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Abstract 

Cardiac non-myocytes comprise a diverse and crucial cell population in the heart that 

plays dynamic roles in cardiac wound healing and growth. Non-myocytes broadly fall into four 

cell types: endothelium, fibroblasts, leukocytes, and pericytes. Here we characterize the 

diversity of the non-myocytes in vivo and in vitro using mass cytometry. By leveraging single-cell 

RNA sequencing we inform the design of a mass cytometry panel. To aid in annotation of the 

mass cytometry datasets, we utilize data integration with a neural network. We introduce 

approximately 460,000~ single cell proteomes of non-myocytes as well as 5,000~ CD31 

negative single cell transcriptomes. Using our data, as well as previously reported datasets, we 

characterize cardiac non-myocytes with high depth in six mice, characterizing novel surface 

markers (CD9, CD200, Notch3, and FolR2). Further, we find that extended cell culture promotes 

the proliferation of CD45+CD11b+FolR2+IAIE- myeloid cells in addition to fibroblasts.  

Introduction 

In recent years, non-myocyte biology has grown to become an important field within 

molecular cardiology. High quality atlases of non-myocyte abundance (Pinto et al., 2016) and 

heterogeneity (Farbehi et al., 2019; Skelly et al., 2018) have been published, as well as 

fascinating studies that have demonstrated the vital importance of non-myocytes on modulating 

cardiac function, including cardiac growth (Maliken Bryan D. et al., 2018) and maintenance of 

the cardiac conduction system (Hulsmans et al., 2017). With those recent great advancements 

in mind, it has become paramount to understand how non-myocytes interact with each other 

and respond to microenvironmental cues. Cardiac tissue homeostasis is dependent upon non-

myocyte signaling and thus, represents a major target for future drug design.  Yet many 

questions still remain unanswered and there are a great number of challenges in studying 

cardiac non-myocytes.  

Cardiac non-myocytes occupy a small percentage of the total volume of the heart, yet 

compose approximately 70% of all cells in the heart (Pinto et al., 2016). Studying the heart with 
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bulk methodologies obscures biological changes in non-myocytes, impeding detailed and 

specific analysis of this population. Recent advances within the field have relied upon tissue or 

cell-specific Cre drivers (He et al., 2017), which enable specific recombination in a small subset 

of cells. Further, single cell analysis has also been extraordinarily effective in understanding the 

single cell biology of non-myocytes. However, both of these methodologies are not amenable to 

high-throughput analysis of many samples and are quite costly, impeding research that utilizes 

them. Cell culture is better suited to the aforementioned approaches, but there are concerns as 

to the in vivo generalization of in vitro models. To address these issues, we present a mass 

cytometry (CytOF) based characterization of murine cardiac non-myocytes in vivo and in vitro.  

Advances in single cell analysis have enabled broad surveys of high numbers of cells with 

respect to transcriptomes and proteomes. Various methods for data integration have been 

developed as well, enabling researchers to perform analyses that incorporate observations from 

previous studies. Essentially, we are now able to measure different –omic methods under 

different conditions and integrate them to extract out a coarse-grained understanding of biology 

at the single cell level. To this end, we employ a sparse autoencoder for clustering, imputing, 

and embedding (SAUCIE) (Amodio et al., 2019). This deep neural network architecture allows 

for processing many measurements, as well as the capacity to integrate measurements that 

have a complex non-linear relationship, such as the expression of transcripts and proteins. 

Using SAUCIE, we are able to perform data integration to effectively study cellular 

heterogeneity across multiple modalities and conditions. 

In this study, we present the first single cell proteomic measurements of non-myocytes using 

mass cytometry (CytOF), consisting of a barcoded experiment including a single cell 

suspensions from six mouse hearts, a pooled reference sample, and four in vitro conditions. A 

total of approximately 460,000 high-confidence single cell proteomes were surveyed in this 

study. We also present a novel scRNAseq dataset sampled with a rapid preparation method in 

which CD31+ cells were depleted. All the aforementioned datasets as well, as those described 
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in Skelly and Farbehi were then integrated together using SAUCIE, for a total of approximately 

500,000 single cell measurements (Farbehi et al., 2019; Skelly et al., 2018). With this integrated 

dataset, we identify major cell types –within each dataset and then characterize the 

heterogeneity of the cells separately, enabling cross comparison. This resource provides novel 

insights into non-myocyte biology and provides an essential characterization of how cell culture 

impacts non-myocyte biology. 

Results 

Development of a CytOF panel to assess cardiac non-myocytes 

Our experimental design choices were informed by the goal of assessing both in vivo and in 

vitro samples. Within cell culture, endothelial cells are typically lost, so we prioritized 

characterization of the CD31 negative cell population. In order to develop an optimal CytOF 

panel to assess cardiac non-myocyte heterogeneity, we performed single cell RNA sequencing 

(scRNAseq) on single cell suspensions derived from the ventricular tissue of a male and female 

mouse (Fig 1a). Ventricular tissue was digested using a collagenase IV and dispase II solution, 

after which the resulting suspensions were depleted of endothelial cells using anti-mouse CD31 

magnetic beads and a MACS column. We rationalized using MACS to prepare the single cell 

suspensions would be more time efficient than sorting using FACS, thereby minimizing 

transcript degradation. The resulting cells were then loaded into a 10X Genomics Chromium 

capture chip and subsequently sequenced using a NextSeq 500, achieving a read depth of 

approximately 105,000 reads/cell. 

With this approach, we were able to identify 3 major cell types: fibroblasts, leukocytes, and 

pericytes (Fig 1b). Of these cell types, we found 8 distinct subpopulations of fibroblasts, 6 

distinct subpopulations of leukocytes, and 3 distinct populations of pericytes (Fig 1c). Using this 

data, we explored the differentially expressed genes found in the major cell types and cross-

referenced them with antibody catalogues in order to identify candidate markers. We wanted to 

characterize cell cycle progression, as it is a major source of cellular heterogeneity. Trp53 
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(P53), Cdkn1a (P21), mt-Co1 (MTCO1), Hspd1 (HSP60), Tnf (TNFa), and Il6 (IL6) were 

selected due to their association with cellular stress responses. We reasoned that the 

expression of Dkk3 would be mirrored by beta-Catenin activity. With scRNAseq, we found that 

our panel of candidate genes was able to identify a unique gene expression signature 

associated with the major cell types we identified (Fig 1d) and elucidate aspects of the 

heterogeneity of subpopulations of non-myocytes (Fig 1e). Some of the markers we identified, 

namely Cd9, Cd200, Notch3, and Folr2 were never previously characterized in detail on cardiac 

non-myocytes.  

Using CytOF we were able to capture a greater number of cells, conduct more complex 

experimental designs, and minimize marker detection variability with barcoding. To maximize 

the efficacy of CytOF, we used a data driven approach to identify candidate genes that would be 

studied with single cell proteomics, such to recapitulate the power of scRNAseq in cell type 

classification. While our scRNAseq approach neglected to include the endothelial cells, we 

reasoned that they could be labeled with a combination of Pecam1 (CD31) and Kdr (VEGFR2), 

which have been previously established as robust markers for this cell type.  

Description of CytOF experiments and integrated data analysis approach 

In order to obtain single cell suspensions for in vivo mass cytometry (CytOF), a single cell 

suspension was generated from 3 male/female gender littermate pairs of mice (Fig 2a). A day 

(24 hours) before sacrifice, mice were injected with 10 mg/kg 2-iododeoxyuridine (IdU) to label 

replicating cells for mass cytometry. Hearts were processed as previously described, except in 

this case, a CD31 depletion was not performed and a debris removal step was performed 

(Miltenyi debris removal solution). Following debris removal cells and staining with cisplatin, 

cells were fixed in 4% formaldehyde and stored in Fluidigm Cell Staining Buffer (CSB) with 10% 

DMSO. An overdigested reference sample was made by digesting a pool of 10 mouse hearts in 

a large volume of digestion solution for 1 hour, as opposed to 30 minutes. This allowed us to 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975177


use a reference sample to evaluate the effect of prolonged digestion on the cellular composition 

of suspensions.  

