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Abstract 32 

 33 

Background: Celiac disease (CeD) is a complex T cell–mediated enteropathy induced by 34 

gluten. Although genome-wide association studies have identified numerous genomic 35 

regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are 36 

most likely to cause CeD.  37 

Results: We used four different in silico approaches – Mendelian Randomization inverse 38 

variance weighting, COLOC, LD overlap and DEPICT – to integrate information gathered 39 

from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-40 

associated regions. Co-expression and pathway analysis of these genes indicated an 41 

association with adaptive and innate cytokine signalling and T cell activation pathways. 51 of 42 

these genes are targets of known drug compounds and likely druggable genes, suggesting 43 

that our methods can be used to pinpoint potential therapeutic targets. In addition, we 44 

detected 172 gene-combinations that were affected by our CeD-prioritized genes in trans. 45 

Notably, 41 of these trans-mediated genes appear to be under control of one master 46 

regulator, TRAFD1, and were found to be involved in IFN signalling and MHC I antigen 47 

processing/presentation. Finally, we performed in vitro experiments that validated the role of 48 

TRAFD1 as an immune regulator acting in trans.  49 

Conclusions: Our strategy has confirmed the role of adaptive immunity in CeD and 50 

revealed a genetic link between CeD and the IFN signalling and MHC I antigen processing 51 

pathways, both major players of immune activation and CeD pathogenesis.  52 

 53 

 54 
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Glossary 58 

Underlined words are definitions that have been explained in the preceding lines. 59 

 60 

eQTL – expression quantitative trait locus, a location on the genome that is statistically 61 

associated to changes in gene expression. 62 

cis-eQTL – an eQTL located in the same locus of the gene that is being interrogated (within 63 

1.5Mb from gene transcript start or end). 64 

trans-eQTL – an eQTL that is not physically close to the gene that is being interrogated 65 

(>1.5Mb from transcript start/end or on a different chromosome).  66 

cis-eQTL gene – a gene that is associated with a change in expression as a consequence 67 

of a cis-eQTL. 68 

trans-eQTL gene – a gene that is associated with a change in expression as a 69 

consequence of a trans-eQTL. 70 

CeD – celiac disease 71 

CeD-associated region – a genomic region that is associated to CeD based on results from 72 

genome-wide association studies on CeD. 73 

Prioritized gene – a gene prioritized as being potentially causal for CeD according to the 74 

four statistical methods depicted in Figure 1A-B. In this study, prioritized genes are always 75 

within the CeD-associated regions. 76 

Mediating cis gene – a prioritized gene that is statistically responsible for the change in 77 

expression of a trans-eQTL gene. Of note, while the trans-eQTL is located in the same CeD-78 

associated region of the mediating cis-gene, the mediated trans-gene is not.  79 

Mediated trans gene – a gene located outside CeD-associated regions that is statistically 80 

mediated by a mediating cis gene located in the same region of the corresponding trans-81 

eQTL.  82 
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Introduction 84 

 85 

Celiac disease (CeD) is an auto-immune disease in which patients experience severe 86 

intestinal inflammation upon ingestion of gluten peptides. CeD has a large genetic 87 

component, with heritability estimated to be approximately 75%1. The largest CeD-impacting 88 

locus is the HLA region, which contributes approximately 40% of CeD heritability2. While the 89 

individual impacts of CeD-associated genes outside the HLA region are smaller, they jointly 90 

account for an additional 20% of heritability. Previous genome-wide association studies 91 

(GWAS) have identified 42 non-HLA genomic loci associated with CeD3–6, but the biological 92 

mechanisms underlying the association at each locus and the genes involved in disease 93 

susceptibility are largely unknown. Yet, identification of these non-HLA genetic components 94 

and an understanding of the molecular perturbations associated with them are necessary to 95 

understand CeD pathophysiology. 96 

Understanding the biological mechanisms of non-HLA CeD loci is difficult: only three 97 

of these loci point to single nucleotide polymorphisms (SNPs) located in protein-coding 98 

regions3. The other CeD-risk loci cannot be explained by missense mutations, making it 99 

necessary to look at other biological mechanisms such as gene expression to explain their 100 

role in CeD pathogenicity. Several studies have been performed to integrate expression 101 

quantitative trait loci (eQTLs) with CeD GWAS associations4,7,8, and several candidate 102 

genes, including UBASH3A, CD274, SH2B3 and STAT49, have been pinpointed, implicating 103 

T cell receptor, NFB and interferon signalling pathways as biological pathways associated 104 

with CeD pathology. Unfortunately, these eQTL studies had limited sample sizes, which 105 

reduced their power to identify cis- and (especially) trans-eQTLs. Furthermore, previous 106 

attempts to integrate eQTLs have mostly annotated genomic loci based on catalogued 107 

eQTLs without formally testing the causality of the genes in the onset or exacerbation of 108 

CeD8,10,11.  109 

Gene expression and GWAS data can also be integrated using methodologies that 110 

identify shared mechanisms between diseases. These methods can be roughly divided into 111 

three classes: variant colocalization methods, causal inference methods and co-expression 112 

methods. Colocalization methods consider the GWAS and eQTL summary statistics at a 113 

locus jointly and probabilistically test if the two signals are likely to be generated by the same 114 

causal variant12. Causal inference methods test if there is a causal relationship between 115 

expression changes and the disease, using genetic associations to remove any 116 

confounders13,14. Finally, co-expression methods do not use eQTL information, but rather 117 

test if there is significant co-expression between the genes that surround the GWAS locus15. 118 
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Unfortunately, there is no current “gold standard” method for finding the causal gene behind 119 

a GWAS hit, as all the methods discussed here are subject to their respective assumptions, 120 

drawbacks and caveats. However, it is worthwhile to use all these methods in parallel to find 121 

the most relevant causal genes for CeD.  122 

Here, we systematically applied all four methods to the latest meta-analysis results 123 

for CeD5 and coupled them with eQTL results from the Biobank Integrative Omics Study 124 

(BIOS) cohort16, one of the largest cohorts for which there is genotype and RNA-seq 125 

expression data of peripheral blood mononuclear cells (schematic overview Fig. 1A-B). We 126 

focused on 58 GWAS loci that showed significant association with CeD at p < 5x10 -6. Our 127 

approach prioritized 118 genes in 50 loci and identified one gene, TRAFD1, as a master 128 

regulator of trans-effects. We then experimentally validated the role of TRAFD1-mediated 129 

genes using RNA-seq in a disease-relevant cell type. Our study yields novel insights into the 130 

genetics of CeD and is proof-of-concept for a systematic approach that can be applied to 131 

other complex diseases. 132 

 133 

Methods 134 

 135 

Genotypes for eQTL analysis 136 

We used the BIOS cohort16 to map eQTLs in 3,746 individuals of European ancestry. The 137 

BIOS cohort is a collection of six cohorts: the Cohort on Diabetes and Atherosclerosis 138 

Maastricht17, the Leiden Longevity Study18, Lifelines DEEP19, the Netherlands Twin 139 

Registry20, the Prospective ALS Study Netherlands21 and the Rotterdam Study22. As 140 

described in Vosa et al.23, each cohort was genotyped separately using different arrays. 141 

Genotypes were subsequently imputed to the Haplotype Reference Consortium panel (HRC 142 

v1.0) on the Michigan imputation server24. 143 

We considered only biallelic SNPs with a minor allele frequency (MAF) > 0.01, a 144 

Hardy-Weinberg test p value > 10−6 and an imputation quality RSQR > 0.8. To remove 145 

related individuals, a genetic relationship matrix (GRM) was created using plink 1.925 146 

(command –make-grm-bin) on linkage disequilibrium (LD)–pruned genotypes (option: “--147 

indep 50 5 2”). Pairs of individuals with a GRM value > 0.1 were considered related, and one 148 

individual was removed from each of these pairs. Population outliers were identified using a 149 

principal component analysis on the GRM, and we removed individuals who were more than 150 

3 standard deviations from the means of principal component 1 or 2. 151 

 152 
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Expression quantification 153 

We used the same procedure for RNA gene expression control and processing as described 154 

in Zhernakova et al.16 In brief, RNA was extracted from whole blood and paired-end 155 

sequenced using the Illumina HiSeq 2000 machine. Read alignment of RNA-seq reads was 156 

done using STAR (v2.3.0)26 using a reference genome with masked variants with MAF < 157 

0.01 in the Genome of the Netherlands27. Aligned reads were quantified using HTSeq28. 158 

Samples were removed if they had fewer than 80% aligned reads, fewer than 85% exon-159 

mapping reads, or if they had a median 3’ bias larger than 70% or smaller than 45%. 160 

Unobserved expression confounders were removed following the procedure of Zhernakova 161 

et al.16, correcting the expression matrix for the first 25 principal components as well as 3’ 162 

bias, 5’bias, GC content, intron base pair percentage and sex. 163 

 164 

eQTL analysis 165 

After genotype and RNA-seq quality controls (QCs), 3,503 individuals, 19,960 transcripts 166 

and 7,838,327 autosomal SNPs remained for analyses. We performed genome-wide eQTL 167 

mapping for the transcripts using plink 1.925 with the --assoc command. We defined cis-168 

eQTL variants as those located within ±1.5Mb of the transcript and trans-eQTLs as variants 169 

located outside these boundaries. To select variants that could explain the cis-eQTL signal 170 

of a gene, we used GCTA-COJO software29 v1.26. For this analysis, we required selected 171 

variants to reach a p-value threshold of 5 x 10-6 and included the BIOS cohort genotypes as 172 

