, cryptocurrency which allow individuals to be compensated for their genomic
data (Ozercan et al. 2018; Kulemin et al. 2017; Zenome.io 2017). Nebula Genomics also uses
Smart Contracts to communicate between nodes in the network, survey participants, and
facilitate data access permissions (Grishin et al. 2018). However, due to the difficulty of storing
large data on blockchains, many of these companies store the genomic data elsewhere, such
as in Blockstack or InterPlanetary File System (Grishin et al. 2018; Currie 2018). For example,
CrypDist uses a custom Blockchain to store links to genomic data files (such as
reference-aligned BAM files), which are actually stored in AWS data buckets (Sahin 2017).
Because these platforms do not actually store genomic data ‘on-chain’, they are missing a key
benefit of blockchain: high-integrity, secure data storage. Storing links to data in a blockchain
can be useful in some cases, for example, if it is important to keep an access log for a particular
dataset (Gursoy et al. 2020). Yet, it does not secure the data itself, nor does it prevent it from
being altered, as it is stored somewhere else entirely. On the other hand, storing genomic data
on-chain maintains the integrity and security of the data (Kuo et al. 2017) . Additionally, while
many existing platforms provide network architectures for storing genomic data, few offer
solutions for performing computation on the data stored in the network. This is a critical gap in
the technology; not only do clinicians and researchers need access to high-integrity, raw
genomic data, but they also require secure tools for querying and streaming the data. This is
likely due to a central caveat of blockchain technology: the inefficiency of storing and querying
data due to the potential for chains to reach large sizes. The storage space and computational
power required by blockchain is greater than a centralized database application due to the
redundancy of storage and network verification protocols. The decentralized system also
creates a higher latency (delay in data communication) during storage and retrieval of data.
Additionally, transactions in the blockchain network require a cryptographic consensus
verification, which makes them slow to publish data to the chain (Nakamoto 2008).

In this study, we present an open-source, proof-of-concept private blockchain network, which
allows efficient storage and retrieval of raw genomic reads, often stored in a reference aligned
format (sequence alignment map (SAM) files) (Li et al. 2009; GA4GH). To overcome the
challenges described above, we developed novel data structures based on nested database
indexing, file-format modifications and compression techniques with the open-source blockchain

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

API MultiChain (Greenspan 2015). We made use of their ‘data stream’ feature, which allows
users to create multiple key-value, time-series, or identity databases that can be used for
data-sharing, time-stamping, and encrypted archiving (Greenspan 2015) (see Supplemental
Information). We provide two tools: the first is SAMChain, which allows users to create a chain
and insert SAM data into it, and the second is SCtools, which provides functions such as (a)
querying, (c) depth analysis, (d) pile-ups for variant calling, and (e) re-creating SAM files and
their derivatives (such as BAM and CRAM files).

Results
MultiChain provides the most advantages to the SAMchain use case
We first evaluated the advantages of major blockchain platforms, Bitcoin, Ethereum, and
MultiChain, for our particular use case (Table 1):

● Bitcoin is primarily designed to be a public cryptocurrency blockchain network, and does
not offer an efficient way of indexing and querying stored data. Thus, we quickly ruled it
out for our particular use case.

● Ethereum makes use of Smart Contracts, which are Turing-complete, on-chain programs
that can perform many different functions (other than just sending value from one account
to another). While Ethereum can be used as a distributed database, it is more suitable for
scientific computation.

● MultiChain is perhaps more suitable for database development due to built-in features
called “streams”. Streams are append-only, on-chain lists of data with key:value retrieval
capability, making store and query functionality extremely easy. From a developer’s
perspective, MultiChain also has advantages of centralized documentation and ease of
implementation.

Given that we wanted to develop a robust software usable by individuals, physicians, and
researchers for storage, query, and computation, we developed SAMchain with MultiChain.
While MultiChain does not currently allow for on-chain computation like Ethereum does, its
natural capacity to be used as a database outweighed this disadvantage. We provide an
Ethereum Smart Contract in our code base as an example of how one might store raw genomic
data in a Smart Contract, which would permit on-chain computations on the genomic data. As
Ethereum becomes more widely utilized for database use cases, SAMchain could be expanded
to Ethereum. In Table 1, we summarize the big-picture differences between Ethereum and
MultiChain.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Table 1 . Brief summary of the big-picture differences between the Bitcoin, MultiChain, and Ethereum and
their suitability for SAMchain.

Private Blockchain Network
We envisioned a network of sequencers, owners, clinicians, and researchers, each syncing
SAMchain (Figure 1a). The owner node initializes a SAMchain, including the data streams
which will store the SAM data. The sequencer node generates the SAM data and requests
access to the data owner’s SAMchain. The owner grants access, allowing the sequencer to
push the owner’s data to their chain. The clinician and researcher nodes, upon making contact
with the owner through other means, may also request access to the owner’s SAMchain and
make use of the SCtools modules to analyze the data. In this scheme, the owner may change
the permissions of SAMchain at any time.