Single cell suspensions for in vitro samples were derived from 2 female and 2 male mice, 

which were seeded into 10 cm dishes for growth in physiological normoxia (3% O2) (Fig 2b). 

Cells were either cultured in DMEM-12 with 10 µM Y-27632 (a Rho-Kinase inhibitor) and 10 

ng/mL hVEGF-A (abbreviated as E) or control media (V). Cells were continuously exposed to 

drug treatments and grown past confluence with media changes every 3 days. At 12 days post 

seeding, cells were given a 3 hour doxorubicin (DOX) exposure (D) or control media (V), to 

inhibit cell growth. Media was replaced after treatment and conditions were maintained for 48 

hours after exposure, when 10 µM IdU was spiked into culture for 24 hours, followed by a 3 hour 

brefeldin-A exposure (performed to enhance cytokine staining), and cell harvest. Cells were 

dissociated by scraping and the addition of TrypLE. Cells were digested for 45 minutes at 37 in 

TrypLE. Cells were stained with cisplatin, fixed, and stored for staining. All four conditions are 

referred to as VV, VD, EV, and ED. As evidenced by other investigators, we rationalized 

hypoxia would enhance cell growth and growing cells in a post confluent state would promote 

greater culture heterogeneity (Ackers-Johnson Matthew et al., 2016). Y-27632 and VEGF-A 

were used as a supplement, as they have been previously found to increase the proliferation of 

CD31+ cells in culture (Joo et al., 2012); additionally, Y-27632 has been demonstrated to inhibit 

fibroblast-to-myofibroblast transition. Cells were treated with DOX in order to arrest the cell 

cycle to better identify replicating cells. 

Single cell suspensions for mass cytometry were thawed and barcoded to enable 

simultaneous staining of samples, which allowed us to minimize staining variability between 

samples and filter out doublets. A suspension of singly-stained polystyrene antibody binding 

beads was run separately from the sample on the same day to allow us to correct for spillover 

from antibodies. A listing of antigens stained, clones of the antibodies used, and putative 

transcriptomic correlate or mapping is provided in Table 1. Raw fcs files were obtained from the 
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Helios and then processed with CATALYST (Chevrier et al., 2018) in order to normalize, 

compensate, and debarcode data files. Following debarcoding, fcs files were gated in 

accordance with Fluidigm recommendations using FlowJo in order to remove doublets based on 

the Helios Guassian gates. After this, an arcsinh5-transformed count matrix was obtained and 

unrandomized using a ceiling function.  

Data integration with SAUCIE allowed us to take the different CytOF datasets as well as 

previously published v2 10X Genomics datasets, merge them into a shared embedding space, 

and generate a reconstructed gene expression value (designated by the suffix ‘_r’). Previously 

published data from Skelly (containing flow sorted, CD31 depleted homeostasis data) and 

Farbehi (containing myocardial infarction/MI data) was recounted using CellRanger 3.0.2 and 

integrated into our dataset without the need for batch correction. Including our dataset, a total 

quantity of 42,843 single cells transcriptomes were used for this study. Single cell 

transcriptomes were processed with MAGIC (Dijk et al., 2018) prior to integration with SAUCIE 

to smooth single cell transcriptome data, which enhanced data integration. Protein count 

matrices from each experiment were loaded into Scanpy and processed to remove low quality 

cells in CytOF data, giving us 343,245 cells from the in vivo CytOF and 125,109 cells from the in 

vitro CytOF datasets (Fig 2 Supplement 1). Each transformed protein marker was mapped to a 

transcript (Table 1) and then loaded into a data matrix containing 32 channels (Fig 2c). In the 

cases of IdU, beta-Catenin activity, and pHistoneH3 expression, we assumed their expression 

was related to Ki67, Dkk3, and Birc5, based on gene-ontology association. The resulting data 

matrix was then used to train SAUCIE to map mass cytometry measurements to transcriptomic 

measurements.  

Training data from scRNAseq and in vitro experiments was randomly sampled with 

replacement to prevent overfitting on in vivo data. Optimal hyperparameters were found based 

on recommendations published within the paper describing SAUCIE, in so much that lambda B 

was chosen to minimize distances between the shared sample latent space without perfectly 
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blending the data and lambda D was set to double the value of lambda C. Analysis performed at 

different hyperparameters were able to recapitulate the clustering with minor amounts of 

variability. In addition, we ensured that the latent space was able to recapitulate known minor 

cell populations, such as lymphocytes (CD45+CD90+; Ptprc+Thy1+), and our clustering 

analysis was able to recapitulate previous analyses, to ensure biologically meaningful results. 

We found that integration of MAGIC-preprocessed scRNAseq data facilitated better accuracy of 

SAUCIE reconstructions and more meaningful clustering results. 

Integrated analysis reveals the proportions and relationships of major cell types across 

experiments 

With SAUCIE, we were able to identify the expected four major cardiac non-myocytes: 

endothelium, fibroblasts, and pericytes. Cell identity within the SAUCIE embedding (Fig 3a) is 

related to its position. By examining the expression of markers within the SAUCIE embedding 

(Fig 3b), we were able to determine the cell composition of each cluster. Throughout all the 

experiments, we found robust representation of fibroblasts, followed by endothelial cells, 

leukocytes, and pericytes (Fig 3c). This is interesting, as endothelial cells are the most abundant 

non-myocyte. Based on this analysis, our knowledge of single cell biology of fibroblasts is 

greatest, whereas that of pericyte single cell biology is the least.  

Further, we found strong concordance between the integrated gene-expression data (Fig 

3d) and our scRNAseq data (Fig 1d), with some exception. Chiefly, the expression of 

inflammatory markers (TNFa and IL6) and mitochondrial markers (MTCO1 and HSP60) were 

found to be discordant. Surprisingly, P53 and P21 were found to be associated with fibroblasts 

and leukocytes, respectively. Cell cycle marker expression levels for the major cell types closely 

followed their scRNAseq expression levels, suggesting that distinct cell types have a tendency 

to express different cell cycle markers. Also, we found endothelial cells to express low amounts 

of mitochondrial associated proteins, which is surprising, given the central roles mitochondria 

play in the endothelial cell biology (Kluge et al., 2013). Consistent with past findings 
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(Kretzschmar et al., 2018), IdU labeling was found to be most robust in endothelial cells and 

leukocytes.  

Next, we examined each modality (in vivo CytOF, in vitro CytOF, and scRNAseq) by itself, 

using SAUCIE clusters. In vivo samples were found to occupy a distinct section of the SAUCIE 

embedding space (Fig 4a). The ratios of non-myocytes identified was concordant with Pinto 

2016; however, we were able to detect a greater degree of endothelial cell variability (Fig 4b). 

We believe this is a result of endothelial cells being sensitive to dissociation, a hypothesis that is 

validated by our overdigested reference sample, where endothelial cells were found to compose 

about 30% of all identified cells. In vitro cells were found to have little overlap with in vivo cells 

(Fig 4c), suggesting a divergence in phenotype induced by cell culture. We also found variability 

in the proportions of cells identified within in vitro CytOF data, likely secondary to culture 

conditions. The majority of cells found within in vitro conditions were fibroblasts (Fig 4d) with 

variable amounts of leukocytes, dependent on culture conditions. 

By examining the SAUCIE embedding space of scRNAseq datasets, we found that the 

distribution of cells mostly matched in vivo cells with some exception (Fig 4e). The scRNAseq 

datasets contained data from Farbehi 2019, which profiled cells derived from infarcted hearts. 