LD reference. This identified 707 genes with at least one eQTL reaching this threshold, 357 173 

of which had more than one conditionally independent eQTL variant. 174 

 175 

CeD summary statistics associated regions and candidate genes  176 

We used summary statistics from a CeD GWAS meta-analysis of 12,948 cases and 14,826 177 

controls that analysed 127,855 variants identified using the Immunochip array5. SNP 178 

positions were lifted over to human genome build 37 using the UCSC liftover tool. We first 179 

identified lead associated variants in the CeD meta-analysis by performing p-value clumping: 180 

we used plink 1.925 to select variants at a p-value threshold of 5 x 10-6 and pruned variants in 181 

LD with these selected variants using standard plink settings (R2 > 0.5, utilizing 1000 182 

Genomes European sample LD patterns)25,30. We removed variants in an extended HLA 183 

region (chromosome 6, 25Mb to 37Mb) due to the complex long range LD structure in this 184 

region and because we aim to understand the function of the non-HLA genetic component of 185 

CeD. We looked for candidate genes around the clumped variants as follows. First, we 186 
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defined regions around every clumped variant by padding the clumped SNP position by 1Mb 187 

on both sides. We then joined all overlapping CeD-associated regions together and looked 188 

for gene transcripts that partly or fully overlapped with the associated regions. This approach 189 

identified 58 CeD-associated regions and 1,235 candidate genes that are potentially causal 190 

for CeD. Of note, the CeD-association windows were set to be smaller than the eQTL 191 

window so that eQTL associations would fully overlap the associated CeD GWAS peak even 192 

when a gene is on the edge of the CeD-associated region. 193 

 194 

Gene prioritization using Mendelian Randomization–Inverse Variance Weighting (MR-195 

IVW), COLOC, LD overlap and DEPICT 196 

We prioritized CeD-associated genes using three eQTL-based methods – MR-IVW31, 197 

COLOC12 and LD overlap – and one co-regulation-based method, DEPICT15. For the MR-198 

IVW method, we used the independent variants identified by GCTA-COJO as instrumental 199 

variables13,32 to test causal relationships between changes in gene expression and CeD. 200 

MR-IVW was only performed when there were three or more independent eQTLs available 201 

(164 genes). A gene was significant for the MR-IVW test if the causal estimates passed a 202 

Bonferroni threshold p-value of 3.1 x 10-4. Heterogeneity of causal estimates was accounted 203 

for and corrected for using Weighted Median MR analysis and Cochran’s Q test33. For the 204 

COLOC method, we used the ‘coloc’ R package and considered a gene significant for the 205 

COLOC analysis if the posterior probability of shared variants (H4) was larger than 0.9. For 206 

the LD overlap method, a gene was considered significant if there was high LD (r2 > 0.8) 207 

between the top independent eQTL and the top CeD variant in the region. Finally, we 208 

applied DEPICT15 to the clumped CeD GWAS variants described in ‘CeD summary statistics 209 

associated regions and candidate genes’. Genes identified by the DEPICT analysis were 210 

considered significant if a False Discovery Rate (FDR) < 0.05 was found with DEPICT’s own 211 

permutation measure. 212 

We scored each gene in the CeD-associated loci by considering each of the four 213 

prioritization methods. A gene was prioritized as ‘potentially causal’ in CeD pathology when 214 

one of the four methods was significant (one line of evidence). If multiple lines of evidence 215 

were significant, the gene was prioritized more highly than when only a single line of 216 

evidence was available. 217 

To explore how the prioritized genes affect CeD risk, we gave each gene an effect 218 

direction based on the effect direction of the top variants in the eQTL and the CeD GWAS 219 

using the following algorithm: 220 
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1. If there was a concordant effect that was significant in the top variants of both the 221 

eQTLs and the GWAS, the direction of the concordant effect was chosen. 222 

2. If there was a concordant effect, but no significance of the SNP in one of the 223 

datasets, we could not be sure of an effect direction, and a question mark was 224 

chosen. The only exception to this was if the MR-IVW was significant, when we 225 

chose the direction of the MR-IVW effect. 226 

3. If there was a discordant effect between the top SNPs, and both were significant in 227 

both datasets, a question mark was chosen. The only exception to this was when the 228 

IVW was significant, when the IVW effect was chosen. 229 

4. If there was a discordant effect and there was significance in only one of the GWAS 230 

from the eQTL top SNP, the eQTL direction was chosen. 231 

5. If there was a discordant effect and there was significance in only one of the eQTL 232 

from the GWAS top SNP, the GWAS direction was chosen. 233 

6. If there was otherwise a discordant effect, a question mark was chosen. 234 

Each gene is given a mark: positive (‘+’), negative (‘-’) or unknown (‘?’). ‘+’ indicates that 235 

increased expression increases CeD risk. ‘-’ indicates that increased expression decreases 236 

CeD risk. ‘?’ indicates that it is unknown how the expression affects CeD risk. 237 

Co-regulation clustering 238 

The genes that have been prioritized may have some shared function in CeD pathology. To 239 

identify possible shared pathways, we performed co-regulation clustering analysis based on 240 

1,588 normalized expression co-regulation principal components identified from RNA-seq 241 

information across multiple human tissues by Deelen et al34. We performed pairwise 242 

Pearson correlation of our prioritized genes with these 1,588 principal components and 243 

derived a correlation Z score for each prioritized gene pair. We then performed hierarchical 244 

clustering of this Z score matrix using Ward distances and identified 4 clusters from the 245 

resulting dendrogram. 246 

Trans eQTL and mediation analysis 247 

238 autosomal genes that were not located in, but were associated with, a significant trans-248 

eQTL variant (p < 5x10-8) in the CeD-associated regions were identified and used as 249 

potential targets for mediation by our associated genes in the CeD-associated loci (86 250 

potential cis mediating genes). We first selected trans-eQTL genes that were co-expressed 251 

(Pearson r > 0.1, 197 gene combinations) with prioritized genes, then performed mediation 252 

analysis by running the trans-eQTL association again using the expression of the cis-eQTL 253 

gene as a covariate. We defined a trans-mediated gene if, after mediation analysis, the 254 

change (increase or decrease) in the effect size of the top trans-eQTL variant was significant 255 
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according to the statistical test described in Freedman and Schatzkin35. For this analysis, we 256 

used a Bonferroni-adjusted p-value of 3.0 x 10-4. 257 

Cell type proportion and SH2B3 expression mediation analysis 258 

To assess if the cis-eQTL effect of TRAFD1 was not a proxy for cell-type composition, we 259 

performed mediation analyses in a fashion similar to the trans mediation analysis above 260 

using cell proportions measured in a subset of individuals in the BIOS cohort. To ensure that 261 

there was no residual effect of SH2B3-expression on the mediating effect of TRAFD1, we 262 

corrected the original TRAFD1 expression levels for the expression levels of SH2B3, leaving 263 

TRAFD1 expression independent of SH2B3, and reran the mediation analysis. 264 

Literature review. We performed a REACTOME pathway36 analysis to determine the 265 

potential function of the prioritized genes. This was complemented with a literature search 266 

(research and review papers) in Pubmed. For the coding and non-coding genes for which no 267 

studies were found, Genecards (www.genecards.org) and Gene Network v2.0 datasets 268 

(www.genenetwork.nl)34 were used, respectively. Information regarding the potential 269 

druggability of the prioritized genes was obtained from DrugBank37, the pharmacogenetics 270 

database38 and a previous study that catalogued druggable genes39.  271 

THP-1 culture. The cell line THP-1 (Sigma Aldrich, ECACC 88081201) was cultured in 272 

RPMI 1640 with L-glutamine and 25mM HEPES (Gibco, catalogue 52400-025), and 273 

supplemented with 10% fetal bovine serum (Gibco, catalogue 10270) and 1% penicillin/ 274 

streptomycin (Lonza, catalog DE17602E). The cells were passed twice per week at a 275 

density lower than 0.5 x 106 cells/ml in a humidified incubator at 5% CO2, 37°C. 276 

siRNA treatment. THP-1 cells were plated at 0.6 x 106 cells/ml and transfected with 25 nM 277 

siRNA using Lipofectamine RNAimax transfection reagent (Invitrogen, catalogue 13788), 278 

according to the manufacturer’s protocol. Cells were treated with an siRNA to target 279 

TRAFD1 (Qiagen catalogue 1027416, sequence CCCAGCCGACCCATTAACAAT) 280 

(Knockdown (KD)), and cells treated with transfection mix without siRNA (Wild type (WT)) or 281 

non-targeting control siRNA (scrambled (SCR)) (Qiagen catalog SI03650318, sequence 282 

undisclosed by company) were included as controls. All the treatments were performed in 283 

triplicate. 72 hours after transfection, a small aliquot of cells was stained for Trypan Blue 284 

exclusion to determine cell viability and proliferation. The cells were stimulated with either 285 

