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Abstract
Single cell RNA sequencing (scRNA-seq) enables transcriptional profiling at the resolution of
individual cells. These experiments measure features at the level of transcripts, but biological
processes of interest often involve the complex coordination of many individual transcripts. It can
therefore be difficult to extract interpretable insights directly from transcript-level cell profiles. Latent
representations which capture biological variation in a smaller number of dimensions are therefore
useful in interpreting many experiments. Variational autoencoders (VAEs) have emerged as a tool for
scRNA-seq denoising and data harmonization, but the correspondence between latent dimensions
in these models and generative factors remains unexplored. Here, we explore training VAEs with
modifications to the objective function (i.e. β-VAE) to encourage disentanglement and make latent
representations of single cell RNA-seq data more interpretable. Using simulated data, we find that
VAE latent dimensions correspond more directly to data generative factors when using these modified
objective functions. Applied to experimental data of stimulated peripheral blood mononuclear cells,
we find better correspondence of latent dimensions to experimental factors and cell identity programs,
but impaired performance on cell type clustering.
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1 Introduction

scRNA-seq experiments can capture many sources of bio-
logical variation, including differences between cell iden-
tities, responses to perturbations, and developmental pro-
grams [1, 2, 3]. The atomic units of an RNA-seq experi-
ment are read counts for individual gene transcripts. How-
ever, many processes of interest in biology involve the
interaction of many genes in coordinated gene expression
programs (GEPs) and may be better represented using a
smaller number of dimensions. Many dimensionality re-
duction methods have been proposed for scRNA-seq data
[4, 5, 6, 7], including the recent introduction of variational
autoencoder (VAE) based methods [8, 9, 10]. While VAEs
have several desirable properties, the latent spaces they
learn to encode may be difficult to interpret.

Recent work on VAEs has attempted to encourage “disen-
tangled” latent spaces which may be more interpretable.
A disentangled latent space has direct correspondence be-
tween dimensions in the latent space and generative factors

– parameters of the underlying process that generated the
observed data [11]. In the case of single cell RNA-seq data,
we may imagine that cell identity, cell cycle state, and the
activity of other gene expression programs constitute gen-
erative factors. Methods to enforce disentanglement in
VAEs largely focus on modifying the objective function
[12]. Here, we explore using one of these disentangle-
ment techniques (β-VAE) to encourage disentanglement in
VAE latent spaces learned for scRNA-seq data. Leveraging
simulated data where ground truth values for generative
factors are known, we find that these methods improve the
correspondence between dimensions of the latent space
and generative factors.

1.1 Variational Autoencoders

Variational autoencoders (VAEs) learn a generative model
of observed data X by taking advantage of a lower dimen-
sional latent space Z. Briefly, VAEs jointly learn to map
observations x ∈ X to points z ∈ Z (“encoding”) and to
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perform the inverse mapping (“decoding”). This two-way
mapping is enabled by a flexible encoder q(z|x) and de-
coder p(x|z), often implemented as neural networks. The
encoder posterior q(z|x) is regularized to match a prior
distribution on the latent variables, p(z).

VAEs are trained by jointly optimizing (1) the reconstruc-
tion error of observations x and (2) divergence of the latent
distribution q(z|x) from the prior p(z). The VAE objec-
tive is traditionally formulated with two components, each
addressing one of these desired properties [13].

L(θ, φ, x) = Eqφ(z|x)[− log pθ(x|z)]+DKL(qφ(z|x)||p(z))
Models of this form have recently been applied to single
cell RNA-seq data by multiple groups, yielding effective
approaches for gene expression denoising, visualization,
and data harmonization [8, 9, 10].

1.2 Encouraging disentanglement in the VAE latent
space

A standard choice for a Gaussian prior on the latent space
p(z) = N (0, I) promotes independence among the latent
dimensions, since the covariance matrix is diagonal. The
β-VAE approach [14] leverages this property to enforce
independence between dimensions of the latent distribu-
tion and encourage disentanglement. This is achieved by
weighting the KL-divergence between the prior and latent
posterior in the standard VAE objective by a coefficient
β > 1.