SAMChain’s design provides advantages over traditional blockchain data storage
methods
Next we considered how best to configure data storage in SAMchain. The naive way to store
data in a bitcoin-like blockchain would be to append small amounts of data to each transaction
using OP_RETURN, a script opcode allowing the sender to send a small amount of data (which
varies between platforms) with their transaction. The OP_RETURN data is mined into a block
along with the rest of the transaction. The data that is pushed using OP_RETURN is indexed in
a transaction with a unique identifier, often called “ref” in a transaction. Each transaction can
hold data around ~80 bytes, which means genomic data needs to be stored within numerous
transactions. The unique identifiers need to be stored somewhere separately, as one can

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

retrieve data only with ref. As one can imagine, querying the genome with a specific position, or
doing a pile up analysis with OP_RETURN is extremely difficult and inefficient due to lack of
needed data structures (Sward et al. 2018). In addition to storing the data embedded in
transactions, Multichain offers another data structure to store the data on the chain, called “data
streams.” Each stream item is represented by a blockchain transaction, which is mined and
validated by every node like any other transaction (Greenspan 2016). The embedded key:value
property of the streams allow efficient retrieval of the data on the chain, because when a node in
a MultiChain network subscribes to a stream, it indexes the stream’s content in real time in order
to enable efficient retrieval by keys (MultiChain 2020). The naive way to store data in a
MultiChain stream would be to push all the data to a single stream, and query from it. However,
as shown in Figure 3 Panel b, for our use case retrieval time increases when a stream contains
too many items, as the query algorithm must check through each item to determine if it matches
the queried position or range of positions. Were each genomic read defined by a single point
position, we would not have this problem; we would simply store point positions as keys.
However, because a read is defined by a range of positions, and there is overlap between
reads, our query algorithm must actually check that a given read overlaps with the range or
point queried, which is not possible in a traditional key:value stored dictionary (i.e streams in
MultiChain). To achieve this kind of query with efficiency, we created streams binned by
genomic location. This increases the time it takes to create a SAMchain (which is only done
once), as many streams must be created, but significantly decreases the query time, making
SAMchain a viable way of storing raw genomic reads on a blockchain. In Figure 3 Panel d, we
show the advantage in query time gained by the SAMchain design compared to the
single-stream method, which is up to 25-fold. In Table 2 we summarize the contributions of
MultiChain to our paper, vs. those of SAMchain itself.

Table 2. Contributions of MultiChain vs. SAMchain . The novel method presented in this paper is
SAMchain, a tool that is built upon the functionality of the MultiChain blockchain platform/api. Here we
summarize how the contributions of SAMchain differ from those of MultiChain.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

SAMChain provides a platform for storing next-generation sequencing data in blockchain
It is notoriously difficult to store large amounts of data in a blockchain, due to network latency
and storage redundancy (Kuo et al. 2017). Thus, to store raw genomic data on-chain, we first
needed to manipulate the information content for efficient storage. Whereas a SAM file stores a
read’s sequence and the quality string of the read, SAMchain stores only the difference between
a read and a reference genome. This design was inspired by the CRAM file format, in which a
genomic reference file is optionally used to describe the difference between the aligned
sequence and the reference sequence (Hsi-Yang Fritz et al. 2011). However, CRAM is a
columnar file format composed of containers while SAMchain stores data in plain text. Our
manipulation consists of storing a new data field that we refer to as the ‘modcigar’, a string
containing the sequence data that differs from the reference (e.g. insertions). We show that
there is a ~2 fold reduction in the storage with this manipulation (Figure 2a). Next, we designed
the SAMchain data structure using MultiChain streams. As defined by MultiChain, streams are
ordered lists of items, each with a publisher (who digitally signed the item), a set of keys (to be
used for retrieval), some data (which is embedded on-chain in a transaction), and some meta
data (about the transaction and block corresponding to the item). As we discuss in the section
above and show in Figure 1X, querying data by genomic position from a single stream would be
very time-inefficient. To address this problem, our code creates several streams binned by
genomic position based on an input bin size. For example, the length of human Chromosome 1
(build GRCh38) is 248,956,422 base pairs. If the user were to set the bin size to one million
base pairs, then 248,956,422/1,000,000 = 249 streams would be created for Chromosome 1,
named chr1stream{j}, where j ranges from 1 to 249. In these streams, we stored the SAM
features in the data field, and a feature called “flank” in the key field, which indicates whether a
read’s coordinates span one stream (flank=0) or two (flank=1). The flank feature is necessary
because the position of some reads will naturally span two consecutive streams. This design
allows our query algorithm to know exactly which streams to search during a query, and to
search through streams with fewer items. We confirmed that retrieval time in MultiChain is
based only on the number of entries in a given stream (and unaffected by other streams
on-chain) (Figure 3a). Our code also creates a metaData stream to store the file header, and an
unmappedANDcontigs stream to store any unmapped reads and contigs in the case that they
can be realigned in the future. The design of the SAMchain data structure is shown in Figure1b.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Figure1. SAMchain design and implementation. (a) Overview of the SAMchain network ecosystem.
The network consists of owner, sequencer, clinician, and researcher nodes. The owner node builds the
SAMchain, the sequencer node accesses it and inserts SAM data to the chain. Clinician and researcher
nodes access the SAMchain and analyze the on-chain SAM data. (b) Details of data storage in
SAMchain. A read is typically stored in a SAM file containing several features. Our data structure is
organized by genomic location. A single stream, named metaData, contains all of the header data and

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

other chain info. Many other streams serve as bins by genomic location, and hold the SAM feature data
and MODCIGAR. A FLANK feature is used to indicate whether a read’s position spans two consecutive
bins. Stream items correspond to a single read. A single stream, named unmappedANDcontigs stores
unmapped reads and contigs. (c) Overview of the query process. Upon querying a genomic location, our
algorithm searches through the binned streams to obtain the SAM data and MODCIGAR features
corresponding to the specified location. This data, in combination with a reference genome, yields a
complete SAM read. Our algorithms and stream-based data structures are built on top of MultiChain,
which provides the underlying blockchain, stream design, and network configuration.