LPS (10 ng/ml) from E. coli (Sigma catalogue 026:B6) or media alone (unstimulated) for 4h. 286 

Subsequently, the cells were centrifuged, and the cell pellets suspended in lysis buffer and 287 

stored at -80C until used for RNA and protein isolation. 288 
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qPCR. The total RNA from THP-1 cells was extracted with the mirVana™ miRNA isolation 289 

kit (AMBION, catalogue AM1561) and subsequently converted to cDNA using the RevertAid 290 

H Minus First Strand cDNA Synthesis Kit (Thermo scientific, catalogue K1631). qPCR was 291 

done using the Syber green mix (Bio-Rad, catalogue 172-5124) and run in a QuantStudio 7 292 

Flex Real-Time system (Applied Biosystems, catalogue 448598). Primer sequences to 293 

determine KD levels of TRAFD1 were 5’ GCTGTTAAAGAAGCATGAGGAGAC and 3’ 294 

TTGCCACATAGTTCCGTCCG. GAPDH was used as endogenous qPCR control with 295 

primers 5’ ATGGGGAAGGTGAAGGTCG and 3’ GGGGTCATTGATGGCAACAATA. 296 

Relative expression values of TRAFD1 were normalized to the endogenous control GAPDH 297 

and calculated using the ΔΔCT method, then given as a percentage relative to SCR 298 

expression levels.  299 

Western blot (WB). Cell pellets from THP-1 cells were suspended on ice-cold lysis buffer 300 

(PBS containing 2% SDS and complete protease inhibitor cocktail (Roche, catalog 301 

11697498001)). Protein concentration of cell extracts was determined using the BCA protein 302 

kit (Pierce, catalog 23225). Proteins were separated on 10% SDS-polyacrylamide 303 

electrophoresis gel and transferred to a nitrocellulose membrane. After 1 hour of blocking 304 

with 5% fat-free milk in Tris-Tween-Buffer-Saline, the membranes were probed for 1 hour at 305 

room temperature with mouse mono-clonal TRAFD1 antibody 1:1000 (Invitrogen, catalog 306 

8E6E7) or mouse monoclonal anti-actin antibody 1:5000 (MP Biomedicals, catalog 307 

08691001), followed by incubation with goat anti-mouse horseradish peroxidase–conjugated 308 

secondary antibodies 1:10000 (Jackson Immuno Research, catalog 115-035-003). After 309 

three 10-minute washes, the bands were detected by Lumi light WB substrate (Roche, 310 

catalogue 12015200001) in a Chemidoc MP imaging system (Bio-Rad) and quantified using 311 

Image Lab™ software (Bio-Rad). The band intensity of TRAFD1 was normalized to actin, 312 

and the TRAFD1 SCR control level was set as 100%. 313 

Statistical analysis for in vitro experiments in THP-1 cells. The statistical analyses of 314 

proliferation, qPCR and WB were performed using Prism 5 software (GraphPad Software, 315 

Inc.). Results are presented as mean ± SEM from a representative experiment. Statistical 316 

differences were evaluated using a one-tailed t-test. 317 

RNA sequencing (RNA-seq) in THP-1 cells. RNA from THP-1 cells was extracted with the 318 

mirVana™ miRNA isolation kit (AMBION, catalog AM1561). Prior to library preparation, 319 

extracted RNA was analysed on the Experion Stdsend RNA analysis kit (Bio-Rad, catalog 320 

7007105). 1 g of total RNA was used as input for library preparation using the quant seq 3’ 321 

kit (Lexogen, catalog 015.96), according to the manufacturer’s protocol. Each RNA library 322 

was sequenced on the Nextseq500 (Illumina). Low quality reads, adaptors and poly-A tail 323 
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reads were removed from FASTQ files. The QC-ed FASTQ files were then aligned to the 324 

human_g1k_v37 Ensembl Release 75 reference genome using HISAT default settings40, 325 

and sorted using SAMtools41. Gene-level quantification was performed by the featurecounts 326 

function of the RSubread R package v1.6.242. A modified Ensembl version 75 gtf file mapping 327 

only to the last 5’ 500 bps per gene was used as gene-annotation database to prevent 328 

counting of reads mapping to intra-genic A-repeats. Gene-level differential expression 329 

analysis between conditions was performed using the DESeq2 R package43 after removing 330 

genes with zero counts. Differentially expressed genes (DEGs) were defined as genes 331 

presenting an absolute log2 fold change (|log2 FC|) >1 and an FDR ≤ 0.01 across treatment 332 

(WT vs. SCR or KD unstimulated cells). To identify the genes responding to LPS stimulation, 333 

the DEGs between unstimulated samples and their respective stimulated sample were 334 

determined. Venn diagrams were used to depict the relationship between these genes. 335 

REACTOME pathway analyses were performed to identify biological processes and 336 

pathways enriched in different sets of DEGs using the enrichr API. Enrichments were 337 

considered significant if they were below a 0.05 FDR-threshold defined by the enrichr API36. 338 

Gene set permutation analysis. It can be difficult to determine if a set of genes is ‘on 339 

average’ more or less differentially expressed due to co-expression between the genes 340 

within the set. To mitigate this, we performed a permutation test that considers the median 341 

absolute T statistic calculated by DESeq243 in the WT-SCR experiment as a null observation 342 

and compared this null observation with the SCR-KD experimental comparison. This allowed 343 

us to compare the expected differential expression of a set of genes, based on the WT-SCR 344 

comparison, with the observed differential expression of the same set of genes in the SCR-345 

KD comparison, while still incorporating the co-expression structure of the data. To do this, 346 

we randomly selected a same-sized set of genes 1,000,000 times in each relevant 347 

experiment (WT-SCR or SCR-KD), and determined the observed median absolute T 348 

statistic. We calculated a ratio of how often the permuted value is higher than the observed 349 

value. For example, the observations can be that 1% of permuted gene sets are more 350 

differentially expressed in the WT-SCR experiment, while only 0.01% of permuted genes 351 

sets are more differentially expressed in the SCR-KD experiment. Finally, we divide these 352 

values by one another, (percentage SCR-KD)/(percentage WT-SCR), to calculate a fold 353 

increase in differential expression. In the example given above, this indicates that the KD is 354 

100 times (0.01/1 = 100) more differentially expressed than expected. 355 

 Available RNA-seq datasets. Four available RNA-seq datasets were included to study the 356 

pattern of expression of prioritized genes. A brief description of each dataset is provided 357 

below. (GEO submission in process). 358 
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Whole biopsy samples. Duodenal biopsies were obtained from 11 individuals (n=6 CeD 359 

patients and n=5 controls) who underwent upper gastrointestinal endoscopy (previously 360 

described)44. All individuals gave informed consent. To identify DEGs between patients and 361 

controls, a filter of |log2 FC|>1 and FDR ≤ 0.05 was applied using the DESeq2 R package. 362 

Intra epithelial cytotoxic lymphocytes (IE-CTLS). CD8+ TCR IE-CTLs cell lines were 363 

isolated from intestinal biopsies and expanded for 12 days, as described previously45. Cells 364 

were left unstimulated (controls) or treated for 3 hours with IFN (300 ng/ml, Pbl Assay 365 

science, cat 11410-2), IL-15 (20 ng/ml, Biolegend, cat 570304) or IL-21 (3 ng/ml, Biolegend, 366 

cat 571204) (n=8 samples per condition, as previously reported)44. Differential expression 367 

analysis between unstimulated cells and cytokine-treated IE-CTLs was performed using the 368 

R package DESeq2. DEGs were defined as genes presenting a |log2 FC| > 1 and an FDR ≤ 369 

0.05 between untreated controls and cytokine-treated samples. 370 

Gluten specific (gs) CD4+ T cells. gsCD4+ T cell lines were generated from intestinal 371 

biopsies and expanded for 2 weeks, as reported previously46. Cells were stimulated for 3 372 

hours with 2.5 g/ml of anti-CD3 (Biolegend, catalog 317315) and anti-CD28 (Biolegend, 373 

catalog 302923) antibodies. Untreated cells were included as control. N=22 samples per 374 

condition. DEGs were extracted with the DESeq2 package using the cut-off of |log2fc|>1 and 375 

FDR ≤ 0.05 between unstimulated samples and controls. 376 

Caco-2 cells. After 2 weeks of expansion in Transwells, the cells were treated with 60 ng/ml 377 

of IFN (PeproTech) for 3 hours. Untreated cells were included as controls. RNA samples 378 

were extracted and further processed for RNA-seq (as described previously44). DEGs 379 

between control and stimulated cells were extracted with the DESeq2 R package using a 380 

cut-off of |log2FC|>1 and FDR ≤ 0.05. 381 

 382 

Results 383 

Gene prioritization identifies 118 likely causal CeD genes. 384 

To identify genes that most likely play a role in CeD (prioritized genes), we combined a 385 

recent genome-wide association meta analysis5 with (1) eQTLs derived from whole-blood 386 

transcriptomes of 3,503 Dutch individuals16 and (2) a co-regulation matrix derived from 387 

expression data in multiple different tissues and 77,000 gene expression samples15. We 388 

selected 1,258 genes that were within 1Mb of the 58 CeD-associated non-HLA variant 389 

regions (p < 5x10-6) (see Methods), and prioritized the genes that are the most likely 390 

causally related to CeD using four different gene prioritization methods: MR-IVW13, 391 

