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Abstract1

During development, neurons arrive at local brain areas in extended period of time, but how2

they form local neural circuits is unknown. Here we computationally model the emergence of3

a network for precise timing in the premotor nucleus HVC in songbird. We show that new4

motor projection neurons, mostly added to HVC before and during song learning, are recruited5

to the end of a growing feedforward network. High spontaneous activity of new neurons makes6

them the prime targets for recruitment in a self-organized process via synaptic plasticity. Once7

recruited, the new neurons fire readily at precise times, and they become mature. Neurons that8

are not recruited become silent and replaced by new immature neurons. Our model incorporates9

realistic HVC features such as interneurons, spatial distributions of neurons, and distributed10

axonal delays. The model predicts that the birth order of the projection neurons correlates with11

their burst timing during the song.12

Significance Statement13

Functions of local neural circuits depend on their specific network structures, but how the net-14

works are wired is unknown. We show that such structures can emerge during development15

through a self-organized process, during which the network is wired by neuron-by-neuron re-16

cruitment. This growth is facilitated by steady supply of immature neurons, which are highly17

excitable and plastic. We suggest that neuron maturation dynamics is an integral part of con-18

structing local neural circuits.19
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Introduction20

During development, the birth order of neurons plays a critical role in constructing the brain’s21

large-scale structures. In mammalian cortex, neurons that are destined to the deep cortical22

layers are born earlier than those to the superficial layers [1, 2]. In rodent hippocampus, earlier23

born neurons and late born neurons form distinctive parallel circuits through the hippocampal24

pathway [3]. However, whether birth order is also important in constructing microcircuits in25

local brain areas is unknown [4]. The premotor nucleus HVC (proper name) of the zebra finch26

provides an excellent opportunity to investigate this issue.27

HVC is a premotor nucleus that drives singing of the courtship song in the zebra finch [5, 6].28

An adult zebra finch sings repetitions of a motif consisting of fixed sequence of syllables [7].29

Excitatory HVC neurons that project to the downstream premotor area RA (robust nucleus of30

the arcopallium) encode the timing of acoustic features of the song [8]. Each HVCRA neuron31

bursts once during the motif [8, 9]. As a population, HVCRA neurons sequentially burst through32

the entire motif [10, 11].33

There is strong evidence that the sequential bursting of HVCRA neurons is generated within34

HVC [12, 9, 13, 14]. Moreover, HVCRA neurons most likely form a feedforward synaptic chain35

network, which supports propagation of burst spikes [15, 9]. Such a microcircuit in HVC acts as36

an infrastructure for subsequent learning of the song, during which the connections from HVC to37

RA are established through reinforcement learning such that appropriate sounds are produced38

at appropriate time points [16, 17, 18, 19].39

HVCRA neurons are born and added to HVC mostly after hatching [20, 21, 22, 23]. In the40

zebra finch, the number of HVCRA neurons almost doubles from 20 to 50 days post hatch [24],41

which coincides with the period of subsong and early plastic song that precede the formation of42

song motif. This is unlike two other major neuron types in HVC: most GABA (γ-Aminobutyric43

acid)-ergic interneurons (HVCINT neurons) and neurons that project to area X (HVCX neurons)44

are already in HVC before hatching [21] (but see [22]). Therefore, throughout song learning45

HVCRA neurons have a wide range of birthdates.46
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Previous computational models [25, 26] and single unit recordings in juvenile zebra finches47

[27] have suggested that the feedforward synaptic chain network in HVC forms through growth48

by gradual recruitment of HVCRA neurons to the network. However, these earlier works did not49

address whether the ongoing neurogenesis throughout the song learning period plays any role.50

Indeed, although neurogenesis in HVC has been observed for decades, its role for song learning51

in zebra finch has remained a mystery [28, 23].52

In this paper, we propose that constant supply of newborn HVCRA neurons plays a crucial53

role in building the synaptic chain network in HVC. We investigate this hypothesis through a54

computational model that builds on the previous models of network growth in HVC [25, 26].55

Unlike these earlier models, our model incorporates more biologically realistic features, including56

explicit incorporation of HVCINT neurons rather than simplifying inhibitory actions as idealized57

global inhibition between HVCRA neurons; implementation of axonal delays between HVCRA58

neurons, which has shown to be substantial and is important for determining the connectivity59

structure of the synaptic chain network [29]; and spatial structure of HVCRA connectivity, which60

has been recently measured in zebra finch [14]. Most importantly, the maturation dynamics of61

HVCRA neurons is modeled.62

Newly born neurons have a number of properties that distinguish them from mature neurons.63

Immature neurons in rodents [30, 31, 32] and in songbird HVC [33] are more excitable; and in64

rodents, they are more amenable to synaptic plasticity [34]. In adult rodent hippocampus, these65

properties make adult-born dentate gyrus neurons more likely to participate in new memory66

formation than mature neurons [35]. We propose that newly born neurons in HVC similarly67

facilitate the growth of synaptic chain network. In our model, the synaptic chain network grows68

through spontaneous activity of neurons. Due to their high excitability, we propose that newly69

added HVCRA neurons are preferentially recruited at the growth edge of the network. After70

incorporation into the network, we suggest that these neurons mature fast due to consistent71

activations and form a new edge of growth that leads to recruitment of a new cohort of immature72

neurons. This process iterates, creating a synaptic chain network that supports precise bursts73
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of HVCRA neurons. Therefore, we predict that timing of bursts correlates with the birth order74

of HVCRA neurons during development.75

We show evidence that maturity of HVCRA neurons correlates with timing by reanalyzing the76

data from the previous experiments on juvenile zebra finch [27]. We also show that our model77

creates the observed spatial distribution profile for the connections between HVCRA neurons78

[14]. With a wide delay distribution between these connections, as observed by experiments79

[29], our model produces a robust polychronous chain network with continuous and precise time80

representation, which is recently proposed to be the structure of the synaptic chain network in81