We measured time, memory, and storage requirements of building a SAMchain, and the time
requirements of SCtools. All the tests described in Results are done using an alignment file
curated from the high-coverage whole genome sequencing data of individual NA12878 from the
1000 Genomes Project as input data. For speedy testing, we constructed a SAM file with one
disease-causing locus of roughy 1-5 million base pairs per chromosome. The details of these
loci are given in SI Table 2. While we ran performance evaluation with DNA sequencing data,
SAMchain and SCtools are compatible with any next generation sequencing data, including
functional genomics data. For example, SCtools can be utilized to query variants in a gene or
the depth distribution of exons of interest on raw RNA-Seq reads.

For a fixed bin size (1 million base pairs) and varying number of input reads, we evaluated the
time, storage, and memory requirements of building and inserting data to a SAMchain. As
shown in Figure 2c, the storage required per node by SAMchain is approximately 5-fold greater
than that required by a SAM file. For example, our input SAM file containing ~10 million reads
requires 5.5 GB. Building the corresponding SAMchain in a one-node network requires ~25 GB.
As shown in Figure 2b, storage requirements of a SAMchain increase with increasing nodes in
the network, as each node stores redundant data. For a chain storing ~10 million reads, each
additional node required 7.4 GB. The node that inserts the SAM data to the chain will require
the most storage because MultiChain keeps a “wallet” directory, which stores transaction data
especially relevant to the local node~(see SI section 2.1 for details). In Figure 2c, we measured
the time and memory it takes to build and insert data to a SAMchain as a function of the number
of reads in the input SAM file, which show linear and constant trends, respectively. To build and
insert 10,00,000 reads to a SAMchain, it takes ~55 hours. However, this must only be done
once.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Figure 2. SAMchain performance. a) Before inserting SAM data to a SAMchain, we remove the
sequence and quality strings. In plain text, we measured the storage gain by removing these fields. b)
The total network storage required for a SAMchain storing ~10 million reads c) Storage (compared to a
SAM file), time, and memory used to build a SAMchain.

SCtools can query NGS properties directly from SAMChain
We developed SCtools to query reads and other NGS properties from a SAMchain. Specifically,
we developed four modules: queryReads, queryDepth, pileup, and buildBAM. queryReads
queries a SAMchain based on one of four SAM features and outputs reads in SAM format.
Currently, the feature we use for querying is genomic location. queryDepth performs depth
analysis on an input range of genomic coordinates. pileup performs pileup analysis on an input
range of genomic coordinates. buildBAM reconstructs a BAM file from a SAMchain. To show the
scalability and performance of these modules, we first showed that the time to perform a point
query depends only on the number of reads in the queried stream and is not affected by reads
stored in other on-chain streams (Figure 3a). Next, we measured the time requirements of each

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

SCtools module as a function of the number of reads stored in the queried stream (Figure 3b).
The modules show comparable time efficiency, increasing linearly with the number of reads
stored in the queried stream (Figure 3b). We also checked the effect of “AND” queries, that is,
filtering a depth query by mapq score (Figure 3b, ‘+’ icon). We found that this type of query
performed just as well as the other modules. In Figure 3 Panel c, we investigated the impact of
changing the SAMchain bin size for a fixed number of reads stored (~10 million). We found that
increasing the bin size increases the query time, which was expected because a larger bin size
also contains a higher number of reads relative to a smaller bin size. However, increasing the
bin size also decreases the total number of streams, which reduces the time it takes to build the
SAMchain (Figure 3c). In Figure 3 Panel d, we measured query time for a SAMchain storing a
fixed number of reads (~10 million) as a function of the range of genomic coordinates queried.
We found that query time increases linearly with increasing range queried. In Figure 3 panel e,
we show the output of each SCtools module compared to that of the comparable SAMtools
function. And in Figure 3 panel f, we measured the time it takes to build a BAM file from the read
data stored in a SAMchain, and found that the time increases linearly with increasing number of
reads stored in the chain.

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Figure 3. SCtools performance. (a) Query time from a MultiChain stream depends only on the number
of entries in that stream, i.e. is not affected by the number of reads stored in other streams in the chain.
(b) In a single-node SAMchain network, we measured the time performance of queryReads, queryDepth,
queryDepth AND mapq, and pileup for one-bp queries. Each module performs comparably, increasing
linearly as the number of reads stored in the chain increases. (c) We measured the performance of
queryReads for a SAMchain storing ~10,000,000 reads at different bin sizes. SAMchains with smaller bin
sizes yield faster query time, but take longer to build. (d) We measured the effect of the range queried on
performance time. Larger ranges are shown to yield longer query times. We showed the times of
SAMchain (red) compared to a naive, single-stream implementation (blue). (e) We checked the output of
each SCtools module compared to the equivalent SAMtools module.