Therefore, some of the cells found to overlap with in vitro data, came from those datasets, 

indicating that in vitro conditions may represent injury conditions. In particular, we expect that 

some leukocytes, fibroblasts, as well as a cell type ambiguously marked by both fibroblasts and 

pericyte (likely myofibroblasts) belonging in vitro are representative of injury-associated cells. 

For this reason, we believe that in vitro non-myocytes are a powerful model to study cardiac 

injury response. 

With this analysis, we were able to profile many datasets at once and identify the 

proportions of endothelium, fibroblasts, leukocytes, and pericytes with a shared label. We found 

that in vitro cells likely represent cell types present during cardiac injury recovery.  
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Comparative analysis of cellular heterogeneity in CytOF datasets 

In order to identify the cell types within each dataset with greater accuracy, we performed 

clustering analysis with Louvain clustering as implemented in scanpy. It is important to state 

here that in vivo and in vitro cells are of different sizes, and that is reflected within our datasets 

(Supplementary Figure 1). We found that cells in vitro had greater median protein content and a 

greater median diversity of genes expressed than cells found in vivo. For these reasons, we did 

not integrate the in vivo and in vitro datasets outside of the SAUCIE analysis. Due to the low 

quantity of endothelium found within our in vitro experiments, we excluded them from the 

analysis of the in vitro and in vivo datasets, as we were not able to confidently sample them for 

comparisons. For this analysis, 45,000 cells were subset from each CytOF dataset and 

analyzed separately.  

First, we examined the expression of CytOF protein markers on a per cell basis using the 

SAUCIE Major Clusters labels. Cells found in vivo were well defined based on their expression 

patterns for major markers (Fig 5a). Fibroblasts were found to express the highest amounts of 

CD140a, Vimentin, and CD9. Interestingly, we found that fibroblasts expressed CD45 and IAIE, 

suggestive of a potential lineage relationship with cardiac leukocytes. Indeed, other groups have 

observed the expression of CD45 and IAIE on fibroblasts, and they have been referred to them 

as myeloid fibroblasts (Cieslik et al., 2015; Trial et al., 2017) or fibrocytes (Skelly et al., 2018). 

Using CytOF, which can detect the presence or absence of markers with greater accuracy than 

fluorescence based flow cytometry, we observed an unprecedented amount of these surface 

markers on fibroblasts. Other surface markers of fibroblasts, such as CD90, Ly6AE, and Ly6C 

were detected on fibroblasts with high amounts of variability. Leukocytes were found to express 

CD45, CD11b, IAIE, and FolR2 highly, with FolR2 expression being the most variable surface 

marker. In addition, we found that leukocytes expressed the highest amount of pHistoneH3, 

suggesting a greater amount of mitotic cells within this population of cells. Pericytes were 

marked high CD90, CD146, CD200, Notch3, bCatTotal, and aSMA expression, with Notch3 
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expression being the most specific marker of pericytes. Interestingly, bCatActive was found to 

be expressed primarily on pericytes. 

In vitro cells were found to be overall less variable than in vivo cells with respect to marker 

expression (Fig 5b). Vimentin and CD9 expression was found to be ubiquitous, demonstrating 

that cells grown in vitro have a fibroblastic phenotype. The defining cell markers for each cell 

type were expressed in a more ambiguous fashion. Similar to our in vivo observations, 

fibroblasts expressed vimentin, CD9, CD140a, Ly6AE, and Ly6C. However, fibroblasts had 

increased aSMA and CD90 expression, which is characteristic of fibroblast activation. Further, 

there was an increase in IdU expression in the absence of increased expression of other cell 

cycle markers, confirming our previous observations that cell cycle markers have a cell type-

specific bias. Leukocytes were found to be uniformly expressing CD45, CD11b, and FolR2, 

whereas IAIE was found to be absent, which was very different than what is found under in vivo 

conditions. Again, we found that pHistoneH3 expression primarily labeled leukocytes. Pericytes 

were harder to distinguish from fibroblasts, with CD146, CD200, and Notch3 being positive 

markers and Ly6AE being a negative marker. aSMA was found to be less variable in this 

population. It is likely that mature myofibroblasts were identified as pericytes within this analysis, 

given the similarity of the two cell types.   

Louvain clustering was able to identify 18 unique clusters within the in vivo dataset (Fig 6a) 

and 15 unique clusters (Fig 6b) in the in vitro dataset, indicative that in vitro culture diminishes 

cellular heterogeneity of cardiac non-myocytes. SAUCIE-identified major cell types labeled 

distinct clusters in the in vivo data (Fig 6c), whereas within the in vitro dataset (Fig 6d), cells 

were more ambiguously labeled. The mixing of labels within in vitro clusters suggests a 

phenotypic shift of leukocytes to a more fibroblastic cell type (myeloid-to-fibroblast transition) as 

well as fibroblast-to-myofibroblast transition occurring within culture. Evaluating the intersample 

heterogeneity of the in vivo samples demonstrated high amounts of biological variability (Fig 

6e). Further, as discussed in the previous section, we found stark differences in in vitro sample 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975177


heterogeneity associated with cell culture conditions (Fig 6f). Treatment with the E cocktail 

diminished the presence of clusters 0, 1, 5, and 10 and enriched for the presence of clusters 2, 

3, 4, 6, 7, 8, 9, 11. DOX treatment was associated with diminishment of clusters 10 and 13, 

while cluster 12 was found to be enriched. 

Next, we examined the expression profiles of the clusters identified in each modality. Within 

the in vivo experiment, we found high amounts of heterogeneity (Fig 7a). Notably, we found 

lymphocytes (cluster 17), putative Dkk3+ fibroblasts (cluster 14), putative endothelial progenitor 

cells or endothelial-to-mesenchymal-transition (EMT) associated cells (cluster 15), as well as an 

apoptotic cell type without distinguishable surface markers but high expression of secreted 

molecules (cluster 16). Fibroblasts were represented by clusters 0, 4, 5, 7, 6, and 8, with 

heterogeneity resulting from Ly6AEhi cells (cluster 0, 6, and 8), CD90hi cells (clusters 0 and 7), 

and CD45hiIAIEhi cells (cluster 6). Aside from the lymphocytes, leukocytes were identified in 

clusters 2, 4, 12, and 13, with major sources of heterogeneity resulting from CD11b-P21-

pHistoneH3+ cells (cluster 12), FolR2+ cells (cluster 2), and Ly6ChiIAIE-IdU+ cells (cluster 13). 

Pericytes were represented by clusters 1, 3, 9, 10, and 11, with heterogeneity resulting from 

Ly6AEhiLy6Chi cells (cluster 10), aSMA- cells (cluster 3), and pRbhiMTCO1hiHSP60hi cells 

(clusters 9 and 11). 

Within the in vitro data (Fig 7b), cells were more monolithic and vimentin expression was 

found to be uniform, with the exception of cluster 11, which is likely an apopotic cell type similar 

to cluster 16 within the in vivo data, with ambiguous identity but lacking the expression of 

secreted molecules. Interestingly, clusters 12 and 14 identified a putative endothelial progenitor 

cell or an EMT associated cell with variable expression of VEGFR2, Ki67, MTCO1, HSP60, and 

bCatTotal.  Fibroblasts were found in clusters 2, 4, 6, 7, 8, 9, and 13 with Postn+ cells identified 

in cluster 6, IL6+VEGF+P53+MTCO1hiCyclinB1+ cells found in clusters 2 and 7, Ly6AE+Ly6C+ 

cells found in clusters 4 and 9, and IdU+ cells found in cluster 13.. The co-expression of markers 

in clusters 2 and 7 suggest a P53-dependent cytokine secretion regulatory network exists in 
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fibroblasts. In addition, all fibroblasts were found to express high quantities of TNFa. Leukocytes 

were found in clusters 0, 1, and 10, with 10 having the greatest IdU expression, intermediate 

FolR2 expression, and least pHistoneH3 expression, whereas 1 and 10 had the highest 

expression of pHistoneH3 and FolR2 being most highly expressed on cluster 0. Pericytes were 

found in clusters 3 and 5, which differed in bCatActive, MTCO1, HSP60, CD200, and Notch3 

expression.  