COLOC12, LD overlap and DEPICT15 (Fig. 1A-B) (Supplementary Table 1). 392 

 393 
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 394 

 395 

Fig. 1 Cis-eQTL prioritized candidate genes in CeD loci. (A) A CeD GWAS association curve at a 396 
hypothetical GWAS locus X and the eQTL association at a potential candidate gene A. In both 397 
association plots, each dot represents a SNP plotted against the genomic position (X axis) and the 398 
strength of association (Y axis). In the GWAS association curve, the top SNP is marked in red, while 399 
other SNPs above the significance threshold (dashed line) are coloured according to their LD with the 400 
top SNP. In the eQTL association curve, independent eQTLs are marked in red. (B) A conceptual 401 
depiction of the four statistical methods applied to link a disease locus to an eQTL locus. (C) A 402 
chromosome ideogram depicting the location of each prioritized gene identified in a CeD-associated 403 
GWAS locus. Loci are marked with red bars. Genes depicted by a square are the target of an 404 
approved drug or a drug in development. All other genes are depicted by a circle. Each circle or 405 
square is coloured according to the lines of evidences supporting its causal role. 406 

 407 
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The first method we applied, MR-IVW, is a two-sample Mendelian Randomization 408 

approach called inverse variance weighting (see Methods). Our MR-IVW used summary 409 

statistics from two datasets: the eQTL and CeD GWAS. First, independent eQTLs at a locus 410 

were identified (see Methods), then the effect sizes of the eQTL and the GWAS were 411 

combined to identify gene expression changes that are causal (or protective) for CeD13,14 412 

(see Methods). We only applied this method to a subset of 162 genes for which at least 413 

three independent cis-eQTL variants (at p < 5x10-6) were identified (see Methods)32. We 414 

accounted for heterogeneity using the Q test and weighted median method and found that 415 

the effect sizes were very similar before and after correction (Supplementary Table 2).  416 

The second method, COLOC, is a variant colocalization test in which we used eQTL 417 

and CeD summary statistics for all the SNPs in a locus and Bayesian probability to infer 418 

whether the eQTL and the CeD-association signals are likely to originate from the same 419 

causal variant12.  420 

The third method, LD overlap, is a more classical annotation-type approach that 421 

prioritizes a gene if the top eQTL is in strong LD (r2 > 0.8) with the variant most significantly 422 

associated with CeD in a locus. This and the COLOC method were applied to 707 genes for 423 

which at least one significant eQTL variant was found. 424 

Finally, we used DEPICT15, a gene-prioritization method based on co-regulation in 425 

expression datasets across multiple different tissues. DEPICT identifies enrichment for co-426 

regulated genes from genes in a GWAS locus. In contrast to the other methods, DEPICT 427 

assessed the potential role of all 1,258 genes independently of the presence of an eQTL. 428 

In total, 118 out of the 1,258 assessed genes were prioritized by at least one of the 429 

four methods. Of these 118 genes, 28 had two lines of evidence, 7 genes (CD226, NCF2, 430 

TRAFD1, HM13, COLCA1, CTSH, UBASH3A) had three lines of evidence, and one gene 431 

(CSK) was supported by all four methods (Supplementary Table 1) (Fig. 1C). Overall, we 432 

identified potentially causal genes in 50 out of 58 CeD-associated regions. 433 

The four different gene prioritization methods complement each other in different 434 

ways. DEPICT prioritized the most genes: 66 in total, 38 of them uniquely prioritized (38/66, 435 

58% unique). One reason for this is that DEPICT is based on co-expression, not genetic 436 

background. Indeed, 16 genes prioritized by DEPICT do not have a significant eQTL 437 

associated with them. Overall, the most concordance was found between COLOC and LD 438 

overlap (30% and 26% unique genes, respectively) as these methods are the most similar, 439 

while MR-IVW uniquely prioritized a relatively large proportion of genes (9/20, 45% unique). 440 

Thus, each method helps prioritize genes with multiple lines of evidence, but also adds a 441 

unique set of genes based on the assumptions of the method. 442 

To see if any of these genes could lead to therapeutic intervention in CeD, we 443 

searched for the CeD-associated genes in DrugBank and assessed their druggability 444 
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potential following Finan et al.39 (Supplementary Table 3). 26 of the 118 prioritized genes 445 

encode proteins that are targeted by an approved drug or a drug in development according 446 

to drugbank (Fig. 1C) (Supplementary Table 3). For example, drugs such as Natalizumab 447 

and Basiliximab that target the proteins encoded by ITGA4 and IL21R, respectively, are 448 

currently approved or under study for the treatment of immune-mediated diseases including 449 

rheumatoid arthritis47, Crohn’s disease48 and multiple sclerosis49 or as an immune-450 

suppressor to avoid kidney transplant rejection. An additional 25 genes encode proteins that 451 

are similar to proteins targeted by already approved drugs following Finan et al.39 452 

(Supplementary Table 3). 453 

 454 

Co-expression patterns of cis-eQTL-prioritized loci reveal four functional clusters 455 

The biological function for the 118 prioritized genes and their role in CeD pathology is not 456 

fully understood. We sought to infer biological function using a guilt-by-association co-457 

regulation approach to identify clusters of shared molecular function (see Methods). We 458 

identified co-regulated genes by correlating our prioritized gene list in 1,588 principal 459 

components that were identified from the co-expression of 31,499 RNA-seq samples across 460 

multiple tissues34 (Fig. 2A). We then performed REACTOME 2016 gene set enrichment36 461 

analysis to investigate the biological processes enriched in each cluster (Supplementary 462 

Table 4) (Supplementary Table 5). 463 

We could not identify a specific biological process linked to our first co-regulation 464 

cluster. However, genes such as ULK3 (relevant for autophagy50) and CSK (relevant to T 465 

cell receptor (TCR) signaling51) are included in this co-regulation cluster. Our second cluster 466 

encompasses genes (e.g. STAT1, CD274 and IL12A) implicated in interferon gamma (IFN) 467 

signalling and interleukin (IL)-6 signalling. Co-regulation cluster 3 contains genes (e.g. 468 

CD28, CTLA4 and ICOS) associated with co-stimulation by CD28, a process that is 469 

essential for modulating T cell–activation. Finally, co-regulation cluster 4 contains chemokine 470 

(e.g. CCR1, CCR2 and CCR3) and cytokine signalling genes (e.g. IL2RA, IL21 and IL18R1) 471 

(Fig. 2B). The biological processes overrepresented in these co-regulation clusters are 472 

essential for the activation and function of the adaptive and innate immune system, which 473 

confirms and extends previous findings that implicate both arms of the immune system in 474 

CeD disease pathogenesis. Approximately 10% of the prioritized genes are long non-coding 475 

RNAs (lncRNAs) rather than protein-coding genes (Supplementary Table 1). Although little 476 

is known about the function of lncRNAs, their co-regulation pattern with the genes in clusters 477 

2 and 4 suggests that they may be associated with cytokine/chemokine signalling (Fig. 2A, 478 

B). Moreover, by using Genenetwork34, we found that the lncRNAs RP3-395M20.9, 479 

AC007278.2 and AC104820.2 may be involved in tumour necrosis factor (TNF) signalling, 480 

neutrophil degranulation and chemokine receptor signalling, respectively, implying a role for 481 

these uncharacterized lncRNAs in immune regulation in CeD.  482 

 483 
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 484 

Fig. 2 Co-expression pattern of cis-eQTL prioritized genes reveals four functional 485 
clusters. (A) Heatmap showing the Spearman correlations between gene expression patterns of 486 
each prioritized gene. Blue squares indicate negative correlation. Red squares indicate positive 487 
correlation. Both are shaded on a gradient scale according to the Z score of the correlation. A 488 
dendrogram computed with Ward distances between the correlations is shown on top of the 489 
heatmap. Branches of the dendrogram are coloured differently to mark separate clusters. (B) 490 
Results of the REACTOME gene set enrichment analysis of the genes belonging to each of the 491 
clusters identified in (A). Colour key denotes the significance (-log 10 multiple testing adjusted p 492 
value) of each biological pathway. (C) Heatmaps depicting the scaled expression of prioritized 493 
genes belonging to the four clusters identified in (A) in three available RNA-seq datasets: 494 
intestinal biopsies from controls (CTR, n=5 samples) or CeD patients (CeD, n=6 samples); CD8+ 495 
TCR intraepithelial cytotoxic lymphocytes (IE-CTLs) unstimulated or treated with IL-21, IL-15 496 
or IFN for 3 hours (n=8 samples per condition) and gsCD4+ T cells unstimulated or treated with 497 
anti-CD3 and anti-CD28 (aCD3) for 3 hours (n=22 samples per condition). Clustering was 498 
performed using the “average” method in hclust(). 499 

 500 

CeD candidate genes operate in immune and intestinal epithelial cells  501 

To complement our REACTOME gene set enrichment analysis and dig deeper into the 502 

biological processes and cell types in which the prioritized genes may act, we analysed their 503 

expression profiles in available RNA-seq datasets from disease-relevant cell types including 504 