VCFChain and VCFquery modules provide faster options for direct query of genomic
variants
There is significant value in storing and sharing aligned genomic reads, as opposed to just the
genomic variants called from the aligned reads. Access to raw reads is important because if a
new reference genome build is available, the reads can be re-aligned and new variants may be

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

observed, thereby maximizing the utility of the data. Thus, our primary goal was to create a
blockchain storage system for SAM files. However, there can also be value in sharing variant
data (VCF files). Thus, we also developed VCFchain and a VCF query module. VCFchain stores
data from a VCF file on chain, and VCF query can query variants from the chain by genomic
position, along with rsid and/or genotype. To test these modules, we used a VCF file from a
consented individual in the ENCODE data portal. We chose this vcf because it does not only
contain SNPs and small indels but also a full set of structural variants. In Figure 4, we show the
performance of building a VCFchain and VCFquery. As shown in Figure 4a, the storage
required for a one-node network per node by a VCFchain storing ~6.5 million variants is
approximately 40 GB. As more nodes are added to the network, total storage increases. In this
case, each additional node requires 14 GB. In Figure 4b, we measured the storage, time, and
memory requirements of VCFquery in a one-node network with an increasing number of stored
variants. In Figure 4c, we measured time requirements of VCFquery for position queries, along
with position + rsid and position + rsid + genotype queries. Figure 4d shows the output of
VCFquery for a given read compared to that of bcftools view.

Our VCFchain infrastructure could also be used to store and share variants from a cohort of
individuals. For example, one could build upon our code base to create a VCFchain with the
somatic variants of TCGA dataset stratified by cancer type.

Figure 4. VCFchain and query performance. (a) The total network storage used by a VCFchain (storing
6458146 variants) as a function of the number of nodes in the network. (b) The storage, time, and
memory requirements of building and inserting data to a VCFchain in a single-node network as a function
of the number of reads stored in the chain. Storage is compared to that used by a VCF file. (c)The time
requirements for VCFquery as a function of the number of reads stored in the chain, compared to retrieval
time from a VCF file using bcftools. (d) Output of VCFquery compared to that of bcftools for a given read.

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Comparison to existing blockchain applications for genomics data
In addition to comparing SAMchain and SCtools performance to that of SAMtools, we also
looked into the details of other genomic data storage platforms using blockchain. Because the
role of blockchain in these platforms is qualitatively different from that in SAMchain, we are not
able to make quantitative comparisons. For example, storing links in a blockchain to data stored
elsewhere is fundamentally different than storing the data itself on-chain. Instead, we highlight
the major difference between the platform and SAMchain in Table 3. Note that the information
about each platform is derived from the limited knowledge provided by the company websites
and whitepapers and is presented here to the best of our knowledge. We identified four
companies and/or projects which use blockchain in the context of genomic data storage:
CrypDist, Zenome, Nebula Genomics, and the Cancer Gene Trust. Another is
Encrypgen/Gene-Chain, but their limited documentation prevents any comparison with
SAMchain. While each of these four platforms uses blockchain for some aspect of their network
ecosystem, none uses it to store raw genomic reads on-chain. CrypDist stores links to data,
which appear to be stored in AWS buckets (Sahin et al. 2017); Zenome uses Ethereum Smart
Contracts to facilitate transactions of genomic data, but appears to store the data off-chain in a
distributed file storage system (Zenome.io 2017; Ozercan et al. 2018); Nebula Genomics uses
Ethereum Smart Contracts to facilitate communication between nodes, and Blockstack to
facilitate data storage, but Blockstack stores the data off-chain, either on a local drive or in the
cloud (Digital Ocean, S3, Dropbox) (Grishin et al. 2018; Blockstack docs; Defrancesco and
Klevecz 2019); and finally, the Cancer Gene Trust stores data off-chain in InterPlanetary File
System and raw genomics data locally, and uses Ethereum Smart Contracts to store references
to the data files (Cancer Gene Trust 2018; Currie 2018; Defrancesco and Klevecz 2019;
Ozercan et al. 2018). To the best of our knowledge, SAMchain is the first proof-of-concept
project to store raw genomic reads on a blockchain, on-chain. By embedding the data in the
chain, SAMchain aims to preserve the integrity of the data by taking advantage of blockchain
protocols designed to preserve the integrity of cryptocurrency transactions.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

Table 3 . Side-by-side comparison of existing blockchain genomics data storage platforms and SAMchain.
Importantly, SAMchain is the only one that stores raw genomic data on-chain, leading to high-integrity
data storage.

Discussion
We envision a real-world scenario in which individuals create private blockchains to store their
personal genomes to share with their healthcare providers and biomedical researchers. Simply
with ssh access, healthcare providers and associated genetics researchers can stream or query
patients’ genomes. This reduces not only the risk of data corruption, but also non-permissioned
access to private data. Blockchain provides immutability such that the data cannot be altered,
whether intentionally or accidentally.

Our framework is the first open-source application to allow querying and streaming of genomic
data from blockchain to the best of our knowledge. This is a substantial improvement over the
current biomedical applications of blockchains. To address privacy concerns, our framework
may be extended to store encrypted data in the data streams. One could even encrypt the data
homomorphically, allowing direct computations on the encrypted data (MultiChain 2020).
However, this would add storage and computation overhead to the solution.