We were able to identify differentially abundant clusters within the in vitro experiment. With 

the expression profiles in mind, we found that treatment with the E cocktail promoted the 

abundance of fibroblasts (2, 3, 4, 6, 7, 8, 9, 11, 14) as well as putative endothelial progenitor 

cells (cluster 14) while the abundance of leukocyte (0, 1, 10) and pericyte (5) clusters was found 

to be diminished. Treatment with DOX diminished the presence of clusters 10 and 13, both of 

which correspond to an IdU+ leukocytes and fibroblasts respectively. Interestingly, expansion of 

cluster 12, an endothelial progenitor-like cell was associated with DOX treatment. The 

observations regarding the heterogeneity of cells detected with the E cocktail are supported by 

experiments reported by other groups using bulk technologies (Omelchenko et al., 2002), as Y-

27632 was found to inhibit fibroblast activation . In this context, we hypothesize that cluster 5 is 

a mature myofibroblast, which has a similar enough protein expression profile as pericytes to be 

labeled as such. Cluster 3, which we also identified to be a pericyte most likely reflects some 

intermediate state between fibroblast differentiation and a mature myofibroblast. Surprisingly, 

neither cluster 3 nor 5 had high expression of Postn, despite expressing the greatest amount of 

aSMA. This observation suggests that Postn upregulation is an intermediate step between 

fibroblast differentiation and mature myofibroblast commitment. Further, it is likely that the 

presence of leukocytes is dependent upon fibroblast and myofibroblast commitment, as both 

cell types are highly secretory. However, we did not observe a possible causative cytokine that 

would promote leukocyte signaling.  
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We were unable to observe many consistent differences between mouse sex within the 

Louvain clusters (Fig 6e). It is apparent that murine cardiac non-myocytes have a high degree of 

biological variability between individual mice. It is likely that the inclusive of many signaling 

related proteins in our clustering may have obscured the detection of differentially abundant 

populations. With that said, the greatest signal for differentially abundant populations of cells 

came from clusters 2 and 4, which indicated a potential increase in the abundance of myeloid 

cells associated with male sex. Further, upon examination of the Major Clusters detected by 

SAUCIE, we found a statistically significant two-fold increase in the number of leukocytes in 

male mouse hearts as well as a statistically significant decrease in the number of endothelial 

cells in male mouse hearts (Figure 6 Supplement 1).  

In summary, our comparative analysis found diminished subpopulation heterogeneity of the 

previously identified major cell types within in vitro conditions. Cell cycle markers were found to 

be biased in expression based on specific cell types. For instance, leukocytes had the greatest 

pHistoneH3 expression, pericytes had the greatest Cyclin B1 expression, and pRb, IdU, as well 

as Ki67 abundance did not vary together. In addition, there was evidence for P53-modulated 

secretory networks present within fibroblasts. We also found that cells grown in vitro adopt a 

fibroblastic phenotype, with secondary phenotypes corresponding to leukocyte or pericytes 

being present. Also, a putative endothelial progenitor cell was identified within the in vitro and in 

vivo experiments based on expression of fibroblast markers in addition to CD31 and VEGFR2 

expression. We also identified that endothelial cell content as well as leukocyte content are 

significantly different in male versus female mice. Further, we found that in vitro culture, in the 

absence of the E cocktail, CD45+CD11b+FolR2+ leukocytes proliferated, suggestive that cell 

culture systems can be useful to understand cardiac myeloid cell biology.  

Discussion 

Here we present the first ever mass cytometry datasets of cardiac non-myocytes in vivo and 

in vitro. Using a data driven approach, we identified markers for our CytOF panel as well as 
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characterized novel markers for cardiac fibroblasts and pericytes. This strategy is scalable to 

other systems and provides a basis for rational CytOF panel design. The power of high-

throughput, high-dimensional measurements is to reduce bias in data acquisition and analysis. 

Designing CytOF panels solely based on field consensus diminishes some of this power. 

scRNAseq is an effective technology to develop panels around, as it provides a survey of 

transcripts, which are not as deeply affected by technical biases as antibodies. In order to 

increase experimental repeatability, the selection of commonly used clones for specific antigens 

is important. While this is not always possible for less commonly studied markers, having a list 

of candidate genes generated from high quality scRNAseq data, greatly facilitates antibody 

selection. Ultimately, experimental findings require validation and having multiple 

measurements with scRNAseq and comparing them to measurements made with CytOF is an 

important part of rigorous experimental design. 

Using mass cytometry, we were able to sample many conditions at once while minimizing 

technical variation and the detection of doublets (Zunder et al., 2015), enabling rigorous 

comparisons between samples. With this approach, we were able to provide novel insight into 

cardiac non-myocyte heterogeneity, as well as sex differences in vivo. With the higher 

dimensionality of our measurements, we were able to identify a putative endothelial progenitor 

or an EMT-associated cell that exists within both in vivo and in vitro datasets. Further, we 

identified four novel surface markers, CD9, CD200, Notch3, and FolR2, in the context of cardiac 

non-myocyte heterogeneity. We found that CD9 is a robust marker of fibroblasts that is similar in 

expression as vimentin, whereas CD200 and Notch3 mark pericytes, and FolR2 marks a major 

subset of myeloid cells. This highlights interesting biology for investigation, as these markers 

likely have functional roles within each of cell type.  

Integrated analysis is able to define cell populations across technologies and in distinct 

experimental systems (in vivo vs in vitro), as well as incorporate observations from other 

research groups. For this reason, data integration with SAUCIE can ensure a level of 
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concordance between observations that can be expressed quantitatively and qualitatively. This 

work provides a basis for a stable concept of four major cell types that exist within 18 different 

datasets. In addition, more specific differences within the datasets can be interrogated with 

SAUCIE to identify transcriptomic associations with variations in protein measurements. This is 

a sustainable strategy to repurpose costly single cell data acquisition methods and leverage the 

knowledge obtained in previous studies effectively.  

With data integration, we are able to effectively understand how novel data can be used to 

update our understanding of non-myocytes. For instance, with data integration we can easily 

appreciate that single cell studies have focused on fibroblasts and leukocytes, while endothelial 

cells have been neglected. Future single cell inquiry can focus on expanding our knowledge of 

endothelial cells with more effective single cell dissociation methods, which may preserve 

endothelial cell integrity better. In our experience, endothelial cells are sensitive to dissociation 

and are difficult to study even with single cell analysis. Through the formulation of better 

methods to prepare single cell suspension, we can more effectively understand how the most 

abundant non-myocyte affects cardiac function and contributes to disease pathologies. 

In addition, we were able to discern the impact of cell culture on cardiac non-myocytes and 

identify some bounds upon which cell culture experiments can generalize to in vivo studies. 

Overwhelmingly, we found that in vivo and in vitro conditions are very distinct, but it is likely that 

in vitro conditions reflect cells found within typical wound healing processes in the heart. This is 

an unsurprising finding; however, the identification of CD45+CD11b+FolR2+ proliferating in 

culture is potentially an exciting observation to further understand cardiac myeloid cell biology. 

Myeloid cells are studied in vivo as they are very sensitive to microenvironmental cues and lose 

their in vivo characteristics in culture rapidly (Janssen et al., 2016). The bed of fibroblasts 

present in overconfluent culture can act as a substitute for the microenvironment, possibly 

rendering more in vivo-like myeloid cells that can be used to investigate more mechanistic 

questions. We’ve found (data not shown) that in 18 days of culture, the number of leukocytes 
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can expand to over 50% of the culture content, greatly increasing the number of cells that can 

be assayed.  