1) small intestinal biopsies of active CeD patients and healthy controls, 2) intra-epithelial 505 

cytotoxic lymphocytes (IE-CTLs) stimulated with disease-relevant cytokines IL-21, IL-15 and 506 

IFN and 3) gluten specific CD4+ T cells (gsCD4+ T cells) stimulated with antiCD3-antiCD28, 507 

which mimics the disease-specific response to gluten peptides (Fig. 2C) (differentially 508 

expressed genes for each dataset are available in Supplementary Table 6). We observed 509 

that the genes grouped in co-regulation clusters 1 and 2 are highly expressed in small 510 

intestinal biopsies and IE-CTLs, which is in line with the IFN pathway enrichment seen in 511 

co-regulation cluster 2 (Fig. 2B). IFN is mainly produced by gsCD4+ T cells and IE-CTLs 512 

and is known to disrupt the integrity of the intestinal epithelial cells in CeD-associated villous 513 
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atrophy52–54. Within this cluster we also found genes specific to antigen-presenting cells (B 514 

cells, monocytes and dendritic cells) and epithelial cells such as IL12A and COLCA1, which 515 

are most expressed in small intestinal biopsies (Fig. 2C). The genes in co-regulation 516 

clusters 3 and 4 are highly expressed in gsCD4+T cells, especially after stimulation with 517 

antiCD3-antiCD28, indicating that these prioritized genes may be biologically relevant in the 518 

immediate T cell receptor response to gluten ingestion. 519 

The gene expression pattern of the prioritized genes, when combined with 520 

information from our literature search, suggests that these genes may control general 521 

biological processes (e.g. apoptosis, gene regulation and cytoskeleton remodelling) as well 522 

as specific immune functions (e.g. cell adhesion, cell differentiation and TCR signalling) in 523 

diverse cell types (e.g. T cells, neutrophils, B cells, monocytes, epithelial cells) (Fig. 3 and 524 

Supplementary Table 7). The non-HLA genetic loci associated to CeD thus seem to affect 525 

a complex network of cells and biological processes.  526 

 527 

 528 

Fig. 3 CeD candidate genes operate in immune cells and intestinal epithelial cells. 529 
Functions and cell types highlighted by the prioritized genes, according to our literature review 530 
(see Methods) (n=118 genes, for 37 genes neither a function nor a specific cell type on which 531 
the gene may operate could be specified). All genes contributing to a specific function are listed 532 
under the sub-heading and coloured according to the change that leads to increased CeD risk: 533 
increased expression (red), decreased expression (blue), or undefined (black). The symbols + or 534 
– denote if a biological process is thought to be induced or repressed by the gene, respectively, 535 
according to literature.  536 
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Mediation analysis uncovers TRAFD1 as a major trans-eQTL regulator 537 

To further understand the potential regulatory function of the prioritized genes, we identified 538 

downstream regulatory effects by performing a trans-mediation analysis using a two-step 539 

approach (Methods) (Supplementary Fig. 1A). We first considered all genes with a trans-540 

eQTL (p < 5x10-8) located in any of the 58 CeD-associated regions, then performed a 541 

mediation analysis by re-assessing the trans-eQTL effect after adjusting the expression 542 

levels for the expression of the prioritized gene(s) in the same locus (Fig. 4A). 543 

Of the 497 possible prioritized gene–trans-eQTL gene combinations, we found 172 544 

that exhibited significant mediation effects. These combinations map to 13 associated 545 

regions and represent 21 unique mediating cis-eQTL genes and 79 unique mediated trans-546 

eQTL genes (Supplementary Table 8). Among all the associated regions, the CeD-547 

associated region on chromosome 12 contained the largest number of both cis-mediating 548 

genes (N=5) and trans-mediated genes (N=60). In this region, TRAFD1 mediated more trans 549 

genes than all of the other regional cis-regulators and also had the highest mediation impact 550 

(average Z-score difference in effect size between mediated and unmediated analysis = 551 

2.79) (Methods) (Supplementary Table 8) (Supplementary Fig. 1B). Of note, the top 552 

eQTL variant of TRAFD1 is a missense variant in the nearby gene SH2B3. This missense 553 

variant has been associated to a number of complex traits, including blood cell types and 554 

platelets, and autoimmune diseases55,56. However, we found that cell-type composition did 555 

not affect the eQTL-association of TRAFD1 in our cohort (p > 0.044 for 24 different cell-type 556 

traits) (Methods) (Supplementary Table 9). To ensure that the mediated trans genes of 557 

TRAFD1 were not mediated by SH2B3, we corrected TRAFD1 expression levels for SH2B3 558 

and re-ran the mediation analysis. Here we found that the mediating effect of TRAFD1 was 559 

still significant for all 41 genes found initially and that the median Z-score difference between 560 

mediated and unmediated was higher than that of SH2B3, although it was slightly attenuated 561 

compared to the original TRAFD1 signal (Supplementary Table 10) (Supplementary 562 

Figure 1B). Based on these results, we conclude that TRAFD1 is a master regulator of gene 563 

expression changes in the associated region (Fig. 4B) (Supplementary Table 10).  564 

Strikingly, three of the TRAFD1 trans-mediated genes – STAT1, CD274 and 565 

PDCD1LG2 – are also prioritized cis-genes in their respective loci (Fig. 4B). These results 566 

suggest that the trans-mediated TRAFD1-effects may have an additional additive effect in 567 

these CeD-associated loci.  568 

 569 

 570 

 571 
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 572 

Fig. 4 Mediation analysis uncovers TRAFD1 as a major trans-eQTL regulator. (A) Workflow 573 
illustrating the main steps to identify trans-eQTL genes mediated by our cis-prioritized genes. 574 
First, we identified trans-eQTLs and trans genes that have a significant association (p < 5x10-8) 575 
in our prioritized regions. Then, for every cis prioritized gene in the CeD-associated region, a 576 
mediation analysis was performed to determine if the cis gene expression explains the trans-577 
eQTL effect. (B) Circular ideogram depicting the mediating effect of TRAFD1 on 41 trans genes. 578 
Three of the 41 trans-mediated genes were also prioritized by our cis-eQTL analysis (red). 579 

 580 

TRAFD1 is a poorly characterized gene that has been suggested to act as a negative 581 

regulator of the NFB pathway57. To further elucidate the biological processes in which the 582 

41 TRAFD1 trans-mediated genes could be involved, we performed a REACTOME 2016 583 

gene set enrichment analysis (Supplementary Table 11). Here we found that IFN 584 

signalling, cytokine signalling and major histocompatibility complex class I (MHCI) antigen 585 

processing / presentation are strongly enriched pathways, which points to a role for TRAFD1 586 

and TRAFD1 trans-mediated genes in antigen presentation and immune response (Fig. 5A). 587 

By looking into RNA-seq datasets from disease-relevant cell types, we noted that 588 

most TRAFD1 trans-mediated genes are upregulated in biopsies from patients with active 589 

CeD, and these genes include STAT1, CXCL10 and TAP1, which are essential for IFN 590 

response58, chemotaxis59 and antigen processing60, respectively (Fig. 5B). Moreover, most 591 

TRAFD1 trans-mediated genes exhibit an increase in expression in response to IFN in 592 

intestinal epithelial cells (Caco-2) or IFN  in IE-CTLs (Fig. 5B). In contrast, antiCD3-593 

antiCD28 stimulation in gsCD4+T cells resulted in both up- and downregulation of the 594 

TRAFD1 trans-mediated genes, implying that TRAFD1 trans-mediated genes respond more 595 

strongly to IFN signalling (IFN or IFN) than to TCR activation by anti-CD3/anti-CD28. 596 
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Indeed, the enrichment of the 41 TRAFD1 trans-mediated genes in significantly differentially 597 

expressed genes in biopsies, IE-CTLs, epithelial cells and gsCD4+Tcells was strongest in IE-598 

CTLs and epithelial cells upon IFN signalling (Supplementary Table 6). Overall, our results 599 

suggest that TRAFD1 and TRAFD1 trans-mediated genes modulate IFN signalling upon 600 

antigen presentation, possibly via regulation of NFB, in CeD pathology. 601 

 602 

 603 

Fig. 5 TRAFD1 is a regulator of IFN signalling genes. (A) Results of the REACTOME gene 604 
set enrichment analysis of TRAFD1-mediated genes (n=41 genes). Colour code denotes the 605 
significance (-log 10 adjusted p value) of each biological pathway. (B) Unscaled heatmaps 606 
depicting the expression of these genes in RNA-seq datasets from different cell types: whole 607 
biopsies from controls (Ctr, n=5 samples) of CeD patients (CeD, n=6 samples); intraepithelial 608 
cytotoxic lymphocytes (IE-CTLs) unstimulated or treated with IFN for 3 hours (n=8 samples per 609 
condition); and Caco-2 cells untreated or stimulated with IFN  for 3 hours (n=8 samples per 610 
condition) Red indicates that a gene is differentially expressed (DE), blue indicates that a gene 611 
is not differentially expressed (non-DE) (FDR<0.01 and |log2(RPKM)>1|). Grey (none or 612 
unstimulated), pink (IFN), green (IFN) and yellow (antiCD3/antiCD28) colours indicate the type 613 
of stimulation (treatment).  614 