While the main benefit of using blockchain for data storage is data security and integrity,
blockchain also makes it easy to append data to large data files. For example, in the cases of

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

SAM files, if a user wishes to add to the data, one could create data streams for these additions
(since it is a private chain, only the owner and the permissioned users of the chain would have
permission to make these changes). Thus, the data owner does not have to deal with opening
large-data files, modifying them, and re-indexing them, which creates costly network traffic.
Searches by genomic location could also check the new data streams, to determine if the owner
has appended any changes to the data. Furthermore, the stream format lends itself well to
storing reads; as discrete, independent items, reads naturally fit into stream items. To make
computation completely on-chain, one could adapt SAMchain and SCtools for Ethereum. To
demonstrate how this might be done, we provide a sample Smart Contract in our SAMchain
code repository. As Ethereum becomes more and more suitable for database development, this
will be an interesting future direction. Another future direction is to create dictionaries from the
SAM files, in addition to reference-based compression techniques, compatible with blockchain
querying mechanisms in order to further reduce chain storage requirements.

Our blockchain solution can be generalized to other large-scale data storage and querying
problems beyond SAM files. Data including but not limited to electronic health records, vcf files
from multiple individuals, and somatic mutation datasets from cancer patients can be stored in
blockchain using our indexing schemes, allowing for rapid and partial retrieval of the data.

Methods
MultiChain specifics
We designed SAMchain as a layer on top of MultiChain. MultiChain data streams make it
possible for a blockchain to be used as a general purpose database. The data published in
every stream is stored by all nodes in the network. Each data stream on a MultiChain
blockchain consists of a list of items. Each item in the stream contains the following information,
as a JSON object (Greenspan 2015): A publisher (string), key:value pairs (between 1-256 ASCII
character, excluding whitespace and single/double quotes) (string), data (hex string), a
transaction ID (string), blocktime (integer) and Confirmations (integer). When data needs to be
queried or streamed, it can be retrieved by searches using the key:value pairs. Publishing a
stream item to a data stream constitutes a transaction. When a node subscribes to a stream, it
indexes the stream items in different ways to enable fast retrieval, and the index entry points to
the transaction ID. Because of the peer-to-peer network architecture, stream items can arrive at
different nodes in the network in different orders. MultiChain permits the user to set a network
ordering parameter to be Local or Global (default is Global, used for SAMchain). Global ordering
means that once the chain has reached consensus, all nodes see the same order in their
streams. Transactions submitted to the network are time stamped via Linux timestamp. When a
transaction happens, it is held in the memory pool. After mining of the transaction is complete,
the transaction is added to a block. Each block has a maximum transaction size, i.e after a block
reaches its maximum size or the time to create a block reaches its limit, the block is sealed and
appended to the chain. This means a data stream in MultiChain can span multiple blocks based
on the time of the transaction (i.e time of the publishing the data to the blockchain). New blocks
are created according to the “target-block-time”, a parameter set upon initializing a chain. We

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

used the default value, which is 15 seconds. We also used the default consensus mechanism,
which is a round-robin schedule of miners (Greenspan 2015). Users can also turn on
proof-of-work mining if they desire, but the security of MultiChain does not depend on the
proof-of-work scheme. As outlined in the MultiChain whitepaper (Greenspan 2015, pg. 3),
problems can arise if proof-of-work mining (used in the public Bitcoin blockchain, for example) is
applied to a private or “institutional” setting, such as the “51% attack,” in which over half of the
permissioned participants collude to alter the chain (Greenspan 2015). To resolve this issue,
MultiChain makes use of a “mining diversity” parameter, which controls the number of blocks
which may be created by a given user within a set time window. Tuning this parameter changes
the proportion of the network that would need to collude in order to undermine the network
(detailed on pg. 7-8 of Greenspan 2015). Therefore, even though MultiChain is a private
network, immutability is achieved.

We designed SAMchain, SCtools, VCFchain, and VCFquery using MultiChain version 2.0.3 and
Python version 2.7.16. Together, the SAMchain and SCtools repositories contain six modules:
buildChain, insertData, buildBAM, queryReads, queryDepth, and pileup. VCFchain and
VCFquery contain three modules: buildChain, queryPosition, and queryGT-RSID.

SAMchain and SCtools design overview
We took an approach to maximize the efficiency of storing and querying data. Our goal was to
store minimal data while indexing it in a creative way to allow rapid retrieval, thereby reducing
the time and memory cost of analysis and increasing the utility of the stored data (Figure 1a). To
achieve this goal, we manipulated a) data structures in data streams, and b) data to be stored in
SAM files. For (a), we first separated mapped and unmapped reads from a SAM file. First, we
created a data stream called metaData to store the header data and general information (bin
size, number of streams, etc.) about the chain. We then created N streams (called chr_i-bin_j).
Each of these N streams represents a bin of genomic coordinates. Based on the location of a
read mapped on the human reference genome, we log the read names as data in chr_i-bin_j
stream. Some reads will span two bins. In that case, we store the read in the bin to which the
beginning of the read maps. We then add a boolean key to the chr_i-bin_j stream that we call
FLANK (SI Figure 1). FLANK=0 indicates that the entire read is in that bin. FLANK=1 indicates
that the read coordinates span two consecutive streams. The FLANK value tells our retrieval
algorithm to search for a particular read in two chr_i-bin_j streams. Our query algorithm can
retrieve the data in the chr_i-bin_j stream based on the queried location. Our code base allows
developers to bin the data according to a desired feature that might be queried by users such as
read names, mapping qualities, or alignment scores; these are the features stored as keys in
the binned streams. Our implementation uses binning by genomic location, as it is the most
commonly queried property for depth analysis or variant calling. Unmapped reads are stored in
a separate stream called unmappedANDcontigs, but not in the chr_i-bin_j streams. For (b), we
were inspired by the data compression techniques in CRAM files (Hsi-Yang Fritz et al. 2011,
Gursoy et al. 2019), and stored the difference between the read and the reference sequence in
the chain instead of the sequences themselves to reduce the size of the data stored on-chain