In summary, we have provided novel datasets with over 400,000 single cell proteomes and 

5,000 single cell transcriptomes, a powerful analysis approach that integrates previous 

observations from other investigators and technologies, as well as a high-dimensional proteomic 

characterization of non-myocytes with novel markers in vivo and in vitro. We hope that this 

resource and the discussion of its findings can benefit the molecular cardiology community and 

spur further investigation into cardiac wound healing mechanisms.  

Materials and Methods 

Key Resource Table 

Reagent 
type 
(species) 
or 
resource Designation 

Source or 
reference Identifiers 

Additional 
Information 

Strain, 
strain 
background 
(Mus 
musculus 
C57BL/6J) Wild Type, WT 

The Jackson 
Laboratory, Stock 
Number: 000664 RRID:IMSR:JAX:000664   

Reagent 

2-
iododeoxyuridine 
(IdU) Carbosynth CAS:54-42-2   

Reagent 

AbC Total 
Antibody 
Compensation 
Bead Kit Invitrogen Catalog Number: A10513   

Reagent Y-27632 MedChemExpress CAS:129830-38-2   

Reagent hVEGF Peprotech Catalog Number: 100-20   

Reagent Brefeldin-A Biolegend Catalog Number: 420601   
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Antibody 

89Y-conjugated 
Rat  anti-mouse-
CD45 Fluidigm 30-F11  1:100 

Antibody 

143Nd-
conjugated Rat 
anti-
human/mouse-
CD11b Fluidigm M1/70 1:100 

Antibody 

145Nd-
conjugated-
mouse-anti-
phycoerythrin 
(PE) Fluidigm PE001 1:100 

Antibody 

PE-conjugated 
rat-anti-mouse-
FolR2 Biolegend FR-β 1:100 

Antibody 

209Bi-
conjugated rat-
anti-mouse-IAIE Fluidigm M5/114.15.2 1:100 

Antibody 

141Pr-
conjugated rat-
anti-mouse-
TNFα Fluidigm MP6-XT22 1:100 

Antibody 

148Nd-
conjugated rat 
anti-mouse-
CD140a Fluidigm APA5 1:100 

Antibody 

154Sm-
conjugated 
rabbit anti-
mouse-Vimentin Fluidigm D21H3 1:100 

Antibody 

156Gd-
conjugated rat 
anti-mouse-
CD90.2 Fluidigm 30-H12 1:100 

Antibody 

150Nd-
conjugated rat 
anti-mouse-
Ly6C Fluidigm HK1.4 1:100 

Antibody 

169Tm-
conjugated rat 
anti-mouse-
Ly6A/E (Sca-1) Fluidigm D7 1:100 

Antibody 

BSA and Azide 
fre rabbit anti-
mouse-Periostin 
(Postn) abcam EPR20806 1:100 

Antibody 

167Er-
conjugated rat 
anti-mouse-IL6 Fluidigm MP5-20F3 1:100 
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Antibody 

158Gd-
conjugated rat 
anti-mouse-CD9 Fluidigm KMC8 1:100 

Antibody 

BSA and Azide 
free mouse anti-
VEGF Novus VG1 1:100 

Antibody 

160Gd-
conjugated 
mouse anti-FitC Fluidigm FIT22 1:100 

Antibody 

FitC-conjugated 
rat anti-mouse-
CD146 Miltenyi ME-9F1 1:10 

Antibody 

176Yb-
conjugated 
mouse anti-APC Fluidigm APC003 1:100 

Antibody 

APC-conjugated 
rat anti-mouse-
CD200 Biolegend OX-90 1:100 

Antibody 

BSA and azide 
free goat anti-
mouse-Notch3 Novus AF1308 1:100 

Antibody 

BSA and azide 
free mouse anti-
αSMA R&D Biosystems MAB1420 1:100 

Antibody 

BSA and azide 
free rat anti-
human/mouse-
CD31 Novus MEC13.3 1:100 

Antibody 

BSA and azide 
free rat-anti-
mouse-VEGFR2 R&D Biosystems MAB4432 1:100 

Antibody 

142Nd-
conjugated 
rabbit anti-
ActCaspase3 
(Cleaved 
Caspase 3) Fluidigm D3E9 1:100 

Antibody 

BSA and azide 
free mouse anti-
P53 Novus Pab240 1:100 

Antibody 

BSA and azide 
free rabbit anti-
MTCO1 abcam EPR19628 1:100 

Antibody 

BSA and azide 
free rabbit anti-
HSP60 abcam EPR18245-93 1:100 
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Antibody 

161Dy-
conjugated 
mouse anti-Ki67 Fluidigm B56 1:100 

Antibody 

BSA and azide 
free rabbit anti-
pRb (phospho-
Retinoblastoma) 

Cell Signaling 
Technologies D20B12 1:100 

Antibody 

BSA and azide 
free rabbit anti-
human/mouse-
CyclinB1 abcam EPR17060 1:100 

Antibody 

175Lu-
conjugated anti-
human/mouse-
pHistoneH3 
(phospho-
HistoneH3) Fluidigm HTA28 1:100 

Antibody 

BSA and azide 
free rabbit anti-
P21 abcam EPR362 1:100 

Antibody 

147Sm-
conjugated 
rabbit anti-
bCatTotal Fluidigm D10A8 1:100 

Antibody 

165Ho-
conjugated 
rabbit anti-
bCatActive Fluidigm D13A1 1:100 

Antibody, 
magnetic 
beads 

CD31 
Microbeads, 
mouse Miltenyi 390 1:10 

Commercial 
assay or kit 

Chromium 
Single Cell 30 
Library and Gel 
Bead Kit v2 10X Genomics 120237   

Commercial 
assay or kit 

Chromium 
Single Cell A 
Chip Kit 10X Genomics 120236   

Commercial 
assay or kit 

149Sm - X8 
Antibody 
Labeling Fluidigm   

Used for 
P21 

Commercial 
assay or kit 

151Eu - X8 
Antibody 
Labeling Fluidigm   

Used for 
MTCO1 

Commercial 
assay or kit 

153Eu - X8 
Antibody 
Labeling Fluidigm   

Used for 
Cyclin B1 
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Commercial 
assay or kit 

159Tb - X8 
Antibody 
Labeling Fluidigm   

Used for 
VEGFR2 

Commercial 
assay or kit 

162Dy -X8 
Antibody 
Labeling Fluidigm   

Used for 
HSP60 

Commercial 
assay or kit 

164Dy - X8 
Antibody 
Labeling Fluidigm   

Used for 
aSMA 

Commercial 
assay or kit 

166Er -X8 
Antibody 
Labeling Fluidigm   

Used for 
pRb 

Commercial 
assay or kit 

168Er - X8 
Antibody 
Labeling Fluidigm   

Used for 
CD31 

Commercial 
assay or kit 

170Er - X8 
Antibody 
Labeling Fluidigm   

Used for 
Periostin 
(Postn) 

Commercial 
assay or kit 

171Yb - X8 
Antibody 
Labeling Fluidigm   

Used for 
P53 

Commercial 
assay or kit 

173Yb - X8 
Antibody 
Labeling Fluidigm   

Used for 
Notch3 

Commercial 
assay or kit 

174Yb - X8 
Antibody 
Labeling Fluidigm   

Used for 
VEGF 

Software, 
algorithm CellRanger 10x Genomics 

https://support.10xgenomics.com/single-cell-
gene-expression/software/downloads/latest   

Software, 
algorithm FlowJo FlowJo     

Software, 
algorithm CATALYST PMID: 29605184 https://github.com/HelenaLC/CATALYST   

Software, 
algorithm Scanpy PMID: 29409532 https://github.com/theislab/scanpy   
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Murine model 

Mice between the ages of 8-12 weeks old were used in all experiments. Both males and 

females were used in the generation of our datasets. All mice were from a C57BL6/J genetic 

background. 

