
pyrpipe: a python package for RNA-Seq
workflows

Urminder Singh1,2,4*, Jing Li1,2,4, Arun Seetharam3, and Eve Syrkin Wurtele1,2,4*

1Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
2Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
3Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA

4Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA

Implementing RNA-Seq analysis pipelines is challenging as
data gets bigger and more complex. With the availability of
terabytes of RNA-Seq data and continuous development of
analysis tools, there is a pressing requirement for frameworks
that allow for fast and efficient development, modification,
sharing and reuse of workflows. Scripting is often used, but
it has many challenges and drawbacks. We have developed a
python package, python RNA-Seq Pipeliner (pyrpipe) that
enables straightforward development of flexible, reproducible
and easy-to-debug computational pipelines purely in python,
in an object-oriented manner. pyrpipe provides high level
APIs to popular RNA-Seq tools. Pipelines can be customized
by integrating new python code, third-party programs, or
python libraries. Researchers can create checkpoints in the
pipeline or integrate pyrpipe into a workflow management
system, thus allowing execution on multiple computing environ-
ments. pyrpipe produces detailed analysis, and benchmark
reports which can be shared or included in publications.
pyrpipe is implemented in python and is compatible with
python versions 3.6 and higher. All source code is available
at https://github.com/urmi-21/pyrpipe; the package can be
installed from the source or from PyPi (https://pypi.org/project/
pyrpipe). Documentation is available on Read the Docs
(http://pyrpipe.rtfd.io).

Introduction

Since its inception, RNA-Seq has become the most widely
used method to quantify transcript levels (1); terabytes of
publicly available RNA-Seq data, encompassing multiple
species, organs, genotypes, and conditions, is deposited in
public repositories (2). Integrated analysis of aggregations of
thousands of diverse RNA-Seq samples enables exploration
of changes in gene expression over time and across different
conditions (3).
A major challenge of processing thousands of RNA-Seq
datasets, is implementing data processing pipelines in an ef-
ficient, modular, and reproducible manner. Most bioinfor-
matics tools are standalone linux programs, executed via the
shell; bioinformatic pipelines are usually written as shell,
perl, or python scripts, which may be integrated with Make-
files (4, 5). Scripting, although powerful and flexible, can be
difficult to develop, understand, maintain, and debug.

*To whom correspondence should be addressed. Email: us-
ingh@iastate.edu, mash@iastate.edu

Here we present pyrpipe, a lightweight python package
for bioinformatics researchers to code and execute RNA-Seq
workflows in an object oriented manner. pyrpipe pro-
vides high-level APIs for 15 popular RNA-Seq analysis tools
including a dedicated module to easily access and manage
RNA-Seq data available from the NCBI-SRA database (2).
Researchers can integrate into pyrpipe their own python
code, third-party programs, and existing python libraries in
a flexible, straight-forward way. No new workflow syntax
specific to pyrpipe are required. pyrpipe meticulously
logs information related to pipeline execution, providing ex-
tensive debugging resources. After each analysis, researchers
can generate reports and summaries with all information nec-
essary to reproduce the analysis.
pyrpipe is not a workflow management system, such as
the popular Snakemake (6) or NextFlow (7), in that it does
not scale jobs on clusters, or manage memory and paral-
lel processing. However, pyrpipe is designed to be read-
ily integrated into workflow management systems, provid-
ing a customizable framework for reproducible and scaleable
pipelines.

Implementation
We developed pyrpipe to create an easy-to-use python
framework for researchers to code, share, and reuse RNA-
Seq analysis workflows. pyrpipe achieves this by provid-
ing: 1. high level APIs to popular RNA-Seq tools; 2. a gen-
eral API to execute within python any shell command, en-
abling use of any bioinformatics tool; and 3. extensive log-
ging details of the commands. We selected the Python plat-
form because it is widely used, free, flexible, object-oriented,
and has high-level data structures (8), (9), with a repository
of > 200,000 packages and tools.