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

(SI Figure 6). With this approach, our implementation is able to regenerate the sequence of a
read by using the reference genome and other features stored in the chain.

We developed SCtools to extract information from SAMchain for downstream analysis. We
provide a code base that has the ability to query on a blockchain. The key:value property of the
data streams in MultiChain2.0 together with the ability to query on multiple keys provides an
opportunity to extract data from the blockchain without the need for costly calculations. Our
query module can retrieve data from a chain based on the position in the reference
genome(Figure 1c).

If a user queries the chain for reads mapped to a genomic region, our query module first finds
the correct streams/bins containing that region. From the bins, it extracts the SAM data and
MODCIGAR, and uses an input reference file to return the results. This approach reduces the
query time significantly due to the following reason: Data streams do not allow range searches.
If the data were kept in a single stream, then the query would have to iterate over the location
range for every single stream item. With binned streams, the query is only done on the streams
containing the relevant data.

Below we describe the functionality of each SAMchain, SCtools, VCFchain, and VCFtools
module.

buildChain (owner node) : buildChain initializes a MultiChain blockchain and creates streams
that will define the SAMchain. Three types of streams exist in SAMchain: 1) metaData,
2)unmappedANDcontigs, and 3) binned streams. metaData is a single stream which stores
SAMchain settings (bin length, read length, and number of bins) and will eventually store the
header from an input SAM file. unmappedANDcontigs is a single stream which stores the
features from the input SAM file, except for the sequence and quality string, for unmapped
reads and contigs. When parsing an input SAM file, the insertData module will use the FLAG
feature to determine whether to put a read into the unmappedANDcontigs stream or a binned
stream. Binned streams are a series of streams which map to a range of positions in the
genome. buildChain divides each chromosome into N kb intervals (N is set by the developer)
and creates a stream for each interval. We made this design choice to improve query efficiency.
A user’s query leads to a specific binned stream (or set of streams), rather to all the data.

insertData (sequencer node): insertData pushes data from an input SAM file to the relevant
streams in an initialized SAMchain. First, insertData uses pysam to extract the header data from
an input SAM file and pushes the header, line-by-line, to the metaData stream. Next, it uses
pysam to extract the features of the reads in the SAM file, one at a time, and checks the read’s
flag feature to determine whether it belongs in the unmappedANDcontigs stream, or a binned
stream. It then pushes the read features to the appropriate stream as the data field of a single
stream item. It checks whether the read’s position spans two streams. If it does, it stores that
read in the stream mapping to its start position and stores “FLANK=1” as a key. If it does not, it
stores “FLANK=0” as a key.

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

buildBAM (clinician/researcher node) : buildBAM rebuilds a BAM file from the data stored in a
SAMchain. It first retrieves the header data from the metaData stream. Next, it retrieves the data
from the binned streams and converts it to a tab-separated format. Using pysam, it extracts from
an input reference file the sequence string and alters it based on the cigar. Finally, it uses
pysam to write the read entry to an output BAM file.

queryReads (clinician/researcher node): queryReads searches a SAMchain for reads that
match an input region of interest in the genome. It first pulls information from the metaData
stream about how the reads were binned during buildChain, and uses it to obtain the names of
the stream(s) that correspond to the input genomic location. If the first stream in this list is not
the first stream of a chromosome, it adds the stream name just upstream, in the case that a
FLANK=1 read is present in that stream. Given these stream names, it uses built-in MultiChain
commands liststreamitems and liststreamkeyitems to retrieve the items from those streams and
check whether they match the region queried. Then, using the modcigar, it extracts the correct
sequence from the reference genome and returns the results.

queryDepth (clinician/researcher node): SAMtools provides a useful function to determine the
sequencing depth for a queried location or all of the locations in the genome. queryDepth
follows a similar algorithm to queryReads. However, after obtaining the read data, queryDepth
must check the cigar values for each read in order to calculate depth taking into account
information about insertions and deletions (for example, if a deletion occurs at a location queried
in one of the reads, this should contribute +0 to the depth at that location). After calculating the
depth values, queryDepth returns the results.

pileup (clinician/researcher node) : SAMtools provides a useful function to determine the
pile-ups for a queried location or all of the locations in the genome. Pile-up files contain the
number of reads that mapped to a location, the reference allele for that location, and the
sequenced nucleotide in each read for that location. This allows users to visualize the genetic
variation and calculate allele frequencies for the variants. pileup follows a similar algorithm to
queryReads. However, after obtaining the read data, pileup must check the cigar values for
each read in order to output pileup taking into account information about insertions and
deletions. After doing so, pileup returns the results.