HVC [29]. Our model also predicts that HVCRA neurons in the growing chain network receive82

less foreward inhibition from the HVCRA neurons that drive them.83

Results84

Maturation dynamics of HVCRA neurons85

To investigate the possible role of immature HVCRA neurons in wiring the HVC network, we cre-86

ated a computational model of the maturation dynamics of these neurons. We modeled HVCRA87

neurons using two-compartmental Hodgkin-Huxley neurons with soma and dendrite (Fig. 1a),88

following previous models [15, 36, 9]. The somatic compartment contains sodium, delayed-89

rectifying potassium, and low-threshold potassium currents for generating sodium spikes. The90

dendritic compartment contains calcium and calcium-activated potassium currents that, in ma-91

ture neurons, can generate dendritic spike that drives stereotypical tight bursts of sodium spikes92

in the somatic compartment.93

This model is modified for immature HVCRA neurons. The resting membrane potential is set94

higher by 25 mV, since it is generally observed in rodents [31] and in HVC [33] that the resting95

membrane potentials of immature neurons are higher than that of mature neurons. The calcium96

conductance is set to zero to reflect “weak” dendritic compartment in immature neurons. Hence,97

immature neuron is incapable of generating tight bursts (Fig. 1b).98
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During maturation, the resting potential is gradually decreased and the calcium conductance99

is gradually increased in the dendritic compartment, eventually reaching the values for mature100

neurons. Dendritic calcium spike and tight burst of somatic sodium spikes gradually emerges101

during this process (Fig. 1b). The time course of maturation is age and activity dependent102

in our model (Fig. 1c). Due to elevated resting potential and noise, immature neurons spike103

spontaneously at ∼ 0.6 Hz. A spontaneously active immature neuron matures following a time104

schedule, according to which both the resting membrane potential and the calcium conductance105

exponentially approach their mature values with time constant of 50,000 s. When a neuron is106

recruited into the network and spikes reliably, the maturation progressed with a faster rate, with107

time constant set to 500 s. In our model, spontaneous activity decreases with age, practically108

disappearing in adult neurons (Supplementary Fig. 8). Therefore, neurons that did not get109

recruited to the network gradually become silent. The silent neurons were replaced by new110

immature neurons in our model to mimic the continuous neurogenesis process.111

Initial HVC network112

Among the three major HVC neuron types, HVCX neurons have shown to have minimal impact113

on song production in a laser ablation study [37]. Furthermore, analysis of HVC connectivity114

suggests that HVCRA neurons excite HVCX neurons, but HVCX neurons rarely connect back to115

HVCRA neurons [38]. These results suggest that HVCX are not necessary for song production.116

Therefore, we did not include HVCX neurons in our model.117

HVC of the zebra finch is roughly an ellipsoidal structure with axial dimensions 2000 µm, 500118

µm and 500 µm [14]. There are approximately 20,000 song-related HVCRA neurons and 5,500119

HVCINT neurons [16, 39]. Due to the limitation of computational power, we could not include120

this many neurons in our model. Instead, we restricted ourselves to 2000 HVCRA and 550 HVCINT121

neurons. Since number of neurons is small, distributing them in 3D space becomes problematic122

because a large portion of them are near the boundary of the volume. To reduce this boundary123

effect, we placed neurons on a 2D sphere of radius 260 µm. HVCINT neurons were placed in a124
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lattice-like grid on the sphere, and HVCRA neurons randomly (Fig. 2a). We created connections125

between HVCRA and HVCINT neurons probabilistically according to the Gaussian distributions126

based on the distance between the neurons (Fig. 2b). These distributions are similar to those127

observed in experiments [14]. On average, an HVCRA neuron connects to 65 HVCINT neurons128

with mean distance 155 µm, and an HVCINT neuron connects to 115 HVCRA neurons with mean129

distance 110 µm. Initially, all HVCRA neurons were immature and there were no connections130

between them.131

We also created axonal time delays between all neurons by setting the conduction velocity132

to 100 µm/ms and using distances between neurons on the sphere. The conduction velocity was133

chosen such that the computed axonal delays in the model approximately match the measured134

axonal delays in zebra finch HVC (1 to 7.5 ms) [29].135

Growth of synaptic chain network136

To grow a network of connected HVCRA neurons, we used a combination of a Hebbian-like burst-137

timing dependent plasticity (BTDP) (Fig. 3a) and two additional plasticity rules for HVCRA138

neurons – axon remodeling and potentiation decay, which are similar to those used in the139

previous models for growth of synaptic chain networks [25, 26].140

BTDP was modified from spike-timing dependent plasticity rule [40]. Specifically, the time141

difference ∆t between the first spikes of the post- and pre-synaptic neurons was used, and a142

small positive shift was added to the time difference to ensure that no connections emerge143

between neurons firing synchronously. When ∆t > 2 ms, the synapse is potentiated (long-term144

potentiation, or LTP); when ∆t < 2 ms, the synapse is depressed (long-term depression, or145

LTD). The magnitude of LTP induction is maximum at ∆t = 5 ms, and LTD is maximal at146

∆t = −1 ms (Fig. 3a). The magnitudes of both LTP and LTD induction decay exponentially as147

the absolute value of ∆t increases (decay constant 30 ms).148

We distinguished three types of connections between HVCRA neurons, depending on their149

strength. Silent synapses were weak, nonfunctional connections, with synaptic conductance150
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smaller than a threshold value Wa. They corresponded to the synapses containing only NMDA151

receptors [41] and did not elicit response in the postsynaptic neuron. When synaptic strength ex-152

ceeded Wa, the synapse became active and produced depolarization in the postsynaptic neuron.153

Strong connections with weight above Ws were considered as supersynaptic connections.154

We randomly selected a set of 10 HVCRA neurons as the training neurons, which formed a155

seed for the network growth. The training neurons were made fully mature with adult values156

for the resting potential and calcium dendritic conductance. HVCRA neurons that were not in157

the training set, called pool neurons, started as immature neurons with high resting potential158

and devoid of dendritic calcium channels.159

One simulation trial lasted for 500 ms in network dynamics. At each trial, the training160

neurons were stimulated with a synchronous kick of strong excitatory conductance. Immature161

pool neurons were spontaneously active during the trials due to the elevated resting potential162

and noise fluctuations in membrane potential. When pool neurons spiked after the training163

neurons, silent connections from training neurons to the pool neurons emerged according to164

BTDP rules (Fig. 3b). During repeating trials, silent synapses stochastically changed their165

strength via LTP and LTD, and can randomly became active (Fig. 3c). Emergence of too many166

active connections leads to uncontrolled network growth and runaway network activity. To avoid167

this, we introduced potentiation decay for all synapses [25, 26]. Specifically, synaptic weights of168

all synapses were decreased by a constant value δ at the end of each trial.169

Depolarization of pool neurons provided by the active synapses from the training set biased170

these neurons to be more active during subsequent trials. Thus, a positive feedback emerged,171

since activity of pool neurons facilitated strengthening of synapses via LTP, eventually forming172

supersynaptic connections. To enforce sparse output connections, we only allowed each HVCRA173

neuron to make a limited number of supersynaptic connections, which was set to 10 in the174

model. When a neuron acquired maximal number of supersynaptic outputs, the neuron under-175

went axon remodeling where other weak outgoing connections were pruned and did not affect176

their postsynaptic targets anymore [25, 26] (Fig. 3d-e). Limitations on the number of strong177
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outputs created a competition between pool neurons for the convergent inputs from the train-178

ing set. When training neurons formed the allowed number of supersynaptic connections, their179

postsynaptic targets were spiking reliably each iteration. The training neurons did not recruit180

any more targets. The recruited neurons then act as a new seed for the network growth.181

In the model, network grows gradually and neurons are added to the end of the sequence182

(Fig. 3f). Added neurons are initially immature and have less tight burst compared to the183

neurons already in the sequence. With time and reliable activation, the added neurons mature184

and develop a tight burst. Thus, we always have immature neurons at the end of the sequence.185