 615 

TRAFD1 KD affects immune-activation genes  616 

We performed a siRNA KD experiment on TRAFD1 to gain more insights into the biological 617 

function of this gene and to independently validate the TRAFD1 trans-mediated genes. We 618 

also evaluated the transcriptional changes of knocking down TRAFD1 in the monocyte-like 619 

cell line THP-1 under resting conditions (unstimulated) or in the presence of LPS, a known 620 

inducer of the NFB pathway61.  621 
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After siRNA treatment, we observed no significant differences in cell viability or 622 

proliferation among the controls (WT and SCR) and the KD treatment (Supplementary Fig. 623 

2A, B). However, as expected for the KD cell line, we noted a significant reduction in the 624 

expression of TRAFD1 compared to the controls in WB and qPCR analyses 625 

(Supplementary Fig. 2C-E). KD of TRAFD1 was also confirmed in the RNAseq data, with 626 

TRAFD1 expression levels reduced by 41% in unstimulated KD cells compared to 627 

unstimulated SCR cells (adjusted p = 0.004) and by 34% in LPS-stimulated KD cells 628 

compared to LPS-stimulated SCR cells (not significant) (Supplementary Table 12). The 629 

reduced KD effect upon LPS stimulation is consistent with our expectation that TRAFD1 acts 630 

as negative regulator of the NFB pathway, which is activated by several stimuli, including 631 

LPS61. Thus, the KD was successful and neither the transfection method nor a reduced 632 

expression of TRAFD1 had a toxic effect (Supplementary Fig. 2A-E). 633 

Next, we tested if the 41 TRAFD1 trans-mediated genes were more differentially 634 

expressed than expected after LPS stimulation (Supplementary Fig. 3). To disentangle 635 

differential expression from the co-expression inherently present in a gene expression 636 

dataset, we devised a permutation scheme that compared the control (WT vs. SCR) 637 

observations with the KD (SCR vs. KD) observations (see Methods). This scheme takes 638 

into account the co-expression of a gene set, as this co-expression is present in both the 639 

control and the experimental observation. After performing 1,000,000 permutations of 42 640 

genes (41 trans mediated genes and TRAFD1) in the LPS-stimulated comparison, the 641 

median test statistic in the control observations was observed 54 times more often than in 642 

the KD observations (0.270% for WT-SCR vs. 0.005% for SCR-KD, Supplementary Fig. 4). 643 

This indicates that the 41 trans-mediated genes and TRAFD1 are 54 times more 644 

differentially expressed than expected. We did not find increased differential expression of 645 

the same gene set in the unstimulated condition (1.120% for WT-SCR vs. 0.307% for SCR-646 

KD, Supplementary Fig. 4), indicating that TRAFD1 mainly regulates genes in an LPS-647 

stimulated state. 648 

To identify the role of TRAFD1 in immune cells and processes, we compared gene 649 

expression changes in the unstimulated condition versus the LPS stimulated condition for 650 

each treatment (WT, SCR or KD) separately (Supplementary Fig. 2F). Differential 651 

expression analysis showed that 353 genes were uniquely upregulated and 330 genes 652 

uniquely downregulated after TRAFD1 KD treatment (Supplementary Fig. 2G, H). We 653 

found no REACTOME gene set enrichment for these unique KD genes. We found 500 654 

upregulated and 433 downregulated genes that were differentially expressed in all three 655 

treatments upon LPS stimulation (Fig. 6A, Supplementary Fig. 2G, H). Upregulation (or 656 

downregulation) after LPS stimulation was treatment-dependent, i.e. the differential 657 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.973487doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.973487


 22 

expression identified was increased (or decreased) from WT to SCR to KD (Fig. 6A). We 658 

performed hierarchical clustering, this separated the two gene sets into two clusters: cluster 659 

1 shows a decreased response of genes in the TRAFD1 KD group (LPS cluster 1, Fig. 6B, 660 

Supplementary Table 13) and cluster 2 displays an increased expression in the TRAFD1 661 

KD cells under unstimulated conditions that persists after LPS stimulation (LPS cluster 2, 662 

Fig. 6C, Supplementary Table 13). REACTOME gene set enrichment analysis indicated 663 

that the genes in LPS cluster 1 are involved in immune-related processes (e.g. cytokine 664 

signalling, RIG/IMDA5 induction of IFN signalling and IFN signalling, Fig. 6D), whereas the 665 

genes in LPS cluster 2 are associated with the heat shock response, which has been shown 666 

to be activated as a consequence of immune activation or immune response to stress62 (Fig. 667 

6E, Supplementary Table 13). Together, these results suggest that TRAFD1 is a regulator 668 

of immune activation and inflammation. 669 

 670 

 671 

Fig 6. TRAFD1 knockdown affects immune activation and stress-related genes. (A) 672 
Heatmap showing the expression profile of the 500 shared DEGs identified in the knockdown 673 
experiments (see Methods and Supplementary Fig. 2 F, G). A dendrogram on the left of the 674 
heatmap depicts the strength of similarities based on Ward distance. (B, C) Violin plots showing 675 
the normalized gene expression of the genes belonging to the first and second cluster of DEGs 676 
identified in (A) in THP-1 cells under different experimental conditions (WT=untransfected, 677 
SCR=non-targeting siRNA, KD=siRNA targeting TRAFD1) and stimulations 678 
(LPS=lipopolysaccharide). (D, E) Results of REACTOME gene set enrichment analysis of the 679 
genes within the first (D) and second cluster (E). Significance (-log 10 adjusted p value) of each 680 
biological pathway is indicated by the colour key. 681 

 682 

 683 
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Discussion  684 

In the present study we aimed to identify CeD candidate genes using four in silico methods 685 

(MR-IVW, COLOC, LD overlap and DEPICT) and whole blood transcriptomics data from a 686 

population-based cohort. While previous studies have used at least one of these 687 

methods3,5,6,11, to our knowledge this is the first effort that integrates the four different 688 

statistical approaches. This systematic prioritization approach resulted in 118 prioritized 689 

causal genes, including 26 that are direct targets of an approved drug or of drugs under 690 

development for other complex diseases, including autoimmune diseases. The co-691 

expression pattern within a large RNA-seq dataset from blood34 suggests these genes are 692 

involved in cytokine signalling in innate and adaptive cells as well as in T cell activation 693 

pathways. We also identified TRAFD1 to be trans-regulator of 41 genes, with a strong 694 

enrichment in IFN signalling and MHC I antigen processing/presentation pathways, which 695 

are pivotal for the disease pathogenesis.  696 

After clustering our cis-eQTL prioritized genes on shared co-regulation, we identified a 697 

cluster of genes involved in T cell activation and co-stimulation (cluster 3), highlighting a key 698 

role for T cell activation in the pathogenesis of CeD63. Within this co-regulation cluster we 699 

found the THEMIS, IL2, CD28, CTLA4 and UBASH3A genes (Fig. 2), whose functions 700 

include T cell differentiation and activation and the TCR macromolecular complex.  701 

Another co-regulation cluster (cluster 4, Fig.2) grouped prioritized genes involved in 702 

cytokine and chemokine signalling events that affect the microenvironment during 703 

inflammation in the intestinal mucosa. For example, this group included CCR1 and CCR2, 704 

which control the activation and recruitment of inflammatory cells such as monocytes, 705 

dendritic cells and neutrophils64. IL21 was also included in this co-regulation cluster. This 706 

gene encodes IL-21, providing proliferation and survival signals to B cells65, which in turn 707 

produce the autoantibodies detected in CeD and could act as antigen-presenting cells for 708 

gsT cells, thus enhancing the inflammatory response66. Next to chemokine receptors, this 709 

co-regulation cluster contains cytokine receptor genes, e.g. IL18RAP and IL18R1. Which 710 

encode the IL-18 receptor, that is expressed in intestinal epithelial cells and mediates IL-18 711 

controlled intestinal barrier integrity and immunity67,68. This cluster also contains transcription 712 

factors genes, e.g. IRF4, ETS1 and REL. IRF4 and ETS1 are essential for T helper 1 (Th1) 713 

differentiation69,70. Interestingly, gsCD4+ T cells exhibit a Th1 profile, that predominantly 714 

produce IFN, a cytokine that affects the integrity of the intestinal epithelial cells contributing 715 

to villous atrophy52–54.  REL, that is also contained in cluster 4, is a key regulator of NFB 716 

signalling pathway, a major mediator of inflammation71, which is in line with the novel genetic 717 

association reported between NFB and CeD by Ricano-Ponce et al.5 Moreover, CeD 718 
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patients show a persistent activation of the NFB pathway in the intestinal mucosa72 as well 719 

as a significant increase in the methylation level of 8 genes that belong to this pathway73. 720 

Thus, these results indicate that CeD patients present with a major defect in the NFB 721 

signalling complex. 722 

For practical reasons, most prioritization studies have been focused on incorporating 723 

cis-eQTLs74 and have mostly ignored trans-eQTLs, thus potentially missing long-distance 724 

co-regulated interactions74. In our study, we took advantage of a large transcriptomics cohort 725 

to run a trans mediation analysis for CeD loci. One of the most remarkable findings of this 726 

approach was that 41 trans-mediated genes were found to be controlled by a single gene: 727 