VCFchain & VCFquery
buildChain : buildChain initializes a MultiChain blockchain and creates streams that will define
the VCFchain. Two streams exist in VCFchain: 1) metaData and 2) allVariantData. metaData
will eventually store the header from an input SAM file. allVariantData will store the features
from the input VCF file, with genomic position, genotype, and rsid as the keys. All variants will
be inserted to the allVariantData stream.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.03.975334

queryAND: Because positions in a VCF file are unique, queryAND retrieves VCF feature entries
from the allVariantData stream using input genomic position as the key. It can filter data based
on an input genotype and/or variant ID.

Data Access
SAMChain and SCTools can be found at https://github.com/gersteinlab/SAMChain . The
Ethereum smart contract, and VCFChain code can also be found in the github page. The SAM
file (BAM) used in this manuscript can be found in
http://homes.gersteinlab.org/people/gg487/samchain/. The vcf file used can be accessed at
https://www.encodeproject.org/files/ENCFF907ASL/.

Acknowledgements
We thank Dr. Mihali Felipe for the help with setting up the servers to run SAMChain in a multi
node environment.

Disclosure Declaration
None.

References
Blockstack docs. General FAQ - What is Gaia? What is a data storage provider?
https://docs.blockstack.org/faqs/allfaqs

Cancer Gene Trust. 2018. Cancer Gene Trust: Decentralized distributed database of genomic
and clinical data. Github repository. https://github.com/cancergenetrust

Currie R. 2018. Cancer Gene Trust - About. Github ‘About’ document.
https://github.com/cancergenetrust/dapp/blob/master/public/docs/about.md

Defrancesco L, Klevecz A. 2019. Your DNA Broker. Nature Biotechnology 37: 842-847.
https://doi.org/10.1038/s41587-019-0200-5

encrypgen. 2017. GeneChainCoin repository, DNA repository. Github repositories.
https://github.com/encrypgen

EncrypGen. 2018. Gene-Chain, Version 1.0 Encrypgen website.
https://encrypgen.com/wp-content/uploads/2018/12/Gene-ChainVer1.pdf

GA4GH Global Alliance for Genomics and Health. Genomic Data Toolkit.
https://www.ga4gh.org/genomic-data-toolkit/

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://github.com/gersteinlab/SAMChain
http://homes.gersteinlab.org/people/gg487/samchain/
https://www.encodeproject.org/files/ENCFF907ASL/
https://docs.blockstack.org/faqs/allfaqs
https://github.com/cancergenetrust
https://github.com/cancergenetrust/dapp/blob/master/public/docs/about.md
https://doi.org/10.1038/s41587-019-0200-5
https://github.com/encrypgen
https://encrypgen.com/wp-content/uploads/2018/12/Gene-ChainVer1.pdf
https://www.ga4gh.org/genomic-data-toolkit/
https://doi.org/10.1101/2020.03.03.975334

Gonzalez V, Kopsell D. 2020. Mid-year Update, June 2020. Encrypgen website.
https://encrypgen.com/mid-year-update-june-2020/

GovernmentCIO. 2019. Transforming government IT. NIH prioritizes cloud migration 2020 it
ecosystem plan.
https://governmentciomedia.com/nih-prioritizes-cloud-migration-2020-it-ecosystem-plan

Greenspan G. 2015. MultiChain Private Blockchain - White Paper.
https://www.multichain.com/download/MultiChain-White-Paper.pdf.

Greenspan G. 2016. Introducing MultiChain Streams.
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/

Grishin D, Obbad K, Estep P, Cifric M, Zhao Y, Church G. 2018. Nebula Genomics:
Blockchain-enabled genomic data sharing and analysis platform. Harvard Molecular
Technologies. http://arep.med.harvard.edu/pdf/Grishin_Church_v4.52_2018.pdf

Gursoy G, Bjornson R, Green ME, Gerstein M. 2020. Using blockchain to log genome dataset
access:efficient storage and query. BMC Medical Genomics 13 (Suppl 7):78.
https://doi.org/10.1186/s12920-020-0716-z

Gursoy G, Brannon CM, Gerstein M. 2020. Using Ethereum blockchain to store and query
pharmacogenomics data via smart contracts. BMC Medical Genomics 13:
https://doi.org/10.1186/s12920-020-00732-x

Gursoy G, Emani P, Brannon CM, Jolanki OA, Harmanci A, Strattan JS, Miranker AD, Gerstein
M. 2019 Private information leakage from functional genomics data: Quantification with
calibration experiments and reduction via data sanitization protocols. bioRxiv
https://doi.org/10.1101/345074

Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E. 2011. Efficient storage of high throughput
DNA sequencing data using reference-based compression. Genome Research 21 (5): 734–740.
doi:10.1101/gr.114819.110

Khan R, Mittelman D. 2018. Consumer genomics will change your life, whether you get tested
or not. Genome Biology 19: 120. https://doi.org/10.1186/s13059-018-1506-1

O’Driscoll A, Daugelaite J, Sleator RD. 2013. ’Big data’, Hadoop and cloud computing in
genomics. Journal of Biomedical Informatics 46: 774–781.
https://doi.org/10.1016/j.jbi.2013.07.001