Sequence keeps growing until all HVCRA neurons are recruited into the network or its length186

becomes close to the length of the simulation trial.187

Axonal conduction velocity and network topology188

In our model, the axonal conduction velocity controlled the axonal time delays between neurons.189

With the conduction velocity set to 100 µm/ms, which creates the realistic axonal time delays190

observed in HVC [29], the emerged network showed continuous dynamics and nearly uniform191

temporal distribution of burst onset times (Fig. 4a). Established connections between HVCRA192

neurons (red curve Fig. 4b) were biased towards short delay connections, but were on average193

longer than the preset connections to HVCINT neurons. The network was temporally precise194

with a sub-millisecond jitter in burst onset times (Fig. 4c). Plot of the network topology based195

on the synaptic weights between neurons did not reveal any grouping structure (Fig. 4d). These196

are the characteristics of polychronous chain network proposed as the connectivity of HVCRA197

neurons within HVC in a recent study [29].198

When we repeated the growth with a 10 times faster conduction velocity (1000 µm/ms), the199

emerged network showed a strongly synchronous activity pattern (Fig. 4e). The distribution200

of axonal delays between HVCRA neurons in the formed network was similar to the delay dis-201

tribution between randomly selected pairs of HVCRA neurons (Fig. 4f). The network was also202

temporally precise with the jitter level similar to the polychronous chain network (Fig. 4g). Net-203
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work topology was highly structured, showing groups of neurons with similar input and output204

connections. In other words, the grown network had a synfire chain topology with prominent205

oscillatory activity coming from the identical chain layers of neurons.206

We systematically varied conduction velocity from 0.5 to 10 times of the value measured in207

HVC, and observed a sharp transition in burst density oscillations at 1.5 (Fig. 4i). Networks208

with the velocity smaller than this value had a flat burst density, while networks with velocity209

exceeding this value showed prominent oscillations. We quantified the network structure using210

similarity of input connections for the neurons bursting synchronously in the time window of211

variable size (Fig. 4j). Networks with prominent oscillations in burst density (vel. 2 and 10212

times) showed a stair-like decay in the similarity of inputs, which is expected for synfire chain213

topology with defined groups and all-to-all connections from neurons in one group to the next;214

whereas networks with weak activity oscillations (vel. 0.5, 1 and 1.33 times) had a smooth215

decreasing curve, which is expected for ploychronous chain networks with no definable groups.216

All grown networks, regardless synfire chains or polychronous chains, possessed a property of217

nearly synchronous excitatory inputs to the postsynaptic neurons (Fig. 4k).218

To understand how conduction velocity influences the network topology, we examined the219

case of slow conduction velocity, for which the potential connections between neurons have a wide220

range of axonal delays. We monitored the burst onset latency of the recruited neurons relative221

to their presynaptic neurons (parents) (Fig. 5a). In the beginning of recruitment, connections222

to the recruited neurons were still weak and these neurons had a large range of burst onset223

latency. This permitted connections with a large range of delays to target the recruited neurons224

via LTP (Fig. 5b). Subsequently, however, the burst onset latency was gradually decreasing due225

to strengthening of the connections from the parent neurons (Fig. 5a, inset). This resulted in226

pruning of some of the inputs with long axonal delays via LTD (Fig. 5c). Therefore, the grown227

network has a prominent bias towards forming short delay connections while keeping a few long228

delay connections, characteristic of the delay distribution for the polychronous chain topology.229

In contrast, when the conduction velocity is high, all possible connections have short delays, and230
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there is no bias towards short distance connections. In this case, synfire chain topology emerges.231

The role of inhibition in network growth232

Inhibition should play an important role in network growth since it impacts the spontaneous ac-233

tivity of immature neurons. Due to the randomness of the connections between HVCRA neurons234

and HVCINT neurons, feedback inhibition to individual HVCRA neurons is inhomogeneous in time.235

To see if this affects which neurons get recruited into the network, we tracked the inhibitory236

conductance of all HVCRA neurons in the network. We considered a simulation with conduction237

velocity 100 µm/ms (the value observed in HVC [29]) and switched off the replacement of silent238

non-recruited neurons to allow a direct comparison between recruited and non-recruited neu-239

rons. We observed that in the grown network, individual inhibitory connections to non-recruited240

neurons were stronger compared to inhibition to recruited neurons (Fig. 6a-b). Total inhibitory241

input, computed as a sum of all inhibitory input conductance, was also significantly larger for242

non-recruited neurons (P < 10−42, one-sided t-test). We then compared temporal dynamics243

of inhibitory conductance of recruited and non-recruited HVCRA neurons during recruitment244

(Fig. 6d-k). When aligned to their presynaptic parent neurons (Fig. 6d-g), recruited neurons245

showed significantly smaller inhibitory conductance (P < 10−46, one-sided paired t-test) in LTP246

window, time interval which is critical for the selection of postsynaptic targets. This observa-247

tion shows that neurons that receive less inhibition from the parent neurons are preferentially248

recruited into the growing edge of the network.249

When aligned postsynaptically (Fig. 6h-k), recruited neurons during the recruitment show an250

increase in inhibitory conductance right after the burst onset time (P < 10−176, one-sided paired251

t-test). We attribute this observation to the self-inhibition of the neurons due to the prevalence252

of local connections between HVCRA neurons and HVCINT neurons. By bursting, HVCRA neuron253

activated a subset of nearby interneurons, which in turn provided a feedback inhibition. The254

effect of such self-inhibition was not seen in the grown network due to the high network driven255

activity of HVCINT neuron population (Supplementary Fig. 9b).256
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During the recruitment, the inhibitory conductance on the recruited neurons right before257

the burst onset time was smaller than the mean computed over the simulation trials (Fig. 6i,k,258

P < 10−170, one-sided paired t-test). This further supports that HVCRA neurons requires less259

inhibition on average to be recruited. Since initial excitatory inputs to HVCRA neurons are260

weak, the recruitment favors HVCRA neurons with receiving less inhibition to ensure they can261

be activated by the parent neurons at the growing edge. After the network is grown and the262

excitatory conductance become strong, inhibitory conductance before bursts need not be small,263

since activations of neurons rely on strong excitatory inputs (Supplementary Fig. 9c).264