Isolation of single cell suspensions from ventricular tissue 

Mice were sacrificed by CO2 inhalation followed by cervical dislocation. At necropsy, the heart 

was removed by cutting the heart below the atrium and residual atrial tissue was trimmed off 

after removal. In order to remove residual blood, ventricular tissue was washed in HBSS several 

times, then cut into large pieces in ice cold HBSS (without calcium or magnesium), and placed 

into ice cold HBSS for up to 15 minutes. Once harvest of ventricular tissue was completed, the 

tissue was removed from HBSS, wet with digestion buffer, and minced into fine particles with a 

scalpel. Similarly to Skelly, Digestion buffer consisted of collagenase IV and dispase II at a 

concentration of X and Y. Tissue was collected and each heart was placed into 3 mL digestion 

Software, 
algorithm SAUCIE PMID: 31591579  https://github.com/KrishnaswamyLab/SAUCIE   

Software, 
algorithm MAGIC PMID: 29961576 https://github.com/KrishnaswamyLab/MAGIC   
Software, 
algorithm scikit-learn   https://github.com/scikit-learn/scikit-learn   
Software, 
algorithm palettable   https://github.com/jiffyclub/palettable   
Software, 
algorithm statannot   https://github.com/webermarcolivier/statannot   
Software, 
algorithm matplotlib   https://github.com/matplotlib/matplotlib   
Software, 
algorithm seaborn   https://github.com/mwaskom/seaborn   
Software, 
algorithm pandas   https://github.com/pandas-dev/pandas   
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buffer, where it was then incubated in 15 mL conical tubes in a 37 degree water bath. Following 

15 minutes of digestion, the digestate was triturated with a 1000 uL pipette tip, and then 

digested for another 15 minutes. For cardiac suspensions used in scRNAseq and CytOF, 

digestion was kept at 30 to 45 minutes, depending on particle size and completeness of 

digestion. For the pooled, overdigested reference sample, digestion was allowed to proceed for 

1 hour. After digestion, cells were strained, and the strainer was washed with ice cold HBSS 

with 2% FBS, until a final volume of 10 mL was obtained. This suspension was washed one 

more time with ice cold HBSS, and then incubated in 5 mL or ACK lysis buffer for 5 minutes at 

room temperature to induce lysis in remaining erythrocytes. The reaction was quenched by 

adding an equal volumes of ice cold HBSS with 2% FBS, washed once more with HBSS with 

2% FBS and then a MACS depletion or debris removal step was performed. For cell culture, the 

resulting suspensions were resuspended in tissue culture medium without additional 

processing, and supplemental growth factor or drugs were spiked in the media prior to use 

depending on the experiment. All centrifugation steps on cells before fixation were performed at 

300 x g, unless otherwise noted; all centrifugation steps on cells after fixation were performed at 

800 x g, unless otherwise noted. 

MACS depletion of CD31 positive cells 

After washing cells they were incubated in anti-CD31 magnetic beads from Miltenyi according to 

manufacturer’s instruction. Cells were washed, then loaded onto MACS columns, and flow 

through was collected. The column was then discarded and the CD31 depleted flow through 

was then used for scRNAseq capture.  

Debris Removal and CytOF sample preparation 

Cells were resuspended in 1000 µL of ice cold HBSS with 2% FBS and 300 µL of ice cold 

Miltenyi debris removal solution was mixed into the cell suspension. An overlay of 1000 µL was 
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used and manufacturer’s instructions were followed for the remainder of the procedure. For the 

pooled reference sample, 900 µL of debris removal solution, 3100 µL of ice cold HBSS with 2% 

FBS was used for resuspension, and 4000 µL of ice cold HBSS with 2% FBS was used for the 

overlay. After overlay was added, the suspension was centrifuged at 4 degrees at 3000 x g for 

10 minutes. Interphase and buffer were removed and then 2.5 mL of HBSS with 2% FBS was 

added to the cell suspension. The tube was gentle inverted and then centrifuged once more at 

1000 x g for 10 minutes at 4 degrees, following which the supernatant was removed. Once 

debris was removed, cells were incubated in ice Fluidigm Cell Staining Buffer (CSB) and 0.5 µM 

cisplatin 198 for 15 minutes. Cells were washed once and then fixed with 1 mL 1.6% 

formaldehyde for 10 minutes at room temperature. After fixation, fixative was quenched by 

adding an equal volume of ice cold CSB and then washed once in CSB. The single cell 

suspensions were then resuspended in CSB with 10% DMSO and frozen in a -80 freezer until 

staining 

Cell culture and cell harvest 

A mixture of cells from the ventricular tissue derived from 4 mice (2 male and 2 female) 

was seeded at a density of approximately 2 * 106 cells/10 cm dish into either V media (DMEM-

F12 without supplementation) or E media (DMEM-12 with 10 ng/mL hVEGFa and 10 µM Y-

27632). To avoid degradation of growth factors or drugs, supplements were added prior to 

media use. Cells were cultured in physiological normoxia (3% O2) and media was changed 

every 3 days. On the 12th day of culture, the cultures were all treated with 100 nM 

pharmacological grade doxorubicin dissolved in saline or vehicle. On the 14th day of culture, IdU 

was spiked into tissue culture media to treat cells for 27 hours with a concentration of 50 µM. In 

order to better resolve cytokine expression, brefeldin-A (BFA) was spiked into the media 24 

hours after IdU according to manufacturer’s instructions. Following 3 hours of BFA incubation, 

the media was removed, and cells were washed with HBSS three times prior to dissociation. 
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After the addition of 3 mL of TrypLE, the overconfluent cultures were dislodged from the 

tissue culture plastic using a cell lifter. The cell aggregates were placed into 15 mL tubes and 

then placed in a 37C water batch, where they were triturated every 15 minutes with a 1000 µL 

pipette tip. A total digestion time of 45 minutes was used to dissociate cell aggregates. After 

digestion, cells were strained and washed with ice cold CSB to remove digestive enzymes. The 

supernatant was removed following which cells were treated with 0.5 µM cisplatin 198 for 15 

minutes, washed with CSB, and fixed in 1 mL 1.6% formaldehyde for 10 minutes before 

quenching. Cells were then washed with and frozen in CSB with 10% DMSO as previously 

described. 

CytOF staining procedure 

On the day of staining, cells were thawed out at room temperature as well as Fluidigm 

20-Plex barcodes. Cells were labeled by sample-of-origin using the barcodes according to 

manufacturer’s instruction. Briefly, cell suspensions were centrifuged and the supernatant 

freezing buffer was removed, following which samples were washed in 800 µL of 1X Barcode 

Perm Buffer, before being resuspended once more in 800 µL of 1X Barcode Perm Buffer. Each 

barcode was resuspended in 100 µL of 1X Barcode Perm Buffer and then transferred to the 

single cell suspensions. Samples were incubated in barcode solution for 30 minutes with gentle 

mixing after 15 minutes of incubation. Following centrifugation, samples were washed twice with 

2 mL of CSB and resuspended in 500 µL of CSB. All the samples were then combined in a 

single tube for staining.  

Once combined, the samples were centrifuged and the supernatant was aspirated. The 

cells were then resuspended in 200 µL CSB with 1:50 TruStain FcX anti-mouse CD16/32 for 10 

minutes at room temperature. Following this, 200 µL of CSB with 1:50 FolR2-PE, 1:50 CD200-

APC, and 1:5 CD146 -FitC were added and incubated for 30 minutes. After this incubation, cells 

were washed twice with 1 mL of CSB. Cells were then incubated in 350 µL of CytOF surface 
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antibody cocktail, which included all CytOF surface markers and fluorophore secondary 

antibodies at a concentration of 1:100. Samples were incubated in surface staining cocktail for 

30 minutes, with gentle agitation every 15 minutes. After staining, pooled samples were washed 

twice with CSB and then incubated with 3 mL 1X Maxpar Fix I Buffer for 10 minutes, following 

which they were washed twice with 6 mL of Maxpar Perm-S Buffer. The samples were then 

stained for 30 minutes with 350 µL of intracellular staining cocktail, which included antibodies at 

1:100 concentration. Following incubation, samples were washed with 4 mL CSB twice. 