TRAFD1. These 41 genes are enriched for IFN and MHC I antigen processing/presentation 728 

signalling pathways. Interestingly, gsCD4+ T cells exhibit a Th1 profile and produce a large 729 

amount of IFN, one of the most predominant cytokines in CeD54. Some of the most striking 730 

effects of IFN include induction of apoptosis in intestinal epithelial cells, alteration of 731 

intestinal permeability and activation of monocytes and dendritic cells, which may act as 732 

antigen-presenting cells for gsCD4+ T cells75.  733 

TRAFD1 is thought to be a regulator of the NFB signalling pathway57, suggesting 734 

that CeD-risk SNPs may modulate the NFB complex via both cis and trans regulatory 735 

mechanisms. Our results also point to a role for TRAFD1 in response to IFN; however, IFN 736 

does not typically activate NFB signaling76 and the IFNG locus is not associated with CeD7. 737 

Thus, TRAFD1 may activate the production of other cytokines, which in turn activate the 738 

NFB complex.  739 

IE-CTLs, which are the effector cells in CeD, have not thus far been genetically 740 

associated with the disease. However, given that MHC-I antigen presentation 741 

presentation/processing are essential for IEL activation and the striking activation of the 41 742 

trans mediated genes in IE-CTLs upon IFN stimulation, we propose that the IE-CTLs are 743 

also genetically linked to the disease through the action of TRAFD1.  744 

Despite the approaches implemented in our study to uncover the novel gene 745 

interactions and biological pathways that may underlie the disease, a major drawback is the 746 

limited genome coverage of the CeD summary statistics used in this study. These were 747 

derived from a GWAS that used the Immunochip platform, a genotyping platform that only 748 

measures genotypes in regions known to be associated with immune function. We thus 749 

acknowledge that our current interpretation of CeD loci is biased toward immune-related 750 

mechanisms. Only when comprehensive whole-genome CeD association analyses have 751 

been performed will we have an unbiased understanding of the disease pathophysiology.  752 
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In our gene prioritization we observed that the different statistical gene prioritization 753 

methods applied to our data prioritized unique and jointly prioritized genes. Therefore, we 754 

recommend that investigators incorporate multiple methodologically orthogonal gene 755 

prioritization methods to identify a more comprehensive set of causal genes for a given 756 

disease. Here, we use two different (orthogonal) expression datasets (BIOS and DEPICT) 757 

and three prioritization methods using the same underlying data: MR-IVW, LD-overlap and 758 

COLOC. While we believe that the genes prioritized in this study represent robustly 759 

prioritized genes for CeD, it is difficult to validate if all the prioritized genes are truly causal 760 

based on statistical methodology alone. Functional validation of these genes in disease 761 

context is needed to rule out false positives.  762 

The functional validation of TRAFD1 in the siRNA KD experiment in THP-1 cells 763 

does establish that this gene regulates the trans-mediated network identified by our eQTL 764 

and statistical analysis. Still, the effects of the SCR control and the transfection itself may 765 

have obscured some specific TRAFD1-mediated effects. Moreover, the CeD-associated 766 

effects of TRAFD1 may not be most pronounced in monocytes or upon LPS-stimulation. 767 

Indeed, context- and cell-type-specific effects of CeD-associated genetic variation may 768 

hamper the identification of the downstream effects of the prioritized cis- and trans-genes. 769 

In conclusion, this study provides a framework for predicting candidate genes and 770 

their function using a systematic in silico approach that could be extended to other complex 771 

diseases. Using this approach, we not only confirmed previous association between 772 

adaptive cells (gsCD4+ T cells and B cells) and CeD, we also unveiled a link between 773 

specific genes that may contribute to the disease via innate immune cells, epithelial cells 774 

and IE-CTLs. Finally, we found a gene network controlled by TRAFD1 that is part of two 775 

major pathways of immune activation, IFN signalling and MHC I antigen processing.  776 

  777 
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Supplementary figure legends 796 

Supplementary Fig. 1 Mediation effect on trans genes for all prioritized genes in the 797 
TRAFD1 region on chromosome 12. (A) Three boxes with the eQTL association curves of 798 
TRAFD1, SERPING1 and SERPING1 after mediation with TRAFD1. (B) Scatter plot indicating 799 
the absolute Z difference between unmediated and mediated trans associations upon mediation 800 
(y axis) by all mediating cis genes in the TRAFD1 region shown on the x axis as well as when 801 
correcting TRAFD1 expression for the expression of SH2B3 (‘TRAFD1 – SH2B3’). 802 

Supplementary Fig. 2 TRAFD1 knockdown validation. Cell viability (A) and proliferation (B) of 803 
THP-1 cells that were left untransfected (WT) or transfected with non-targeting siRNA (SCR) or 804 
siRNA targeting TRAFD1 (KD) for 72 hours. Protein and mRNA levels of TRAFD1 were 805 
determined by WB (C, D) and qPCR (E). Bars indicate mean ± SEM. Data are representative of 806 
three different experiments. Statistical differences were calculated with a one-sided t-test by 807 
using the SCR as 100% reference. p-value ≤ 0.0001 (****). (F) The differential expression 808 
analysis approach. Here we compared the gene expression between unstimulated samples and 809 
their respective LPS-stimulated samples to identify DEGs that respond to stimulation ((|log2 FC|) 810 
>1 and FDR ≤ 0.01). We then identified unique or shared DEGs responding to the stimulation 811 
between treatments (WT, SCR or KD), which are shown in two separate Venn diagrams: one for 812 
upregulated genes (G) and one for downregulated genes (H). 813 

Supplementary Fig. 3 Expression pattern of TRAFD1-mediated genes upon TRAFD1 814 
knockdown. Heatmap showing the pattern of gene expression of TRAFD1 and of the 41 genes 815 
it mediates, scaled by row (see details in Methods and Fig. 5). Expression is shown in different 816 
treatments and stimulations as indicated by coloured bars on top of the heatmap.  817 

Supplementary Fig. 4 DEGs upon TRAFD1 knockdown are enriched in TRAFD1-mediated 818 
genes. Here we compare the differential expression of 42 genes found in the trans mediation 819 
analysis of TRAFD1 (41 trans-mediated genes and TRAFD1) with the differential expression of 820 
42 other randomly chosen genes. The histograms (blue) show the distribution of the median 821 
absolute T statistic of DEseq of 42 randomly chosen genes, when 1,000,000 sets of genes are 822 
randomly chosen, compared to the observed value for the 42 genes that are from the trans-823 
mediation analysis (red horizontal line). We compare the results of the control experiment (WT-824 
SCR) in panels A and C with the results of the knockdown experiment (SCR-KD) in panels B and 825 
D. The fold differences between the control experiments and the knockdown experiments show 826 
how much more than expected the 42 genes are differentially expressed in the knockdown 827 
compared to the control. 828 

 829 

  830 
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Supplementary table Legends 831 

Supplementary Table 1. Prioritization of genes likely causal for celiac disease (CeD). 832 

This table contains all the genes in the prioritized CeD regions and their evidence for being 833 

causal to CeD. One gene per row is shown. Columns (in order): the human build 37 834 

coordinates of the CeD region in which the gene is located (region); the gene name 835 

according to the ENSEMBL GENES 96 database (human build 37) (gene_name); the 836 

ENSEMBL gene identifier (ensembl_id); the most likely effect direction (determined as 837 

described in Methods) (most_likely_direction); number of independent eQTL variants 838 

found for the gene (n_eqtl_effects); the effect size (MR_ivw_effect) and p value 839 

(MR_ivw_p_value) of the MR-IVW test; the summary of LD overlap 840 

(ld_overlap_summary), with either the top eQTL variant (‘top_snp’) or an independent 841 

eQTL variant (‘cojo_snp’) with the r2 linkage disequilibrium between the eQTL SNP and the 842 

CeD top variant; the coloc posterior probability of causal variants being shared (coloc_h4); if 843 

the gene passes DEPICTs own false discovery thresholds (depict_fdr_pass); and the lines 844 

of evidence that are significant compared to the lines of evidence that are available for a 845 

gene (lines_of_evidence). Bold fields in any of the columns indicate that the prioritization 846 

method is significant according to our thresholds. 847 

Supplementary Table 2. Sensitivity analyses for genes selected by the IVW-MR 848 

method. In this table, genes with a significant MR-IVW effect are tested for heterogeneity 849 

using the Q test statistic and the MR-weighted median results as sensitivity analysis of all 850 

significant MR results. Each row contains the following information: the human build 37 851 

coordinates of the CeD region in which the gene is located (region); the gene name 852 

according to the ENSEMBL GENES 96 database (human build 37) (gene_name); the 853 

ENSEMBL gene identifier (ensembl_id); the most likely direction of the effect (determined 854 

as described in Methods) (most_likely_direction); the number of independent eQTL 855 

variants found (n_eqtl_effects); the effect size (MR_ivw_effect) and p value 856 

(MR_ivw_p_value) of the MR-IVW test; the heterogeneity p value of the MR-IVW test using 857 

Cochran’s Q statistic (MR_heterogeneity_p_value); the weighted median effect estimate 858 