Experimental evidence linking maturity of HVCRA neurons and sequence growth265

The length of sequential activity of HVCRA neurons grows during vocal development in zebra266

finches [27]. To see whether immature neurons are involved in the sequence growth, we rean-267

alyzed the dataset of extracellular recordings in HVC of juvenile zebra finches [27, 42]. The268

dataset is organized into four stages of song development [27]: subsong, which is highly vari-269

able (∼48 days post hatch (dph)); protosyllable song, which contains syllables with definable270

durations around 100 ms (∼58 dph); multi-syllable song, which contains syllables with distinc-271

tive spectral characteristics (∼62 dph); and motif song, which consists of a reliable sequence of272

syllables like adult song (∼73 dph).273

HVCRA neurons in adult birds produce highly stereotyped bursts of 4-5 spikes lasting approx-274

imately 6 ms [8]. Experiments and computational models suggest that such a burst is driven275

by dendritic calcium spike [9, 15]. Since immature neurons typically do not have fully devel-276

oped dendritic trees [30, 43], immature HVCRA neurons may not be able to generate brief, high277

frequency bursts. Indeed, spike patterns of projection neurons during song development varied278

significantly in the number of spikes produced per burst and in the burst duration [27]. We279

therefore assumed that burst tightness is an indicator for HVCRA neuron maturity. Specifically,280

we defined burst tightness as the first interspike interval in the burst (Fig. 7a). We observed281

that bursts in the HVCRA neuron population gradually tightened as the song progressed through282
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the protosyllable, multi-syllable and motif stages (Fig. 7b, multi-syllable versus protosyllable,283

p = 0.023, one-sided Wilcoxon rank sum test; motif versus multi-syllable, p < 0.0001, one-sided284

Wilcoxon rank sum test), supporting that burst tightness is positively linked to song develop-285

ment and presumably to HVCRA neuron maturation.286

We next looked at the burst tightness of the HVCRA neurons that are locked to syllables,287

i.e. those tend to burst at fixed latencies relative to the syllable onset times (Fig. 7c). In288

the protosyllable stage, the first spike interval significantly increases with the burst latency289

(p = 0.012, two-tailed t-test), suggesting that bursts are tighter for neurons bursting at the start290

of the syllables than those at the end. Thus, the maturity of HVCRA neurons are heterogeneous291

in this stage, and immature neurons tend to burst towards the end of the syllables. This trend292

is less pronounced but still significant in the multi-syllable stage (p = 0.017, two-tailed t-test).293

It disappears in the motif stage (p = 0.14, two-tailed t-test).294

Our analysis provides evidence that the maturity of HVCRA neurons is correlated with their295

burst timings during song learning, and that immature neurons are preferentially added to the296

end of the growing sequence in HVC.297

Discussion298

In adult zebra finch, HVCRA neurons burst sequentially with millisecond precision during singing299

[8]. Electrophysiological [10] and calcium imaging [11] studies showed that the sequence is300

continuous, supporting the idea that such sequential bursts are generated within HVC through301

feedforward synaptic chain network [15, 12, 9]. Previous models suggested that such a network302

can be wired by recruiting neurons group by group through synaptic plasticity and spontaneous303

activity, resulting in growth of sequence during the wiring process [25, 26]. This prediction is in304

agreement with an experiment that recorded projection neurons in HVC of juvenile zebra finch305

[27]. Our reanalysis of this experimental data [42] suggested that HVCRA neurons at the growth306

edge have hallmarks of immature neurons. We therefore further extended the model to include307

the maturation dynamics of HVCRA neurons. Moreover, we included more biologically realistic308
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features that lacked in previous models, including explicit modeling of HVCINT neurons, spatial309

distributions of HVC neurons, and realistic axonal delays in HVC [29]. We show that immature310

neurons, which are more excitable hence have higher spontaneous activity rates compared to311

mature neurons, are preferentially recruited at the growth edge. The inclusion of the axonal312

delays leads to a long polychronous chain network, a structure favored by a recent analysis of313

HVC network and dynamics [29]. In contrast, neglecting axonal delays leads to synfire chains314

[44, 45], previously thought to be the topology of the HVC network [15, 25, 26]. Explicit modeling315

of HVCINT also predicts that the wiring process favors a path of less inhibition, such that neurons316

that are recruited receive less forward inhibition from the recruiting neurons, highlighting the317

importance of inhibition in HVC [13]. Our model also reproduces the observation that HVCRA318

neurons connect to more distal HVCRA neurons, unlike their tendency to connect to nearby319

HVCINT neurons [14].320

Inclusion of immature neurons has an important effect on the growth process of synaptic321

chain networks. In the model, spontaneous activity plays a critical role. The distinction between322

immature and mature neurons allows different levels of spontaneous activity in these two pop-323

ulations. Immature neurons are more spontaneously active due to higher intrinsic excitability,324

and they are the targets of recruitments by the neurons at the growth edge. In contrast, mature325

neurons in the network are not spontaneously active, hence are not targets of recruitments. This326

allows continued growth of the network, as long as there is a supply of immature neurons in the327

pool. This was not the case in the previous models, in which there was a single neuron popula-328

tion [15, 25, 26]. There, all neurons had similar level of spontaneous activity and consequently,329

the chain growth usually stopped by formation of loops after neurons already into the chain330

were recruited. We have confirmed that loops emerge in our model as well when using a single331

population of mature and spontaneously active HVCRA neurons (Supplementary Fig. 10).332

During development, immature neurons in many neural circuits across multiple species go333

through a period of depolarizing inhibition before switching to hyperpolarizing inhibition, which334

is caused by an elevated GABA reversal potential on immature neurons [46] . Our computational335
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experiments with developmental switch in GABA resulted in the emergence of numerous connec-336

tions between nearby HVCRA neurons (data not shown). This was because dense local connec-337

tivity between HVCRA and HVCINT neurons promotes recruitment of nearby immature neurons338

through depolarizing local inhibition. Experimentally, local connections between HVCRA neu-339

rons are sparse [14]. We therefore assumed that the emergence of connectivity between HVCRA340

neurons happens at the time when GABA exerts an adult hyperpolarizing response on immature341

neurons. This assumption needs to be tested in future studies with intracellular recordings of342

HVCRA neurons during development.343

In our model, maturation of immature neurons is activity driven. Spontaneously activity344

alone is enough for the neuron to mature, but more reliable activation after recruitment into345

the network accelerates the maturation. This acceleration protects the grown network from346

spontaneous activation and hence from formation of loops. This maturation dynamics is inspired347

by the observation in rodent hippocampus that adult-born neurons mature faster with enhanced348

activity and mature more slowly with reduced activity [47]. The exact value of the activity-driven349

maturation time scale is not important, as long as it is much smaller than the spontaneous one.350

Neurons that become mature but not recruited into the network become silent eventually and351

are replaced by a fresh immature neuron. This turnover ensures that there is a fresh supply352

of immature neurons for the chain growth. The rate of replacement also controls the number353

of available targets for the growth, which is important for forming convergent inputs to the354

targets during the recruitment process. If the number of targets is too large, recruiting neurons355

can connect to divergent targets, and the resulting network is not capable of producing precise356

timing. A consequence of the turnover is that the bursting timing of neurons in the chain network357

is positively correlated with the order of their introduction. In other words, timing correlates358

with birth order. This prediction of our model can be tested by labeling cohorts of newborn359

neurons using viral strategy in juvenile [22] and recording their burst timings in adulthood using360

calcium imaging [11].361

Addition and turnover of HVCRA neurons post hatch has been observed for over 30 years [20,362
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48], but the significance of this process for birdsong learning and production remains unclear [28,363