Fresh fixation was performed using a fresh 1.6% formaldehyde solution from a 16% 

formaldehyde stock ampule. For the pooled samples, 5 mL of this solution was used to fix cells 

for 10 minutes at room temperature. Cells were centrifuged and the fixative was removed. 

Following this step, cells were incubated with Cell-ID intercalator-Ir at a concentration of 67.5 

nM in 3 mL Maxpar Fix and Perm Buffer overnight. Prior to acquisition, cells were washed with 

CSB and then resuspended in Maxpar Cell Acquisition Solution. Maxpar Four Element Beads 

were put into Cell Acquisition Solution at a concentration of 10%. Cells were captured at a rate 

of 75-150 cells per second, to minimize doublet rate.  

Single stain bead control preparation 

TotalAb compensation beads were stained in 100 µL of CSB with a concentration of 

1:100 for each antibody. Beads were incubated with antibody for 1 hour at room temperature 

and then washed twice with CSB. The beads were then pooled and fixed with 1.6% 

formaldehyde for 1 hour at room temperature. They were then washed twice with CSB and kept 

in the fridge overnight before the CytOF run.  
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Capture and sequencing with 10x Genomics  

10x Genomics is a commercially available UMI and droplet-based single cell sequencing 

capture method. Manufacturer’s instructions were followed for this experiment. Libraries were 

generated following capture and were sequenced on an Illumina NextSeq 500. 

Processing of 10x Genomics scRNAseq data 

Using 10x Genomics CellRanger 3.0.2, BCL files were processed to fastqs using 

CellRanger mkfastq. Fastq files were aligned to the mm10 2.1.0 reference genome. Following 

this, a count matrix was generated using CellRanger count. 

Reprocessing of previously reported 10x Genomics scRNAseq data 

Fastqs from Skelly and Farbehi were downloaded and recounted using 10x Genomics 

CellRanger 3.0.2 count. Both of the Skelly datasets were used in the study. From Farbehi, only 

‘Sham TIP Day 7’, ‘Sham GFP Day 7’, ‘MI TIP Day 3’, ‘MI TIP Day 7’, and ‘MI GFP Day 7’ (MI – 

myocardial infarction) were able to be recounted with Cellranger 3.0.2. Fastqs that produced 

errors when recounted which terminated the count program were excluded from the study.  

Processing of CytOF data 

Raw FCS files were retrieved from the computer interfaced with the Helios CytOF. Using 

CATALYST, compensation bead and barcoded experiment data were normalized. 

Compensation beads were used to define a spillover matrix, which was then applied to the 

barcoded experiment. The barcoded experiment was then debarcoded, yielding 11 separate 

FCS files. The resulting FCS files were then taken into FlowJo and Fluidigm Guassian channels 

were used to further filter out doublets.  Following this, the FCS files were opened with flowCore 

and unrandomized (using a ceiling function) hyperbolic arcsin (with a factor of 5) transformed 

protein expression matrices were extracted from each FCS for secondary analysis.  
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Quality control of CytOF data 

CytOF data was imported into Scanpy (1.4.5) where quality control cut-offs for in vivo 

CytOF were set a minimum of 30 transformed counts, a maximum of 60 transformed counts, a 

minimum of 15 detected proteins, and a maximum of 25 detected proteins. Cut-offs for in vitro 

CytOF were set at a minimum of 50 transformed counts, a maximum of 85 transformed counts, 

a minimum of 20 detected proteins, and a maximum of 32 detected proteins. For in vivo data, 

from a total of 436,247 cells, 343,245 cells passed QC. For in vitro data, from a total of 168,459 

cells, 125,109 cells passed QC. Cut-offs were determined by inspecting count as well as protein 

distributions using violin plots and intended to trim outliers, in order to prevent SAUCIE from 

overfitting on low quality cells. 

Quality control of scRNAseq data 

For the initial analysis of the CD31 depleted (Iskra) dataset to identify robust CytOF 

markers, we set a cut-off for cells with at least 200 genes detected, at most 4000 genes, genes 

detected in at least 3 cells, and a percent mitochondrial content of less than 17.5% genes 

detected. Top 2500 highly variable genes were selected to generate 30 principal components, 

which were then used to build the nearest neighbor graph with a k of 30. Leiden community 

detection was used and a UMAP embedding was generated with PAGA to initialize positions. 

scRNAseq datasets were imported into Scanpy where quality control cut-offs were set a 

minimum of 750 genes, a maximum of 3750 genes, a minimum of 1250 counts, a maximum of 

12500 counts, and a mitochondrial content of less than 17.5% of total genes detected. Genes 

expressed in less than 250 cells were excluded from the analysis. Data was log plus one 

transformed and then processed with MAGIC using 30 principal components (otherwise, default 

scanpy settings were used) prior to integration in SAUCIE. 
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Data integration with SAUCIE 

Post-quality control data was put into a data matrix and batch labels were set according 

to data modality. To ‘convert’ CytOF data to scRNAseq data, Ly6AE/Sca-1 expression was set 

to the sum of Ly6a and Ly6e expression, IdU was set to Mki67 expression, b-Catenin-Active 

expression was set to Dkk3 expression, pHistoneH3 expression was set to Birc5 expression, 

pRb expression was set to Rb1 expression, Active Caspase3 expression was set to Casp3 

expression. All scRNAseq data was labeled as batch 0, whereas in vivo CytOF was set as batch 

1, and in vitro CytOF was set as batch 2. With these settings, all CytOF protein data are 

transformed to scRNAseq gene expression. Data from scRNAseq and in vitro CytOF were 

sampled with replacement to ensure equivalent representation in the training dataset with 

respect to in vivo CytOF data. SAUCIE was run deterministically on a CPU with a random seed 

of 42 for numpy, random, and tensorflow. 

A test-train split of 20% and 80%, respectively, was used to ensure that SAUCIE was not 

overfitting on the training data. For data integration, SAUCIE was run with layers set to [1024, 

512, 256, 2], a lambda b equal to 0.00625, and trained for 2,000 steps. These settings were 

determined empirically and chosen to allow for the longest training session in terms of steps 

before overfitting, as determined by inspected the information bottleneck layer of SAUCIE to 

determine a meaningful distribution of genes where key cell identities (endothelium, fibroblasts, 

leukocytes, and pericytes) were able to be resolved. For clustering the integrated data, SAUCIE 

was run with layers set to [512, 256, 128, 2] with a lambda c equal to 0.05 and a lambda d equal 

to 0.10. Training was performed for 8,000 steps and 9 clusters were detected, which were then 

merged according to gene expression and localization on the shared latent space 

representation. SAUCIE-determined labels were then transferred to individual CytOF or 

scRNAseq datasets during secondary analysis. 
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Secondary analysis of CytOF data  

Using Scanpy, post quality control cells were labeled with SAUCIE labels and counts 

were normalized to 50 hyperbolic arcsin transformed counts per cell, for both in vivo and in vitro 

CytOF. Each of the 6 non-reference in vivo samples were subsampled randomly such that 

7,500 cells from each were represented in the analysis. For in vitro samples, 11,250 cells were 

randomly sampled from each condition. On these subsets of cells, all markers were used for 

constructing the nearest neighbor graph, where 30 nearest neighbors were selected for the 

graph. Louvain clustering was then performed with a resolution of 1. PAGA and UMAP were 

computed with default scanpy settings and PAGA was used to initialize the UMAP embedding.  
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Figures and Tables 

 

Figure 1) scRNAseq guides CytOF panel design through identification of highly variable genes 

in cardiac non-myocytes a) Experimental workflow and description for scRNAseq experiment. b) 
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UMAP embedding of scRNAseq with major cell type labels. c) UMAP embedding of scRNAseq 

data with Leiden community detection-identified subclusters labeled with major cell type and 

percent composition. d) Matrix plot binned by major clusters with panel genes displayed as 

standard-scaled expression. Dendrogram is defined on the principal component space. e) 

Matrix plot binned by major clusters with panel genes displayed as standard-scaled expression. 