A. Object-oriented and modular design. We have taken
an object oriented approach to implement pyrpipe, such
that any RNA-Seq processing workflow can be intuitively ex-
ecuted by the researcher. pyrpipe’s modular design per-
mits writing code that is easy to read, manage, and share.
From a developer’s perspective, modularity facilitates reuse
and extensibility; new tools can be easily integrated into
pyrpipe.
pyprpipe consists of highly cohesive modules (sra, map-
ping, alignment, quant, qc, tools) designed to capture
steps integral to RNA-Seq analysis (Supplementary Table

Singh et al. | bioRχiv | March 4, 2020 | 1–9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

Fig. 1. A simple example demonstrating pyrpipe. The researcher imports pyrpipe and writes the code in python (Box 1). At each step in the python code, an object is
created (Box 2). Each object encapsulates specific methods and data. The pyrpipe_engine module forwards commands to shell via the subprocess library, monitors status,
and updates the logs continuously (Box 3). Shell commands are automatically constructed by the pyrpipe APIs but also can be explicitly provided by the user (Box 4). After
execution, the pyrpipe_diagnostic.py module (Box 5) generates analyses and reports (Box 6) from the logs. pyrpipe is represented by green boxes.

1). The modules pyrpipe_engine, pyrpipe_module and
pyrpipe_diagnostic contain multiple helper functions and
classes.
Using classes to encapsulate various “tools” and “data” is
the key concept in pyrpipe. For each module, we iden-
tified and implemented abstract classes to represent opera-
tions: access to NCBI-SRA, quality control, read alignment,
transcript assembly and transcript quantification. To date, we
have implemented 17 children classes providing APIs to spe-
cific RNA-Seq tools. (Supplementary Table 1 and Supple-
mentary Fig. 1). Thus, “tools” can be easily accessed as
objects, while ensuring that associated data and parameters
are consistently accessible within that object.
A workflow is defined using instances or objects of these
classes (Fig. 1). Once objects are created, they can be reused
throughout the program, promoting faster development and
code re-usability, for example, a Hisat2 object can be used to
align reads from multiple SRA objects.

B. Flexibility in pipeline execution, debugging, repro-
ducible analysis, and pipeline sharing. pyrpipe flex-
ibility extends to choice of how the pipeline is designed to
execute, and handle exceptions and errors. Researchers can
create checkpoints in the pipeline, save the current pyrpipe
session, and resume later. This is particularly useful for
running different blocks of a workflow in different environ-
ments. For example, on a typical high performance comput-
ing (HPC) cluster, a researcher might use a dedicated data-

transfer node to retrieve data from SRA and then use compute
nodes for data processing.
pyrpipe has automatic logging features for efficient er-
ror detection and reports (Fig. 1). pyrpipe_diagnostic.py
module includes a logger object and logs all executed com-
mands and their outputs. Environment information, such as
operating system and Python version, along with version and
path information for each program used within the pipeline,
are also logged. pyrpipe logs are saved in JavaScript Ob-
ject Notation (JSON) format for easy parsing by other pro-
grams (Supplementary Table 2).
The pyrpipe_diagnostic.py module generates comprehen-
sive reports about the analysis, benchmark comparisons, shell
commands, reports for debugging, and MultiQC reports (10).
These reports, along with the python scripts, can be shared or
included with publications for reproducible research.

Example usage
Transcript assembly using pyrpipe. . We demonstrate
pyrpipe’s usability by processing Zea mays RNA-Seq data
available through NCBI-SRA (2). The workflow is explained
in following steps:

1. Importing pyrpipe: To use pyrpipe, we need to
import it in current python session. Lines 1-5 imports
the pyrpipe modules in python. Line 7 initializes a
list of SRR accessions used in this examples. Line 10

2 | bioRχiv Singh et al. |

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

C Prediction of long non-coding RNAs (lncRNAs) in RNA-Seq Zea mays by supplementing pyrpipe with a third-party tool

initializes workingDir variable which contains the path
where all data will be downloaded.