23]. In juvenile zebra finch, deprivation of auditory inputs by deafening before song learning [49]364

and inability to learn tutor song due to peripheral nerve injury [50] did not impact recruitment365

of HVCRA neurons. These observations are consistent with our view that addition of HVCRA366

neurons mainly contributes to the self-organized wiring process of the synaptic chain network367

in HVC, which should not depend on auditory inputs or learning specific tutor song.368

Synfire chain is a popular feedforward model generating precise and stable sequential activity369

of neurons [44, 45, 51]. Several computational models have explored the formation of synfire370

chains. Successful models that can grow long sequences use a combination of STDP rules and371

additional synaptic plasticity mechanism to constrain the connectivity. With STDP rule and372

heterosynaptic plasticity rules that limit the total incoming and outgoing synaptic weights for373

each neuron, Fiete et al [52] showed formation of synfire chain loops with length distributed374

according to a power law. Short loops were more numerous than long loops. However, to form375

groups of neurons that fire at the same time as observed in HVC, the model needed to introduce376

additional correlated inputs that defined coherent groups before chain formation. Jun and Jin377

[25] showed that synfire chain forms with Hebbian STDP and additional synaptic plasticity378

rules that constrain the number of strong output connections. The model was able to show the379

gradual growth of synfire chains through group-by-group recruitment of HVCRA neurons. The380

process ends with the formation of a loop, with length following a Gaussian distribution [26].381

Our study builds upon the gradual recruitment model [25, 26] and uses similar synaptic382

plasticity rules. However, our model introduces several realistic features that none of the previous383

models had, including explicit modeling of HVCINT neurons; spatial distributions of neurons and384

realistic axonal time delays recently measured in HVC [29]; and, most importantly, newly born385

HVCRA neurons and their maturation dynamics. These lead to novel insights, as discussed earlier.386

Additionally, no loops form in our model, unlike all previous models. Under realistic axonal time387

delays, we show that a continuous polychronous network rather than synfire chain emerges after388

the training. The network still possesses a sub-millisecond level of precision and its burst times389
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cover the sequence almost uniformly with no silent gaps. We also show that by using connections390

with fast conduction velocity, we can recover the synfire chain topology. Grown synfire chain391

has similar sub-millisecond level of precision, but its burst density shows prominent oscillations.392

We demonstrate that by changing axonal conduction velocity between HVCRA neurons, we can393

grow either synfire chain or polychronous chain network. In the polychronous chains, neurons394

are driven by almost synchronous inputs despite of distributed presynaptic spike times due to395

the delays. This is similar to a previous study in which approximately 70 ms long polychronous396

sequences with an average size around 20 neurons emerged and disappeared in a recurrent397

network with STDP rules for synaptic plasticity [53]. However, in our case incorporation of398

additional synaptic plasticity rules produce stable sequences that span hundreds of milliseconds399

and contain hundreds of neurons. Thus, we show that long polychronous neuronal sequence can400

emerge from a combination of STDP and additional synaptic plasticity rules.401

Our growth algorithm is robust with respect to the changes in the model parameter values.402

The use of different strength of inhibitory connections (varied between Gie = 0.015 mS/cm2
403

and Gie = 0.060 mS/cm2), different number of efferent supersynaptic connections (Ns = 10 and404

Ns = 20), and different maximal strength of excitatory connections between HVCRA neurons405

(between Gmax = 1.5 nS and Gmax = 4 nS) lead to the emergence of precisely timed neural406

sequences (data not shown). Thus our modeling results do not rely on fine-tuning of the model407

parameters.408

Our re-analysis of the data that recorded HVC neurons in juveniles [27, 42] showed that burst409

tightness of projection neurons decreases with the burst timing during the sequence growth410

in the protosyllable state. This difference disappears in later stages of song learning. We411

interpreted the less tightness of bursts as a reflection of immature intrinsic bursting mechanism.412

An alternative possibility is that the burst tightness is a network phenomenon. It is possible413

that neurons that burst earlier in the sequence are better connected and get stronger inputs,414

leading to tight bursts, whereas those that burst later are still in process of getting incorporated415

and hence are loosely connected. Another possibility is that feedback inhibition controls the416
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burst tightness [54]. There is some evidence in the data that supports the intrinsic mechanism.417

We found one HVCRA neuron in the subsong stage that was not locked to vocalization but still418

showed tight bursts usually observed in the motif stage (Supplementary Fig. 11). Since the419

network is unlikely formed in this stage, this observation favors intrinsic mechanism for burst420

tightness. Due to limited number of HVCRA neurons recorded in subsong stage and subsequent421

protosyllable stage, we could not gather more evidence. Future experiments with more data on422

HVCRA neurons in early song learning stages, perhaps also including intracellular recordings in423

vivo and in slices, should be able to address whether burst tightness is intrinsically controlled.424

We use synaptic plasticity rules based on the timing of burst onsets (BTDP). This simple425

rule sidesteps the complex interaction of multiple spikes within the bursting pre- and post-426

synaptic neurons [55], and is guided by the observation that in cortical neurons, the timings427

of the first spikes in bursts are most important for determining the timing-dependent LTP and428

LTD [56]. In addition, we apply a small 2 ms shift of BTDP curve to the region of positive times,429

so that there is an LTD for synchronously bursting neurons. This prevents the emergence of430

connections between neurons that fire synchronously. Such a shift was used to stabilize weight431

distributions in random networks of spiking neurons in another modeling study [57]. Whether432

these rules apply to synaptic plasticity for HVCRA neurons remains to be seen. To date, there433

is no systematic study of synaptic plasticity in HVC, and further experiments are needed.434

In addition to sequence growth, extracellular recordings in juvenile zebra finches also revealed435

sequence splitting during the syllable development [27]. At the protosyllable stage, majority of436

the projection neurons fired in a single protosequence. When several syllable types emerged from437

a common protosyllable, the corresponding protosequence split. While there were still neurons438

firing at all syllables with the same latencies relative to syllable onsets (“shared neurons”), more439

neurons fired specifically to a single syllable type. Gradually, the shared neurons disappeared.440

The authors proposed a model, according to which a protosequence grown from a common seed441

of synchronously activated neurons is split by dividing the seed into several groups activated at442

different times, and also by increasing local inhibition. In our study, the splitting does not happen443
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during the network growth and we did not explore mechanisms for it to happen. Activation of444

seed neurons at different times and increase in inhibition may also induce protosequence splitting445

in our model.446

In conclusion, we have shown that protracted addition of new neurons in HVC in juvenile447

helps to wire synaptic chain network through a self-organized process. Our model illustrates the448

possibility that birth order of neurons is important for constructing functional microcircuits in449

local brain areas.450

Methods451

Juvenile zebra finch data analysis452

We reanalyzed a previously reported data set of extracellular recordings in HVC of juvenile453

zebra finches [27, 42]. The data set contained recordings of projection neurons from 32 birds454

during the song development (44-112 dph). HVCRA neurons exhibited sparse bursting activity.455