An addition to the β-VAE framework encourages an ex-
plicit divergence from the prior distribution that increases
during the course of training [15]. This is implemented
by penalizing the difference between a “channel capacity”
constant C and the KL-divergence. Together these mod-
ifications add two additional parameters to the objective
function:

L(θ, φ, x) = Eqφ(z|x)[− log pθ(x|z)]
+ β|DKL(qφ(z|x)||p(z))− C|

2 Experiments

Here, we use the recently introduced Single Cell Varia-
tional Inference (scVI) framework[9] as a baseline model,
and augment the standard objective function during train-
ing by either (1) altering the β parameter and/or (2) in-
creasing the channel capacity parameter C to encourage
disentanglement in the latent space. In this parameter
space, β = 1 and C = 0 represents a baseline scVI model.

For all experiments, we use n = 128 units in both the
encoder and decoder layers of scVI. We set the number of
latent dimensions to 32 and train for 400 epochs using the
Adam optimizer with a learning rate of 10−4 followed by
200 epochs with a learning rate of 10−5. For experiments
where C > 0, we linearly increase the channel capacity
from C = 0.1 to the maximum value over 20, 000 iter-
ations. We fit models for 10 random starts and average

evaluation metrics to account for stochasticity in optimiza-
tion.

2.1 Simulated Data

We simulate an scRNA-seq experiment using the Splatter
statistical framework [16, 17]. We simulate 10,000 cells
with 25,000 genes from 5 cell types. Each cell type is
defined by expression of a “cell identity” GEP. We also
simulate an “activity” GEP which is utilized within 3 of
the 5 cell types (Fig. 1A).

This dataset provides a ground truth (1) cell identity, and
(2) gene sets associated with each GEP. Formally, we de-
fine a GEP as a group of genes that are co-differently
expressed. Each gene in a GEP is scaled by a differential
expression coefficient D where logD ∼ N (2, 1) in cells
where that GEP is active. To quantify GEP utilization
in each cell, we compute a rank-based score in the same
manner as AUCell [18] that we refer to as a “GEP score”.
We consider the scores of these ground truth GEPs to be
generative factors in the data which we wish to capture in
dimensions of the latent space (Fig. 1B).

2.2 Recovering generative factors in simulated data

To determine if a modification to the VAE objective im-
proves interpretability of the latent space, we require a
quantitative metric for interpretability. Quantitative met-
rics for disentanglement are still an active area of research
and no well-defined standard exists [12]. Here, we focus
on a simplistic metric to evaluate the correspondence be-
tween latent dimensions and ground truth GEPs. For each
ground truth GEP, we compute Spearman correlations ρ
of the GEP score with each dimension of the latent space.
We consider the maximum absolute correlation to reflect
the best correspondence between a latent dimension and a
GEP. This metric does not reflect overall disentanglement
in the latent space, which inherently must consider the
uniqueness of correspondence between latent dimensions
and generative factors.

We fit scVI models with varying values for β and C. We
find that increasing β > 1 while holding C = 0 sig-
nificantly increases the correlation between ground truth
GEPs and latent dimensions at some values (β = 10, t-
test, q < 0.05, Benjamini-Hochberg). However at higher
values (β = 50), decreased performance is observed for
some ground truth GEPs (Fig. 2A). Increasing the chan-
nel capacity to C = 10 ameliorates the detrimental effect
from larger values of β, although the maximum correlation
between some GEPs and a latent dimension is decreased
(Fig. 1C).

To determine if highly correlated latent dimensions cor-
respond to specific ground truth GEPs, we visualize the
values of the latent dimension most correlated with each
ground truth GEP in a UMAP projection. Using the base-
line β = 1, we find that latent dimensions are not specific
for a ground truth GEP. Using β = 10 appears to improve
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Figure 1: Increasing β improves correspondence between simulated GEPs and VAE latent dimensions. (A)
UMAP projection of simulated single cell data. Ground truth cell type identities for each cell are overlaid in color. (B)
Ground truth rank-based GEP score of the 5 cell type identity programs and the “activity” program in each cell. (C)
Maximum absolute Spearman correlation of GEP scores with dimensions of the latent space as a function of β. (D)
Values for the latent dimension with the highest correlation with each GEP are presented on a UMAP projection.

the correspondence of latent dimensions to ground truth
GEPs. We note that with β = 10, the most correlated latent
dimensions for each cell identity GEP appear to specifi-
cally mark that cell identity (Fig. 1D). For the latent space
learned with β = 10, note that the dimensions for identi-
ties 1 and 5 are inverse mappings and that the dimension
for identity 2 shows a less dramatic correspondence than
other GEP:dimension pairs.