1 from pyrpipe import sra
2 from pyrpipe import mapping
3 from pyrpipe import assembly
4 from pyrpipe import qc
5 from pyrpipe import tools
6
7 runs=[’SRR3098746’,
8 ’SRR3098745’,
9 ’SRR3098744’]

10 workingDir=’maize_out’

2. Downloading raw data: First we created SRA objects
corresponding to each SRR accession (Line 13). To
download raw data from NCBI-SRA, we used the
download_fastq() (line 14) to download reads in fastq
format. We used Trim Galore object (line 19) and
performed quality filtering (line 23). Parameters were
passed to Trim Galore object as a dict (line 19).

11 sraObs=[]
12 for x in runs:
13 ob=sra.SRA(x,workingDir)
14 if ob.download_fastq():
15 sraObs.append(ob)
16
17 #create a Trimgalore object
18 tgOptions={"--cores": "10"}
19 tg=qc.Trimgalore(**tgOpts)
20
21 for ob in sraObs:
22 #perform qc using trim galore
23 ob.perform_qc(tg)

3. Mapping reads and transcript assembly: We create an
object to use STAR aligner (line 32) and StringTie (line
34). Then we process all SRA objects in a loop (lines
37-39). First, mapping the reads to the genome using
STAR (line 38) and the performing transcript assembly
with StringTie (line 39).

24 starParams={’--outFilterType’:
25 ’BySJout’,
26 ’--runThreadN’:
27 ’8’,
28 ’--outSAMtype’:
29 ’BAM SortedByCoordinate’
30 }
31
32 star=mapping.Star(star_index=’index’,
33 **starParams)
34 st=assembly.Stringtie(reference_gtf=
35 ’ref.gtf’)
36

37 for ob in sraObs:
38 bam=star.perform_alignment(ob)
39 st.perform_assembly(bam)

Case studies

C. Prediction of long non-coding RNAs (lncRNAs)
in RNA-Seq Zea mays by supplementing pyrpipe
with a third-party tool. . We downloaded RNA-Seq data
from SRA, quality filtered using Trim Galore (11), aligned
reads to the Maize genome using STAR (12) and transcripts
were assembled using StringTie (13). Then, we used a third
party tool, (PLncPRO (14)), to predict lncRNAs, and as-
yet-unannotated mRNAs, in the assembled transcripts. Case
study: https://github.com/urmi-21/pyrpipe/
tree/master/case_studies/Maize_lncRNA_
prediction.

D. Arabidopsis thaliana transcript assembly us-
ing pyrpipe checkpoints. We downloaded raw read
RNA-Seq data for Arabidopsis from SRA, performed
quality control using BBDuk (15), aligned reads to the
genome using Hisat2 (16) and assembled transcripts us-
ing StringTie (13). Case study: https://github.
com/urmi-21/pyrpipe/tree/master/case_
studies/Athaliana_transcript_assembly

E. Integrating pyrpipe scripts within a workflow
management system. We embedded pyrpipe into the
Snakemake workflow management system (6), and used it
to download human RNA-Seq data with SRAtools, quality
filter the data with BBDuk (15), align reads with Hisat2
(12), assemble transcripts with StringTie (13) and Cufflinks
(17), and merge the multiple assemblies with Mikado
(18). Case study: https://github.com/urmi-21/
pyrpipe/tree/master/case_studies/Human_
annotation_snakemake

F. Prediction of Zea mays orphan genes. In this case
study we used ten diverse Zea mays RNA-Seq samples from
NCBI-SRA to identify transcripts that would encode candi-
date species-specific("orphan") genes. Supplementary Fig. 2
shows the workflow. pyrpipe scripts, downstream analy-
sis code, and data is available at https://github.com/
lijing28101/maize_pyrpipe. The results are dis-
cussed below.