Following the procedure in Okubo et al [27], a burst was defined as a continuous group of spikes456

separated by intervals of 30 ms or less. To determine the burst tightness of a projection neuron,457

we estimated the median of the first interspike intervals of all the bursts produced by the neuron458

at a given song learning stage (subsong, protosyllable, multi-syllable, and motif). To find the459

bursting time of the neurons locked to syllables, we followed the approach in Okubo et al [27].460

Network model461

We distributed 2000 HVCRA and 550 HVCINT neurons over the 2-D sphere of radius 260 µm462

with no overlap. A neuron occupies a volume of a sphere with diameter 10µm. HVCINT neurons463

were first placed evenly on the sphere using the Fibonacci lattice [58]. The distance between464

nearest neighbors on sphere is approximately ∆rin = 40 µm , which matches the average dis-465

tance between HVCINT in real HVC (as estimated from the HVC volume and the number of466

interneurons). Then, they were randomly shifted along the sphere surface by a small amount:467
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∆θ = 0.0006∆rin and ∆φ = 0.0006∆rin/sin(θ), where θ is the latitude of a neuron’s position468

on the sphere, φ is its longitude. HVCRA neurons were placed randomly over the surface sphere,469

with the constraint that they do not overlap with other HVCRA or HVCINT neurons.470

Connections between HVCINT and HVCRA neurons were placed probabilistically based on471

the distance between neurons along the sphere: pRA→I = exp(−d2/σ2RA→I) and pI→RA =472

exp(−d2/σ2I→RA), where pRA→I is a probability for a given HVCRA neuron to contact a given473

HVCINT neuron, pI→RA is a probability for a given HVCINT neuron to contact a given HVCRA neu-474

ron, d is a distance between given HVCRA and HVCINT neurons on the sphere, σRA→I = 130 µm,475

and σI→RA = 90 µm. Only a single connection between a pair of neurons was allowed. Pa-476

rameter σRA→I was chosen to match the upper bound on the number of postsynaptic HVCINT477

partners for an HVCRA neuron [14, 59]. On average an HVCRA neuron contacted 11.6% of478

HVCINT neurons. HVCINT neurons had a smaller spatial connectivity scale to influence nearby479

HVCRA neurons. A single HVCINT neuron contacted 5.8% of HVCRA neurons. Conductance of480

the connections were sampled from uniform distributions on the intervals (0, Gei) for HVCRA481

to HVCINT connections and (0, Gie) for HVCINT to HVCRA connections, with Gei = 0.4mS/cm2
482

and Gie = 0.03mS/cm2. Axonal time delays for the connections were calculated by multiplying483

the distance between neurons by axonal conduction velocity. Normal conduction velocity was484

set to 100 µm/ms, as observed in HVC [29]. Connections between HVCRA neurons did not exist485

at the start of simulations.486

A randomly selected set of 10 HVCRA neurons were chosen as the starting seed for the network487

growth. The training neurons had the mature properties, while other HVCRA neurons started488

as immature.489

Growth simulation490

Network dynamics was run in trials of 500 ms duration with a time step 0.02 ms. In the beginning491

of each trial, the dynamical variables of neurons were reset to their resting values. At a random492

time between 100 ms and 400 ms in trial, the training neurons were excited by a synchronous493
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excitatory conductance kick of strength 300 nS, which made them burst. Simulations were run494

until the number of supersynaptic connections in the network remained constant for 10000 trials.495

Neuron model496

For HVCINT neuron we used a single compartment Hodgkin-Huxley model identical to the one497

described in [9]. For HVCRA neuron we used a two-compartmental Hodgkin-Huxley model with498

soma and dendrite similar to the one in [9].499

Parameters of sodium, potassium and leak currents of the soma of a mature HVCRA are iden-500

tical to those in [9]. Somatic compartment is additionally equipped with low-threshold potassium501

current IKLT = Gs,KLT l(Vs−EK) with conductance Gs,KLT = 3.5 mS/cm2, potassium reversal502

potential EK = −90 mV and gating variable l. Gating variable obeys the following dynamics:503

τldl/dt = l∞(V ) − l, where τl = 10 ms, l∞(V ) = 1/(1 + exp−(V + 40)/5). Parameters of the504

dendritic compartment of a mature HVCRA are identical to [9], except for τc = 15 ms.505

Immature HVCRA neuron has elevated leak reversal potential EL = −55 mV in both somatic506

and dendritic compartments. In addition, the calcium conductance in the dendritic compartment507

of immature HVCRA were set to zero.508

Synapse model509

Synaptic conductances on neurons were modeled according to “kick-and-decay” dynamics [9].510

Synaptic conductance of a neuron increases following a delivery of a spike to the synapse with511

conductance G: gsyn → gsyn +G. In between spike arrivals, synaptic conductance decays expo-512

nentially: τsyn dgsyn/dt = −gsyn. We used the same values for synaptic decay time constants as513

in [9].514

Noise model and simulation515

Noise in HVCINT neurons was created using stochastic Poisson spike trains arriving at excitatory516

and inhibitory synapses, mimicking random synaptic activity, such that HVCINT neurons spiked517
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spontaneously with rate ∼ 10 Hz. Parameters of the Poisson spike trains were identical to [9].518

Dynamics of HVCINT neuron was solved using Dormand-Prince order 8 method [60].519

Noise in HVCRA neurons was implemented by injecting white noise current of amplitude 0.1520

nA to soma and 0.2 nA to dendrite [29]. To account for white noise stimulus, HVCRA model521

was treated as a system of stochastic differential equations and was solved with weak order 3522

AN3D1 method [61].523

Maturation model524

Maturation of HVCRA neurons was modeled as a gradual increase of dendritic calcium conduc-

tance, and a gradual decrease in the somatic and dendritic leak reversal potential:

τmat
dGCa

dt
= Gmat −GCa,

τmat
dEL

dt
= Emat − EL,

where τmat is the maturation time constant; Gmat = 55 mS/cm2 is the mature value of calcium525

conductance; and Emat = −80 mV is the mature value of leak reversal potential. Values of526

GCa and EL were updated at the end of each trial. Maturation rate of an HVCRA neuron τmat527

depended on its activity history. If a neuron spiked in less than half of the trials in the past528

1000 trials, it was treated as spontaneously spiking. Once a neuron spiked in more than half of529

the trials in the past 1000 trials, it was treated as reliably spiking. For a spontaneously spiking530

neuron, maturation time constant was set to τmat = 50,000 s. For a reliably spiking neuron,531

maturation time constant was set to a smaller value of τmat = 500 s.532

Neuronal turnover533

Neuron was assigned as silent if it spiked in less than 80 trials in the past 4000 trials. Silent534

neurons were replaced at the end of each trial with immature neurons. New immature neurons535

were placed randomly on the surface of the sphere representing HVC, avoiding overlaps with all536
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HVCRA and HVCINT neurons.537

BTDP synaptic plasticity rule538

To update weights between HVCRA neurons, we used a BTDP rule based on burst onset timing

between presynaptic and postsynaptic neurons (Fig. 3a). We defined a “burst” as a continuous

group of spikes with duration 30 ms or less. Burst onset time was defined as the first spike in a

burst. Each time a neuron produced a new burst, all afferent synapses onto the neuron and all

efferent synapses are updated. For a pair of a presynaptic neuron i with burst onset time ti and

a postsynaptic neuron j with burst onset time tj , an additive LTP would occur for the synapse

with weight Gij if ∆t = tj − ti > T0:

Gij → Gij +


AP (∆t− T0)/TP , if ∆t < T0 + TP ,

AP exp (−(∆t− T0 − TP )/τP ), if ∆t ≥ T0 + TP .

