Abstract
Many recent studies found signatures of motor learning in neural beta oscillations (13–30Hz), and specifically in the post-movement beta rebound (PMBR). All these studies were in simplified laboratory-tasks in which learning was either error-based or reward-based. Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for the error-based and reward-based tasks (increase verses decrease, respectively). Here we explored the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings highlight opposing dynamics of PMBR magnitudes between different subjects performing the same task. The groups of subjects, defined by their neural-dynamics, also showed behavioral differences expected for error-based verses reward-based learning. Our results suggest that when faced with the complexity of the real-world different subjects might use different learning mechanisms for the same complex task. We speculate that all subjects combine multi-modal mechanisms of learning, but different subjects have different predominant learning mechanisms.
Footnotes
Declaration of Interests: The authors declare no competing financial interests.
Contributions: SH and AAF conceived and designed the study; SH acquired and analyzed the data; SH and AAF interpreted the data; SH drafted the paper; SH and AAF revised the paper