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://encrypgen.com/mid-year-update-june-2020/
https://governmentciomedia.com/nih-prioritizes-cloud-migration-2020-itecosystem-plan
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/
http://arep.med.harvard.edu/pdf/Grishin_Church_v4.52_2018.pdf
https://doi.org/10.1186/s12920-020-00732-x
https://doi.org/10.1101/345074
https://doi.org/10.1016/j.jbi.2013.07.001
https://doi.org/10.1101/2020.03.03.975334

Kulemin N, Popov S, Gorbachev A. 2017. The Zenome Project: Whitepaper blockchain-based
genomic ecosystem. Zenome.io. https://zenome.io/download/whitepaper.pdf

Kuo TT, Kim HE, Ohno-Machado L. 2017. Blockchain distributed ledger technologies for
biomedical and health care applications. Journal of the American Medical Informatics
Association 24:1211–1220. https://doi.org/10.1093/jamia/ocx068 .

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078- 2079.
https://doi.org/10.1093/bioinformatics/btp352

Ma S, Cao Y, Xiong L. 2020 Efficient logging and querying for blockchain-based cross-site
genomic dataset access audit. BMC Medical Genomics 13 (Suppl 7):91.
https://doi.org/10.1186/s12920-020-0725-y

Mackey TK, Kuo TT, Gummadi B, Clauson KA, Church G, Grishin D, Obbad K, Barkovich R,
Palombini M. 2019. ’Fit-for-purpose?’ - challenges and opportunities for applications of
blockchain technology in the future of healthcare. BMC Medicine 17: 68.
https://doi.org/10.1186/s12916-019-1296-7

MultiChain. 2020. MultiChain data streams.
https://www.multichain.com/developers/data-streams/

MultiChain. 2020. Stream confidentiality.
https://www.multichain.com/developers/stream-confidentiality/

MultiChain. 2020. Announcing the new MultiChain wallet.
https://www.multichain.com/blog/2016/07/announcing-the-new-multichain-wallet/

Nakamoto S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. bitcoin.org/bitcoin.pdf.

Navale V, Bourne PE. 2018. Cloud computing applications for biomedical science: A
perspective. PLOS Computational Biology 14: https://doi.org/10.1371/journal.pcbi.1006144.

Nebula Genomics. 2018. Nebula Genomics. Github repository.
https://github.com/nebula-genomics

Ozdayi MS, Kantarcioglu M, Malin B. 2020 Leveraging blockchain for immutable logging and
querying across multiple sites. BMC Medical Genomics 13 (Suppl 7):82.
https://doi.org/10.1186/s12920-020-0721-2

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://zenome.io/download/whitepaper.pdf
https://doi.org/10.1093/jamia/ocx068
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/s12916-019-1296-7
https://www.multichain.com/developers/data-streams/
https://www.multichain.com/developers/stream-confidentiality/
https://www.multichain.com/blog/2016/07/announcing-the-new-multichain-wallet/
https://github.com/nebula-genomics
https://doi.org/10.1101/2020.03.03.975334

Ozercan HI, Ileri AM, Ayday E, Alkan C. 2018. Realizing the potential of blockchain technologies
in genomics. Genome Research 28:1255–1263. https://doi.org/10.1101/gr.207464.116

Pattengale ND, Hudson CM. 2020. Decentralized genomics audit logging via permissioned
blockchain ledgering. BMC Medical Genomics 13 (Suppl 7):102.
https://doi.org/10.1186/s12920-020-0720-3

Patterson J. 2018. NIH makes STRIDES to accelerate discoveries in the cloud. NIH.gov.
https://www.nih.gov/news-events/news-releases/nih-makes-strides-accelerate-discoveries-cloud

Picco E. 2019. Blockchain in Healthcare Use Case #1: EncrypGen. Interview with David
Koepsell and Vanessa Gonzalez Covarrubias. Disruptor Daily.
https://www.disruptordaily.com/blockchain-healthcare-use-case-encrypgen/

Rosenbaum E. 2018. Harvard genetics pioneer wants to monetize DNA with digital currency,
and defeat 23andMe. CNBC.
https://www.cnbc.com/2018/02/08/harvard-genetics-pioneer-will-monetize-dna-with-digital-curre
ncy.html

Sahin F. 2017. CrypDist. Github repository. https://github.com/CrypDist

Sward A, Vecna I, Stonedahl F. 2018. Data Insertion in Bitcoin’s Blockchain. Ledger Journal
DOI 10.5915/LEDGER.2018.101

Zenome.io. 2017. Zenome Platform. Github repository. https://github.com/zenomeplatform

Zenome. 2017. Zenome - About. Zenome Platform Website. https://zenome.io/about/

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted August 12, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint

https://doi.org/10.1016/j.jbi.2013.07.001
https://dx.doi.org/10.1101%2Fgr.207464.116
https://www.nih.gov/news-events/news-releases/nih-makes-strides-accelerate-discoveries-cloud
https://www.disruptordaily.com/blockchain-healthcare-use-case-encrypgen/
https://www.cnbc.com/2018/02/08/harvard-genetics-pioneer-will-monetize-dna-with-digital-currency.html
https://www.cnbc.com/2018/02/08/harvard-genetics-pioneer-will-monetize-dna-with-digital-currency.html
https://github.com/CrypDist
https://github.com/zenomeplatform
https://zenome.io/about/
https://doi.org/10.1101/2020.03.03.975334