If ∆t ≤ T0, the synapse undergoes depression through multiplicative LTD:

Gij → Gij −


ADGij(T0 −∆t)/TD, if ∆t > T0 − TD,

ADGij exp ((∆t− T0 + TD)/τD), if ∆t ≤ T0 − TD,

The following parameters were used in simulations unless specified: AP = 0.25 nS, AD = 0.02,539

T0 = 2 ms, TP = 3 ms, TD = 3 ms, τP = 30 ms, τD = 30 ms. All weights were clipped below540

Gmin = 0 nS and above Gmax = 4 nS.541

Synapse states542

Synapses were in 1 of 3 possible states depending on their synaptic weight. Synapses with543

weights 0 < W < Wa were silent and did not elicit response in postsynaptic neurons. Synapses544

with weights Wa < W < Ws were active and produced depolarization in postsynaptic neurons.545

Synapses with weights W > Ws were supersynapses that produced a strong response in postsy-546
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naptic neuron. Regardless of their state, all synapses participated in BTDP update rules. The547

following parameters were used in simulations unless specified: Wa = 0.2 nS, Ws = 1.0 nS.548

Potentiation decay549

All synapses experience a depression at the end of each trial: G → G − δ, where δ = 0.01 nS.550

This depression is needed to prevent the emergence of too many active synapses that may lead551

to uncontrolled network growth [26].552

Axon remodeling553

The axon remodeling rule was identical to the one in [25]. When the number of efferent super-554

synaptic connections of a neuron reaches Ns = 10, the neuron is saturated and all other active555

efferent connections of the neuron are withdrawn. Withdrawn connections do not elicit effect556

on postsynaptic neurons and do not participate in BTDP updates. However, they still undergo557

potentiation decay. Withdrawn connections will be re-connected if the neuron loses one or more558

of its supersynapses.559

Neural activity analysis560

Burst density was calculated as a histogram of burst onset times with bin size 1 ms. The561

presence of oscillations in burst density was estimated using the coefficient of variation (CV),562

which is a standard deviation divided by the mean. Jitter in a neuron’s timing was calculated563

as a standard deviation of the burst onset times based on the 200 test runs of the dynamics of564

the grown network.565

Network structure566

Plots of network topology were based on the supersynaptic weights between neurons and were567

created using Kamada-Kawai algorithm in Pajek software program for network analysis [62].568
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Network structure was also analyzed using the similarity of inputs to neurons that spike569

synchronously within a time window Tw. For neuron i that bursts at ti, the synchronously570

spiking neurons have their burst onset times within a time interval (ti − Tw/2, ti + Tw/2). The571

similarity of inputs to neuron i and a synchronously spiking neuron is computed as the fraction572

of the presynaptic neurons common to the two neurons among all presynaptic neurons to the573

two neurons (the Jaccard index). The mean Jaccard index of all synchronously spiking neurons574

at ti represents the similarity of inputs at this time. The mean Jaccard index for all burst times575

is defined as the similarity of inputs for a given time window Tw.576

Analysis of inhibition577

With neuronal turnover disabled and the conduction velocity set to 100 µm/ms, inhibitory578

conductance of all HVCRA neurons was tracked for 30000 trials. By the end of these trials,579

the number of supersynaptic and active connections have reached stable values and the network580

growth stopped. A neuron was designated as recruited if it spiked consistently during the testing581

trials of the grown network in more than 95 out of 100 trials. The time of its recruitment was582

estimated using its spike history during the growth. At each trial, the number of the neuron’s583

spikes averaged over a window of the past 25 trials was computed, and when the average first584

reached 1, which signaled the start of reliable spiking, the trial was defined as the trial at which585

the neuron was recruited.586

For a recruited neuron i, an LTP window is defined relative to the burst time of its presynap-587

tic neuron j, during which the synaptic strength from neuron j to neuron i can be strengthened588

according to the BTDP synaptic plasticity rule. Specifically, the window is the time interval589

(tj + dji + T0, tj + dji + T0 + τP ), where dji is the axonal delay; T0 = 2 ms is the time shift in590

BTDP synaptic plasticity rule; and τP = 30 ms is the time scale of the LTP part of BTDP. At591

each trial before the recruitment, a set of inhibitory conductance traces on neuron i is extracted592

in the LTP windows relative to all its presynaptic neurons. The average of this set represents593

an inhibitory conductance of the recruited neuron at trial T aligned to its presynaptic neurons.594
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For comparison, an average inhibitory conductance of non-recruited neurons is extracted in the595

same time intervals, and is defined as the inhibitory conductance of non-recruited neurons. Dif-596

ference in the area under conductance curves is computed numerically using a trapezoid method.597

The median difference in the area computed for all trials before the recruitment represents the598

difference in the inhibitory conductance between the recruited neuron and the non-recruited599

neurons.600

For analysis of inhibition on a recruited neuron i relative to its burst onset times before the601

recruitment, only trials in which neuron i produced bursts are considered. For each such trial,602

the area under the inhibitory conductance curve is calculated for 10 ms before and 10 ms after603

the burst onset time. The median difference in area for all trials represents the difference in the604

inhibitory conductance before and after bursting of neuron i. The difference of the inhibitory605

conductance before burst relative to the average is defined as median of the differences between606

the mean inhibitory conductance 10 ms before the burst and the mean during the trial for all607

trials before the recruitment.608

To investigate the inhibition after recruitment, similar procedure is applied to 100 test trials609

of the grown network.610
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Figure 1: Computational model of HVCRA neurons and the maturation process. (a) An HVCRA

neuron is modeled as two-compartmental Hodgkin-Huxley with soma and dendrite. (b) HVCRA

responses to the current injection to the dendritical compartment at different maturation stages.
(c) Two pathways for neuronal maturation: scheduled maturation under spontaneous activity,
and accelerated maturation driven by activity when neuron spikes reliably.
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Figure 2: Schematic of a network arrangement and connectivity. (a) HVCRA (dark green circles)
and HVCINT (red circles) neurons are distributed over the surface of a sphere. HVCINT neurons
form a lattice-like pattern, while HVCRA neurons are distributed uniformly. Examples of con-
nections from one HVCRA neuron to HVCINT neurons and from one HVCINT to HVCRA neurons
are shown. (b) Distribution of axonal conduction lengths for connections between HVCRA and
HVCINT neurons.
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Figure 3: Mechanism of network growth. (a) Burst-timing dependent plasticity (BTDP) rule is
based on the timing between burst onsets of HVCRA neurons. (b-e) Schematic of recruitment
mechanism. (b) Network growth begins with the starter neurons (dark green circles) activated
each simulation trial and other HVCRA neurons being immature (yellow circles). Silent con-
nections (dashed lines) emerge from starter neurons to spontaneously active immature HVCRA

