Abstract
Motivation The molecular changes induced by perturbations such as drugs and ligands are highly informative of the intracellular wiring. Our capacity to generate large data-sets is increasing steadily as new experimental approaches are developed. A useful way to extract mechanistic insight from the data is by integrating them with a prior knowledge network of signalling to obtain dynamic models. Logic models scale better with network size than alternative kinetic models, while keeping the interpretation of the model simple, making them particularly suitable for large datasets.
Results CellNOpt is a collection of Bioconductor R packages for building logic models from perturbation data and prior knowledge of signalling networks. We have recently developed new components and refined the existing ones. These updates include (i) an Integer Linear Programming (ILP) formulation which guarantees efficient optimisation for Boolean models, (ii) a probabilistic logic implementation for semi-quantitative datasets and (iii) the integration of MaBoSS, a stochastic Boolean simulator. Furthermore, we introduce Dynamic-Feeder, a tool to identify missing links not present in the prior knowledge. We have also implemented systematic post-hoc analyses to highlight the key components and parameters of our models. Finally, we provide an R-Shiny tool to run CellNOpt interactively.
Availability R-package(s): https://github.com/saezlab/cellnopt
Contact julio.saez{at}bioquant.uni-heidelberg.de
Supplementary information Supplemental Text.
Footnotes
↵# Co-first authors