Results
The orphan genes of the current high-quality genome of Zea
mays B73 had not been systematically annotated, thus, we
examined the trends among orphan vs non-orphan transcripts
of ten RNA-Seq runs from this line. Our analysis pipeline for
this RNA-Seq data identified a total of 60,999 distinct tran-
scripts that contained an ORF greater than 150 nt. A subset
of these will represent protein-coding genes; others will be
lncRNAs or expression products that do not represent genes.

Singh et al. | bioRχiv | 3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Maize_lncRNA_prediction
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Maize_lncRNA_prediction
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Maize_lncRNA_prediction
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Athaliana_transcript_assembly
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Athaliana_transcript_assembly
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Athaliana_transcript_assembly
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Human_annotation_snakemake
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Human_annotation_snakemake
https://github.com/urmi-21/pyrpipe/tree/master/case_studies/Human_annotation_snakemake
https://github.com/lijing28101/maize_pyrpipe
https://github.com/lijing28101/maize_pyrpipe
https://doi.org/10.1101/2020.03.04.925818

6,306 of these transcripts contained ORFs whose translated
product shows no homology to proteins of any other species
("orphan-coding transcripts"). Fig. 2 shows the transcript
length, and GC content distribution for these orphan-coding
and non-orphan-coding transcripts. The length of orphan-
coding transcripts is shorter than for non-orphan-coding tran-
scripts. However, GC content distribution is indistinguish-
able between orphans and non-orphans. These trends are
quite similar to those of annotated orphan and non-orphan
genes from Arabidopsis thaliana (19), although the median
number of exons reported in orphan-coding transcripts in A.
thaliana is one, versus that in Z. mays of two.
We compared the expression level of orphan and non- orphan
transcripts within each RNA-Seq sample (Fig. 3). In each
of the 10 runs analyzed, median expression of orphan-coding
transcripts is much lower as compared to median expression
of non-orphan-coding transcripts. However, in each run but
one, some orphan-coding transcripts are highly expressed.

Conclusion
The pyrpipe package allows researchers to code and im-
plement RNA-Seq workflows in an object oriented manner,
purely using python. pyrpipe can be integrated into work-
flow management systems or used directly. Access to NCBI-
SRA is automated, such that researchers can readily retrieve
raw RNA-Seq data. The downloaded data and data files are
automatically managed, and consistently accessed through
SRA objects. Researcher need not keep track of data files
or their paths, as these are integrated with pyrpipe objects.
pyrpipe workflows can be modified using python’s control
flow abilities and a user can create complex, reproducible,
workflow structures. Any third party tool or script can be in-
tegrated into pyrpipe for additional data processing capa-
bility. pyrpipe logs and reports enable debugging and re-
producibility. textttpyrpipe workflows provide a clear record
for publications.
pyrpipe will appeal to researchers who are looking for
simple, fast way to deploy large RNA-Seq processing
pipelines. Straightforward implementation, execution and
sharing of RNA-Seq workflows makes it an ideal choice for
researchers with less computational expertise.

Funding
This work is funded in part by National Science Foundation
grant IOS 1546858, Orphan Genes: An Untapped Genetic
Reservoir of Novel Traits, and by the Center for Metabolic
Biology, Iowa State University.

Bibliography
1. Peipei Li, Yongjun Piao, Ho Sun Shon, and Keun Ho Ryu. Comparing the normalization

methods for the differential analysis of illumina high-throughput rna-seq data. BMC bioin-
formatics, 16(1):347, 2015.

2. Yuichi Kodama, Martin Shumway, and Rasko Leinonen. The sequence read archive: explo-
sive growth of sequencing data. Nucleic acids research, 40(D1):D54–D56, 2011.