(red circles) according to the BTDP rule. (c) Some silent connections randomly become active
(black lines), undergo further strengthening and become strong super connections (thick green
lines). (d) When the starter neurons acquire certain number of strong super connections, other
weak connections are pruned (red crosses). (e) The recruited neurons (dark green circles) spike
reliably after the starter neurons and begin to recruit new neurons to the network. (f) Network
growth is a gradual process in which immature HVCRA neurons are added to the end of the
sequence. Spike raster plots (top row) and first interspike intervals (bottom row) at different
trials of the simulation are shown. Also shown are the network topology, in which green dots are
neurons in the synaptic chain network and gray lines and the connections between neurons. The
green dots on top are the starter neurons, and the those at the bottom are the newly recruited
neurons.
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Figure 4: Conduction velocity shapes network topology. (a-d) Results for a network with
conduction velocity 100 µm/ms, which corresponds to the realistic axonal delays in HVC. (a)
Raster plot of the first 150 ms of dynamics shows continuous coverage of burst onset times.
(b) Axonal time delay distributions for efferent HVCRA neuron connections to HVCINT neurons
(blue), formed connections to other HVCRA neurons (red), and random connections to HVCRA

neurons (grey). Emerged connections show decrease in the number of long delay connections
compared to the random connections. (c) Jitter in burst onset times of a grown network. (d)
Network topology. Green dots are HVCRA neurons, and the gray lines are the connections.
Neurons on top are the starter neurons. Only neurons with burst onset times within first
150 ms are shown. The network has no apparent grouping of neurons. (e-g) Results for a
network with 10x faster conduction velocity 1000 µm/ms, which leads to near zero axonal
delays. (e) Network dynamics has prominent synchronous oscillatory activity. (f) No bias
towards shorter delay connections is observed in the grown network. (g) Network precision is
in sub-millisecond range. (h) Network topology reveals groups of neurons with similar input
and output connections, i.e. synfire chain layers. (i) Coefficient of variation of burst onset
density shows transition from continuous to discrete activity pattern. (j) Similarity of inputs
for neurons bursting within synchronous activity window has plateaus for synfire chain networks
and is smooth for continuous networks. (k) Distributions of excitatory input times relative to
burst onset time of postsynaptic neurons for different conduction velocities.
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Figure 5: Decrease in burst onset latency of recruited neurons leads to pruning of long delay
connections. (a) Burst onset latency between parent and recruited neurons decreases during
recruitment. (b-c) Mechanism for pruning long delay connections. (b) A neuron being recruited
initially spikes at a large latency, which allows long delay connections to emerge. (c) After
recruitment, the neuron spikes at a shorter latency, which makes long delay connections to
arrive late and be pruned via LTD.
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Figure 6: The role of inhibition in network growth. (a-c) Comparison of inhibitory weights
onto recruited and non-recruited neurons. (a) Recruited neurons (green circles) receive strong
excitation and weak inhibition. Non-recruited neurons (blue circles) receive strong inhibition.
(b) Histogram of inhibitory weights shows stronger connections onto non-recruited (blue bars),
compared to recruited (green bars) neurons. (c) Distribution of total inhibitory weights for non-
recruited neurons (blue) is shifted towards stronger inhibition, compared to recruited neurons
(green). (d-g) Comparison of inhibitory conductance aligned to presynaptic neurons during
recruitment. (d) Inhibitory conductance is aligned to the burst onset times of presynaptic parent
neurons. (e) Inhibitory conductance in the LTP window is averaged across all parent neurons at
each trial during recruitment and compared between recruited and non-recruited neurons using
the area under the conductance curve. (e) Difference in the area under the conductance curve
for a single recruited neuron. (e) Difference in the area under the conductance curve for all
recruited neurons. (h-k) Comparison of inhibitory conductance aligned to postsynaptic neurons
during recruitment. (h) Burst times of a neuron being recruited at different simulation trials.
(i) Inhibitory conductance is aligned to the burst onset times of recruited neurons. Difference
in inhibitory conductance after and before burst is calculated using area under the conductance
curve. Inhibitory conductance before burst is also compared to the mean inhibitory conductance
during the trial. (j) Difference in inhibitory conductance after and before burst for all recruited
neurons. (k) Difference in inhibitory conductance before burst and mean inhibitory conductance
for all recruited neurons.
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Figure 7: Burst tightness of HVCRA neurons at different stages of songbird vocal development.
(a) Example of spike patterns of two HVCRA neurons in the protosyllable stage aligned to a
syllable onset. (b) Cumulative distributions of first interspike intervals of HVCRA neurons. (c)
First interspike intervals of HVCRA neurons at protosyllable, multi syllable and motif stages.
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Figure 8: In the model, spontaneous firing rate of HVCRA neuron decreases with neuronal age
due to reduced excitability.
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Figure 9: Comparison of inhibitory conductance for a grown network based on 100 test trials. (a)
Difference in the area under the conductance curve in the LTP window for all recruited neurons
aligned to presynaptic parents. (b-c) Analysis of inhibitory conductance of recruited neurons
aligned postsynaptically. (b) Difference in inhibitory conductance after and before burst for all
recruited neurons. (c) Difference in inhibitory conductance before burst and mean inhibitory
conductance for all recruited neurons.

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.977025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977025
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

N
e

u
ro

n
 i
d

Time (ms)
0

300

500

a

b

Figure 10: Loop formation in the network with noisy mature HVCRA neurons. When we use a
single population of mature spontaneously active HVCRA neurons receiving a large white noise
stimulus of amplitude 0.25 nA to soma and 0.5 nA to dendrite, loop sequences form. Here we
use a fast conduction velocity 1000 µm/ms, which leads to the emergence of a synfire chain.
(a) Raster plot of network dynamics. (b) Network topology based on synaptic weights between
neurons.
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Figure 11: Example HVCRA neuron recorded in the subsong stage showing tight burst without
being locked to the song. (Left) Firing rate of the neuron aligned to syllable onset times does not
show significant peak, meaning that the neuron is not locked to the syllables. (Right) Example
membrane potential traces of the same neuron demonstrate tight bursting pattern.
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