Dendrogram is defined on the principal component  
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Figure 2) CytOF experimental overview and data merging strategy. a) Experimental 

workflow to generate the in vivo CytOF dataset. b) Experimental schedule for in vitro 

experiments. Cultures were grown in continuous exposure to DMEM-F12 with (E) and without 
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(V) supplementation of a cocktail of Y-27632 and VEGF followed by 3 hour treatment with 

doxorubicin (D) or vehicle (V). c) Diagram depicting the data integration strategy of our analysis. 
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Figure 3) SAUCIE-integration of datasets facilitates identification of four major cell types. 

a) Major clusters identified within SAUCIE clustering analysis plotted on the SAUCIE embedding 
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space. b) Feature plots of major markers used to facilitate major cluster identification. c) 

Frequency of major cell types identified across all datasets. d) Heatmap of SAUCIE 

reconstructed gene expression profiles for the major cell types. For boxplots, the box highlights 

quartiles, whereas the whiskers highlight the data range, and outliers fall off the range. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975177


 

 

Figure 4) Localization in the SAUCIE embedding space and frequency of cell types by 

data modality. a) Distribution of all in vivo data in the SAUCIE embedding space. b) Boxplot of 

frequency of cell types within the in vivo data. c) Distribution of all in vitro data in the SAUCIE 

embedding space. d) Boxplot of frequency of cell types within the in vitro data. e) Distribution of 

all scRNAseq data in the SAUCIE embedding space. f) Boxplot of frequency of cell types within 

the scRNAseq data. For boxplots, the box highlights quartiles, whereas the whiskers highlight 

the data range, and outliers fall off the range. 
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Figure 5) Comparative examination of single cell expression profiles from CytOF 

datasets. a) Single cell heatmap of cells from the in vivo CytOF dataset. Expression is 

represented as hyperbolic arcsin factor 5 transformed counts. b) Single cell heatmap of cells 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.975177doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.975177


from the in vitro CytOF dataset. Expression is represented as hyperbolic arcsin factor 5 

transformed counts. 
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Figure 6) Comparative analysis of unsupervised clustering results and intersample 

heterogeneity. a) Louvain community detection clusters plotted on UMAP embedding from in 

vivo data subset. b) Louvain community detection clusters plotted on UMAP embedding from in 

vitro data subset. c) SAUCIE Major Clusters plotted on UMAP embedding from in vivo data 

subset. d) SAUCIE Major Clusters plotted on UMAP embedding from in vitro data subset. e) 

Hierarchically clustered heatmap of in vivo cluster abundances by sample. Dendrogram was 

determined based on the data frame of cluster abundance values found in each sample. 

Annotation contains the frequency of each cluster. f) Hierarchically clustered heatmap of in vitro 

cluster abundances by sample. Dendrogram was determined based on the data frame of cluster 

abundance values found in each sample. Annotation contains the frequency of each cluster. 
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Figure 7) Comparative analysis of cluster expression profiles. a) Heatmap single cell 

expression profiles binned by Louvain community detection clusters with standard scale 

expression of markers from in vivo data subset. Dendrogram based on protein expression 

values. b) Heatmap single cell expression profiles binned by Louvain community detection 

clusters with standard scale expression of markers from in vitro data subset. Dendrogram based 

on protein expression values. 
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 Figure 2 Supplement 1) Quality control information and cut-offs for CytOF data. a) Per 

cell distribution of hyperbolic arcsin factor 5 transformed counts and number of genes 

expressed in each cell as found in vivo CytOF data.  
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Figure 6 Supplement 1) Comparative frequency of major populations by mouse sex 

detected in the CytOF dataset. a) Boxplot of endothelium frequency in female mice versus 

male mice. b) Boxplot of fibroblasts frequency in female mice versus male mice. c) Boxplot of 

leukocytes frequency in female mice versus male mice. d) Boxplot of pericytes frequency in 

female mice versus male mice. * signifies a p-value of less than 0.05. 
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Gene 
Symbol 

Protein Antibody 
Clone 

Metal Marker Type 

Ptprc CD45 30-F11 89Y Leukocyte Identity 
Itgam CD11b M1/70 143Nd Myeloid Identity 

Folr2 PE-FolR2 FR-β 
Anti-PE 
145Nd L-2 Identity 

H2-Ab1 IAIE M5/114.15.2 209Bi L-1 Identity 
Tnf Tnfα MP6-XT22 141Pr Leukocyte Cytokine 
Pdgfra CD140a APA5 148Nd Fibroblast Identity 

Vim Vimentin D21H3 154Sm Fibroblast Identity 

Thy1 CD90 (CD90.2) 30-H12 156Gd 
F-1/2/6 Identity; P-3 
Identity 

Ly6c1 Ly6C HK1.4 150Nd 
F-2 Identity; Endothelial 
Identity 

Ly6a and 
Ly6e Ly6AE (Sca-1) D7 169Tm 

Fibroblast Identity; 
Endothelial Identity 

Postn Postn EPR20806 170Er 

F-3/4/5 Identity; P-3 
Identity; Myofibroblast 
Identity 

Il6 Il6 MP5-20F3 167Er Fibroblast Cytokine 

Cd9 CD9 KMC8 158Gd 
Fibroblast Identity; Subtype 
for all Cells 

Vegfa VEGF VG1 174Yb Fibroblast Cytokine 

Mcam FitC-CD146 ME-9F1 
Anti-FitC 
160Gd 

Pericyte Identity; 
Endothelial Identity 

Cd200 APC-CD200 OX-90 
Anti-APC 
176Yb 

Pericyte Identity; 
Endothelial Identity 

Notch3 Notch3 AF1308 173Yb Pericyte Identity 

Acta2 αSMA MAB1420 164Dy 
P-1/2 Identity; 
Myofibroblast Identity 

Pecam1 CD31 MEC13.3 168Er Endothelial Identity 
Kdr VEGFR2 MAB4432 159Tb Endothelial Identity 

Casp3 

ActCaspase3 
(Cleaved 
Caspase 3) D3E9 142Nd 

Apoptosis; Cell Stress 
Marker 

Trp53 P53 Pab240 171Yb 
Apoptosis; Cell Stress 
Marker 

mt-Co1 MTCO1 EPR19628 151Eu 
Mitochondrial content; 
mtDNA Encoded 

Hspd1 HSP60 
EPR18245-
93 162Dy 

Mitochondrial content; 
nDNA Encoded 

Mki67 Ki67 B56 161Dy Cell Cycle; S-Phase 
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Rb 
pRb (phospho-
Retinoblastoma) D20B12 166Er Cell Cycle; G1-Phase 

Ccnb1 CyclinB1 EPR17060 153Eu Cell Cycle; G2/M-Phase 

Birc5 

pHistoneH3 
(phospho-
HistoneH3) HTA28 175Lu Cell Cycle; M-Phase 

Cdkn1a P21 EPR362 149Sm Cell Cycle; G0-Phase 

Ctnnb1 bCatTotal D10A8 147Sm 
β-Catenin Cytoskeletal 
Content 

Dkk3 bCatActive D13A1 165Ho Wnt/β-Catenin Activity 
 

Table 1) List of gene symbols, protein marker, antibody clone, metal conjugate, and marker 

type/description. 
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