3. Urminder Singh, Manhoi Hur, Karin Dorman, and Eve Syrkin Wurtele. MetaOmGraph: a
workbench for interactive exploratory data analysis of large expression datasets. Nucleic
Acids Research, 01 2020. ISSN 0305-1048. doi: 10.1093/nar/gkz1209. gkz1209.

4. Jeremy Leipzig. A review of bioinformatic pipeline frameworks. Briefings in bioinformatics,
18(3):530–536, 2017.

5. Ola Spjuth, Erik Bongcam-Rudloff, Guillermo Carrasco Hernández, Lukas Forer, Mario Gio-
vacchini, Roman Valls Guimera, Aleksi Kallio, Eija Korpelainen, Maciej M Kańduła, Milko
Krachunov, et al. Experiences with workflows for automating data-intensive bioinformatics.
Biology direct, 10(1):43, 2015.

6. Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics, 28(19):2520–2522, 2012.

7. Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio Palumbo,
and Cedric Notredame. Nextflow enables reproducible computational workflows. Nature
biotechnology, 35(4):316, 2017.

8. Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python. The Journal of Machine Learning Research, 20(1):925–930, 2019.

9. Hans Petter Langtangen, Timothy J Barth, and Michael Griebel. Python scripting for com-
putational science, volume 3. Springer, 2006.

10. Philip Ewels, Måns Magnusson, Sverker Lundin, and Max Käller. Multiqc: summarize anal-
ysis results for multiple tools and samples in a single report. Bioinformatics, 32(19):3047–
3048, 2016.

11. Felix Krueger. Trim galore. A wrapper tool around Cutadapt and FastQC to consistently
apply quality and adapter trimming to FastQ files, 2015.

12. Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. Star: ultrafast universal
rna-seq aligner. Bioinformatics, 29(1):15–21, 2013.

13. Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang, Joshua T
Mendell, and Steven L Salzberg. Stringtie enables improved reconstruction of a transcrip-
tome from rna-seq reads. Nature biotechnology, 33(3):290, 2015.

14. Urminder Singh, Niraj Khemka, Mohan Singh Rajkumar, Rohini Garg, and Mukesh Jain.
PLncPRO for prediction of long non-coding rnas (lncrnas) in plants and its application for
discovery of abiotic stress-responsive lncrnas in rice and chickpea. Nucleic acids research,
45(22):e183–e183, 2017.

15. B Bushnell. Bbtools software package. URL http://sourceforge. net/projects/bbmap, 2014.
16. Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L

Salzberg. Graph-based genome alignment and genotyping with hisat2 and hisat-genotype.
Nature biotechnology, 37(8):907–915, 2019.

17. Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J
Van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly
and quantification by rna-seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nature biotechnology, 28(5):511, 2010.

18. Luca Venturini, Shabhonam Caim, Gemy George Kaithakottil, Daniel Lee Mapleson, and
David Swarbreck. Leveraging multiple transcriptome assembly methods for improved gene
structure annotation. GigaScience, 7(8):giy093, 2018.

19. Zebulun W Arendsee, Ling Li, and Eve Syrkin Wurtele. Coming of age: orphan genes in
plants. Trends in plant science, 19(11):698–708, 2014.

20. Stephen Sherry and Chunlin Xiao. Ncbi sra toolkit technology for next generation sequence
data. In Plant and Animal Genome XX Conference (January 14-18, 2012). Plant and Animal
Genome, 2012.

21. Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature
methods, 9(4):357, 2012.

22. Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A Thompson,
Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, et al. Trinity:
reconstructing a full-length transcriptome without a genome from rna-seq data. Nature
biotechnology, 29(7):644, 2011.

23. Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic
rna-seq quantification. Nature biotechnology, 34(5):525, 2016.

24. Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon
provides fast and bias-aware quantification of transcript expression. Nature methods, 14(4):
417, 2017.

25. Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
Goncalo Abecasis, and Richard Durbin. The sequence alignment/map format and samtools.
Bioinformatics, 25(16):2078–2079, 2009.