2.3 Recovering experimental perturbations and cell
identity in PBMCs

To determine if modified VAE objectives can capture cell
identity programs and experimental factors, we trained
scVI models on experimental data from peripheral blood
mononuclear cells (PBMCs) [19]. The data contain 8
unique cell types, each of which is observed before and
after stimulation with IFNβ (Fig. 2A). We treat the IFNβ
experimental condition as a generative factor we wish to
recover. As before, we evaluate the maximum Spearman
correlation between latent dimensions and IFNβ condition
for a range of β. We find that increasing β leads to modest

improvements in this correlation, but even β = 1 mod-
els learn a dimension with strong correlation (Fig. 2B).
Visualizing the latent dimensions that correspond best to
IFNβ condition confirms that even the β = 1 models learn
a dimension that segregates the experimental conditions
(Fig. 2E).

Latent spaces are also used for unsupervised cell type
identification by Louvain community detection [20]. We
evaluate this method in each latent space using the Ad-
justed Rand Index (ARI) between the Louvain partition
and ground truth cell types. We use a range of resolutions
and take the maximum ARI to mimic human adjustment
based on visualization. We find that unsupervised clus-
tering efficacy decreases as β increases, suggesting that
stronger regularization may be undesirable for some down-
stream tasks (Fig. 2C).

To determine if we recover cell identity GEPs in each latent
space, we fit logistic regression models to classify each
cell type based on each individual latent dimension. We
fit each regression model to distinguish a single target cell
type (i.e. B cells) from all other cell types. We perform
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Figure 2: Increasing β modestly improves experimental factor recovery but impairs cell type clustering. (A)
UMAP projection of PBMC data with cell type labels. (B) Correlation of latent dimensions with IFNβ treatment
status. (C) Adjusted Rand Index for cell type recovering by community detection in latent spaces. (D) Max logistic
regression cell type classification accuracy (mean 5-fold CV) based on a single latent dimension. (E) Values of the
latent dimension with the best correspondence to each cell identity program or IFNβ condition (rows) are visualized in
UMAP projections. Cells that should be distinguished by each latent dimension are highlighted on the left, and the best
dimension from VAEs with β = 1 (center) or β = 2 (right) are shown.

class balancing before fitting and report accuracy as the
mean of 5-fold cross-validation. Here, we assume that a
latent dimension representing a cell identity program will
allow for better classification of the corresponding cell
type. We consider the dimension with the maximum clas-
sification accuracy to have the best cell identity program
correspondence.

We find that increasing β > 1 improves the correspon-
dence of latent dimensions and cell identity programs by
this metric for most cell types (Fig. 2D, E). However,
counterexamples also exist – we find that correspondence
between latent dimensions and the CD4 T cell identity pro-
gram decreases for some values of β > 1. Taken together,
these results suggest that modifying the VAE objective
can improve correspondence between latent dimensions

and some generative factors, but may also decrease perfor-
mance on some downstream tasks like cell type clustering.

3 Conclusions

We find that a modified VAE objective (β-VAE) designed
to encourage disentanglement improves the correspon-
dence between VAE latent dimensions and ground truth
gene expression programs in simulated data. Applied to
experimental data, we observe modest improvements in
the correspondence of latent dimensions with experimental
conditions and cell identity programs. However, we also
find that the performance of cell type clustering decreases
in the same conditions.
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These results suggest that fitting VAE models to scRNA-
seq data with the β-VAE objective may improve the in-
terpretability of latent spaces, but that these modifications
may decrease performance on some downstream tasks. We
note that the simplistic metrics of correspondence we em-
ploy here do not measure disentanglement directly. We
believe these results motivate further research on the appli-
cation of disentanglement methods to single cell RNA-seq
models. Multiple groups have proposed alternative for-
mulations of the VAE objective that may ameliorate the
detrimental effects of disentanglement methods we ob-
serve here. Likewise, additional quantitative metrics of
disentanglement have been proposed that may more accu-
rately identify alignment of latent variables with generative
factors [21, 22, 23]. Application of these techniques may
prove fruitful and remains an exciting direction for future
work.
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