(MR_WM_beta) and its associated p value (MR_WM_p); the MR effect estimate after 859 

removal of potential outliers (MR_Q_beta); its associated p value (MR_Q_p); the remaining 860 

variants after outlier removal (MR_Q_ivs) and the heterogeneity estimate 861 

(MR_Q_heterogeneity). 862 

Supplementary Table 3. Druggability information for prioritized genes. This table 863 

contains all the prioritized cis genes in the CeD regions that are existing drug targets 864 

according to two different databases (DrugBank v5.1.4, and Finan et al.39). One gene per 865 
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row is shown. Columns indicate (in order): the human build 37 coordinates of the CeD region 866 

in which the gene is located (region); the gene name according to the ENSEMBL GENES 867 

96 database (human build 37) (gene_name); the ENSEMBL gene identifier (ensembl_id); 868 

the most likely effect direction (determined as described in Methods) 869 

(most_likely_direction); the number of independent eQTL variants found for the gene 870 

(n_eqtl_effects); the effect size (MR_ivw_effect) and p value (MR_ivw_p_value) of the 871 

MR-IVW test; the summary of LD overlap (ld_overlap_summary) with either the top eQTL 872 

variant (‘top_snp’) or an independent eQTL variant (‘cojo_snp’) with the r2 linkage 873 

disequilibrium between the eQTL SNP and the CeD top variant; the coloc posterior 874 

probability of causal variants being shared (coloc_h4); if the gene passes DEPICT’s own 875 

false discovery thresholds (depict_fdr_pass); the lines of evidence that are significant 876 

compared to the lines of evidence that are available for a gene (lines_of_evidence); the 877 

druggability tier based on Finan et al.39, with lower tiers making it more likely that the gene is 878 

druggable39, (druggable_tier), and if the gene is a drug bank drug target 879 

(drug_bank_drug_target). Bold fields in any of the columns indicate that the prioritization 880 

method is significant according to our thresholds.  881 

Supplementary Table 4. Cluster assignments for the prioritized genes. The 118 882 

prioritized genes were assigned to a cluster based on a guilt-by-association co-regulation 883 

approach to find shared biological mechanisms. For each gene that was prioritized 884 

(ensembl_id and gene_name), a cluster membership is given (cluster_membership). 885 

Supplementary Table 5. Significant REACTOME 2016 enrichment of cis prioritized 886 

genes in each co-regulation cluster. Results from the enrichr API using the gene clusters 887 

of Supplementary Table 4 as query. Columns indicate: the enrichment background 888 

(background); the enrichment term in the background (term_name); the non-corrected p 889 

value of enrichment for this term (p_value) and Z score (Z_score); enrichr combined score 890 

(combined_score); cis-prioritized genes found in each the term (overlapping_genes) and 891 

the multiple testing corrected p value (adjusted_p_value). Each tab of the excel file contain 892 

the gene set enrichment for each cluster as defined in Supplementary Table 4. 893 

Supplementary Table 6. Results of DE analyses from all cell-type- and context-894 

specific data available for this study (datasets). This table lists all results for the DE 895 

analyses (Significant DE genes are defined as padj < 0.05 and log2 fold change > |1|) and a 896 

summary report of the overlap with TRAFD1 trans-mediated genes (overlap with trans 897 

genes+TRAFD1) and relative enrichment. The DE gene lists (padj < 0.05 and log2 fold 898 

change > |1|) for each dataset are given in individual sheets. In the sheet “enrichment”, 899 

columns upregulated and downregulated indicate if the trans-mediated genes are up- or 900 
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downregulated under stimulated conditions compared to control conditions in each dataset. 901 

Enrichment of all the trans mediated genes in the DE genes was determined using a 902 

Fisher’s exact test and the enrichment p value is shown in the column enrichment p-val.  903 

Supplementary Table 7. Functions attributable to the prioritized genes, according to 904 

our literature review (see Methods and Fig. 3). Columns describe (in order): gene name 905 

(gene_name); ensemble ID (ensembl_id); the change that leads to increased CeD risk, i.e. 906 

increased expression (+), decreased expression (-), or undefined (?) (direction); attributable 907 

function based in literature (potential_function); and literature or web-based sources 908 

(source_1 and source_2). Web-based sources include Gene cards 909 

(https://www.genecards.org/) and Genenetwork (https://www.genenetwork.nl/). 910 

Supplementary Table 8. All the significant trans-mediated genes from our cis 911 

prioritization. Each row contains a cis–trans gene pair described with both the ensembl id 912 

and hgnc gene name (cis_ensembl_id), (cis_gene_name), (trans_ensembl_id) and 913 

(trans_gene_name). Mediation effect and significance are shown using the Z score of the 914 

unmediated versus the mediated estimate (using the original unmediated standard error) 915 

(z_score_difference) and the mediation p value of the test defined by Friedman and 916 

Schatzkin (mediation_p).  917 

Supplementary Table 9. Cell type mediation analysis. We calculated to what extent cell 918 

types counted in the BIOS cohort affect the most highly associated TRAFD1 eQTL variant. 919 

Columns show (in order): the specific cell type measurements or mediator (mediator); the 920 

effect size after mediation by the cell type (mediated_beta); the original effect size 921 

(unmediated_beta); difference in effect sizes between mediated and unmediated 922 

(beta_difference); the standard error mediation effect size (se); the t-statistic of the beta 923 

differences (t_statistic); a p value of the Friedman and Schatzkin test statistic (p_value); 924 

the Pearson correlation coefficient between TRAFD1 and the cell type proportion 925 

(correlation); and the number of observations in the BIOS cohort (n_observations). If a 926 

mediator has a “_Perc” suffix, the cell type counts were converted into ratios. Cell type 927 

abbreviations: Baso: Basophil count, EOS: eosinophil count, HCT: haematocrit, HGB: 928 

haemoglobin, LUC: large unstained cell count, Lymph: lymphocyte count, MCH: mean 929 

corpuscular haemoglobin, MCHC: mean corpuscular haemoglobin concentration, MCV: 930 

mean corpuscular volume, Mono: Monocyte count, MPV: mean platelet volume, Neut: 931 

Neutrophil count, PLT: platelets count, RBC: red blood cell count, RDW: red blood cell 932 

distribution width, WBC: white blood cell count.  933 
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Supplementary Table 10. Mediation results when correcting TRAFD1 expression for 934 

the nearby SH2B3 expression. Columns are: the ENSEMBL id (ensemble_id); the hgnc 935 

gene name (gene_name); and the mediation Z score difference (Z_score_difference), p 936 

value (p_value) and Pearson correlation (correlation) between the trans-eQTL top variant 937 

and the residual of TRAFD1 expression, after correction for SH2B3 expression.  938 

 939 

Supplementary Table 11. Significant REACTOME 2016 enrichment of TRAFD1-940 

mediated genes. Results from the enrichr API using the mediated TRAFD1 trans genes as 941 

query. Columns indicate: the enrichment background (background); the enrichment term in 942 

the background (term_name); the non-corrected p value of enrichment for this term 943 

(p_value) and Z score (Z_score); enrichr combined score (combined_score); cis-944 

prioritized genes found in each the term (overlapping_genes) and the multiple-testing-945 

corrected p value (adjusted_p_value). 946 

Supplementary Table 12. Differential expression results of the THP-1 experiments. 947 

This table shows differential expression analysis of the THP-1 cells with 3 hr LPS treatment 948 

(LPS) or without LPS (Unstim) in wild type (WT), scrambled control siRNA (SCR) or 949 

TRAFD1 knock down conditions (KD). All conditions and treatments were performed in 950 

triplicate. Complete DESEQ2 results are shown for each possible comparison in each tab. 951 

For each gene the columns show: the ensembl id per gene (ensembl_id); the mean 952 

corrected expression of the gene (baseMean); the log2 fold change of the comparison 953 

(log2FoldChange); the standard error of this log2 fold change (lfcSE); a t-statistic of the 954 

log2foldchange (stat); the p value (pvalue); and the multiple testing adjusted p value (padj). 955 

The direction of the effect is always towards the second term in the tab name: if a log2 fold 956 

change is positive and the tab name is, for example, ’WT_LPS_vs_SCR_LPS’, then the 957 

expression of the gene is increased in the SCR_LPS samples compared to the WT_LPS 958 

samples. 959 

Supplementary Table 13. Significant REACTOME 2016 enrichments in genes cells that 960 

are significantly upregulated by LPS in all treatments (WT, SCR and KD). Reactome 961 

enrichment is shown for genes according in two groups: genes relatively downregulated in 962 

the TRAFD1 knockdown experiment (REACTOME_enrichment_cluster1) and genes 963 

relatively upregulated in the TRAFD1 knockdown experiment 964 

(REACTOME_enrichment_cluster2). Results are shown from the enrichr API analysis using 965 

the genes in a cluster as query. Columns indicate: the enrichment background 966 

(background); the enrichment term in the background (term_name); the non-corrected p 967 
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value of enrichment for this term (p_value) and Z score (Z-score); enrichr combined score 968 

(combined_score); cis-prioritized genes found in each the term (overlapping_genes) and 969 

the multiple testing corrected p value (adjusted_p_value).  970 

971 
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