26. Daniel Mapleson, Luca Venturini, Gemy Kaithakottil, and David Swarbreck. Efficient and
accurate detection of splice junctions from rna-seq with portcullis. GigaScience, 7(12):
giy131, 2018.

27. Zhengtao Xiao, Rongyao Huang, Xudong Xing, Yuling Chen, Haiteng Deng, and Xuerui
Yang. De novo annotation and characterization of the translatome with ribosome profiling
data. Nucleic acids research, 46(10):e61–e61, 2018.

28. Benjamin Buchfink, Chao Xie, and Daniel H Huson. Fast and sensitive protein alignment
using diamond. Nature methods, 12(1):59, 2015.

4 | bioRχiv Singh et al. |

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

F Prediction of Zea mays orphan genes

(a) Length distribution (b) %GC content

Fig. 2. Comparison of length, and %GC content among transcripts whose ORFs are orphan-coding and non-orphan proteins, as identified by our analysis pipeline.

Fig. 3. Box plots showing expression level (TPM) of expressed orphan and non-orphan protein coding transcripts in 10 RNA-Seq runs.

Singh et al. | bioRχiv | 5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

Supplementary Information.

6 | bioRχiv Singh et al. |

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

F Prediction of Zea mays orphan genes

Module name Class name API for Purpose
sra SRA sra-tools (20) Access NCBI-SRA database

mapping
Hisat2 Hisat2 (16) Read alignment
Star STAR (12) Read alignment
Bowtie2 Bowtie2 (21) Read alignment

assembly
Stringtie StringTie (13) Transcript assembly
Cufflinks Cufflinks (17) Transcript assembly
Trinity Trinity (22) Transcript assembly

quant Kallisto Kallisto (23) Transcript quantification
Salmon Salmon (24) Transcript quantification

qc Trimgalore Trim Galore (11) Quality control
BBDuk BBDuk (15) Quality control

tools

Samtools SAMtools (25) Processing read alignments
Portcullis Portcullis (26) Detect splice junctions
Mikado Mikado (18) Integrate multiple RNA-seq assemblies
Ribocode RiboCode (27) Analyze ribosome profiling data
Diamond Diamond (28) Fast homology search
TransDecoder TransDecoder Identify candidate coding regions

Table 1. Currently implemented pyrpipe modules. Each module contain multiple classes containing APIs for different RNA-Seq tools.

Fig. 1. A UML class diagram showing pyrpipe’s classes and relationships among them. Classes in the same pyrpipe module share the same color.

Singh et al. | bioRχiv | 7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

Fig. 2. A flowchart showing the pipeline implemented in pyrpipe to identify potentially orphan coding transcripts in Zea mays.

8 | bioRχiv Singh et al. |

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

F Prediction of Zea mays orphan genes

Key Description
cmd shell command executed
starttime Time at the start of execution
runtime Total runtime
exitcode The return code
stdout stdout returned by the program
stderr stderr returned by the program
objectid Id of an object used with the command
commandname Name of the command
python Python version
os Operating system
cpu CPU information
syspath Python’s sys.path
sysmodules Python’s sys.modules
name Name of the program executed
version Version of the program
path Path to the program on disk

Table 2. Table showing description of the JSON keys stored in pyrpipe logs

Singh et al. | bioRχiv | 9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.04.925818doi: bioRxiv preprint

https://doi.org/10.1101/2020.03.04.925818

	Object-oriented and modular design
	Flexibility in pipeline execution, debugging, reproducible analysis, and pipeline sharing
	Prediction of long non-coding RNAs (lncRNAs) in RNA-Seq Zea mays by supplementing pyrpipe with a third-party tool
	Arabidopsis thaliana transcript assembly using pyrpipe checkpoints
	Integrating pyrpipe scripts within a workflow management system
	Prediction of Zea mays orphan genes

