
Polar Gini Curve: a Technique to Discover Single-cell Biomarker 1 

Using 2D Visual Information 2 

Thanh Minh Nguyen1, Jacob John Jeevan1, Nuo Xu2, Jake Chen1* 3 
1Informatics Institute, the University of Alabama at Birmingham, AL, United States 4 
2Collat School of Business, the University of Alabama at Birmingham, AL, United States 5 
*Corresponding author: Jake Chen 6 

Email: jakechen@uab.edu 7 

 8 

Running title: Nguyen et al / Polar Gini Curve single cell  9 

 10 

Authors’ ORCID No 11 

Thanh Nguyen: 0000-0002-8440-1594  12 

Jacob John Jeevan: 0000-0003-0910-5610 13 

Jake Chen: 0000-0001-8829-7504 14 

 15 

 16 

Total word counts: 3446  17 

Total figures: 10 18 

Total tables: 0 19 

Total supplementary figures: 0 20 

Total supplementary tables: 0 21 

Total supplementary files: 3 22 

  23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2020. ; https://doi.org/10.1101/2020.03.04.977140doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977140
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract 24 

In this work, we design the Polar Gini Curve (PGC) technique, which combines the gene 25 

expression and the 2D embedded visual information to detect biomarkers from single-cell data. 26 

Theoretically, a Polar Gini Curve characterizes the shape and ‘evenness’ of cell-point distribution 27 

of cell-point set. To quantify whether a gene could be a marker in a cell cluster, we can combine 28 

two Polar Gini Curves: one drawn upon the cell-points expressing the gene, and the other drawn 29 

upon all cell-points in the cluster. We hypothesize that the closers these two curves are, the more 30 

likely the gene would be cluster markers. We demonstrate the framework in several simulation 31 

case-studies. Applying our framework in analyzing neonatal mouse heart single-cell data, the 32 

detected biomarkers may characterize novel subtypes of cardiac muscle cells. The source code and 33 

data for PGC could be found at https://figshare.com/projects/Polar_Gini_Curve/76749. 34 

 35 

KEYWORDS: Single-cell gene expression; Gini coefficient; Polar Gini Curve; Biomarker 36 

 37 

Introduction 38 

Discovering biomarkers from the single-cell gene expression data is an interesting yet 39 

challenging problem [1]. Compared to the well-established bulk gene expression data, the 40 

expression distribution in single-cell is significantly more heterogeneous [2-4]. Therefore, as 41 

shown in [5, 6], the bulk-analysis strategies [7, 8] achieve low sensitivity in detecting markers. In 42 

addition, as embedding [9-11] and clustering [12-14] are the essential components in many single-43 

cell expression analytical pipelines [15, 16], the biomarker detection techniques would need to 44 

tackle the challenges and errors from embedding and clustering [17, 18]. 45 

 46 

From the statistical point of view, there are two different directions among the current state-47 

of-the-art methods in solving the single-cell biomarker discovery problem. The first direction is 48 

using non-parametric approaches [19]. Non-parametric approaches do not attempt to construct the 49 

model characterizing the gene expression distribution [20]. They do not require too many prior 50 

assumptions about the expression data. Therefore, in theory, they could be applied in most of the 51 

heterogeneous scenarios in single-cell expression. For example, Seurat [16] and the SINCERA 52 

[21] pipelines use the Mann–Whitney test [22]. The disadvantages of non-parametric approaches 53 

include lacking the point-estimator (for example, we could not tell how much of fold-change when 54 
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comparing the expressions of the same gene in two populations) and the lower true positive rate 55 

[5, 6]. On the other hand, the parametric approaches model the underlying expression distribution. 56 

For example, [23] applies Bayesian statistics, Monocle2 [11, 24] and MAST [2] apply different 57 

linear models, and [25] applies the Poisson models to single-cell differential expression analysis. 58 

The parametric approaches, compared to the non-parametric ones, are significantly more sensitive 59 

[5, 6], especially in detecting markers in small cell-cluster since they may require less number of 60 

cell-samples. However, these approaches assume that the gene expression distribution has specific 61 

shapes; therefore, these approaches tend to have higher false-positive rates. 62 

 63 

In this work, we developed a new framework based on the novel idea of integrating expression 64 

and the embedded visual information of single-cell data into one metric to identify biomarkers. 65 

This idea has been successfully implemented in spatial single-cell data, in which the visualization 66 

space reflects the relative position of the cells in a tissue image [26, 27]. In this framework, we 67 

decided to take advantage of cluster shape and cell-point distribution from the 2D visual space. 68 

Our strategy was to project the single-cell 2D cluster onto multiple angle-axes to explore all 69 

viewing angles of the cluster. On each ‘viewing angle’, we captured the visual distribution using 70 

the Gini coefficient [28]. Together, for each set of points in 2D, we constructed a Polar Gini Curve 71 

(PGC) from the correspondent between viewing angle and Gini coefficient. We hypothesized that 72 

for the marker gene, its expressing cell set should have its PGC close to the PGC computed from 73 

the whole cluster cell-set. We demonstrated the framework in several simulation case-studies. 74 

Applying our framework in analyzing neonatal mouse heart single-cell data [29], the detected 75 

biomarkers may characterize novel subtypes of cardiac muscle cells. We named the framework 76 

PGC-RSMD (Polar Gini Curve – Root Mean Square Deviation). The source code and dataset, 77 

including supplemental data, used in this manuscript could be found in 78 

https://figshare.com/projects/Polar_Gini_Curve/76749.  79 

 80 

 81 

Material and Method 82 

Computing PGC-RSMD for one gene in one cluster 83 

Figure 1 demonstrates the workflow to compute PGC-RSMD for one gene in a cell cluster 84 

from the single-cell expression data. Our approach used the 2D embedding [9] and clustering 85 
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results from single-cell expression data as the input. Starting from the 2D x-y embedding space, 86 

for an arbitrary angle θ, the pipeline projects the x-y coordinate [30] for every cell-point onto the 87 

θ-axis (z score)  88 

𝑧𝑧 = 𝑥𝑥cos(θ) + 𝑦𝑦sin(θ)    (1) 89 

We subtracted the scores from (1) with the smallest z to ensure that all z scores are non-negative, 90 

which is the requirement for computing the Gini coefficient. Then, it computed two Gini 91 

coefficients gsub and gwhole to measure the inequality among the z scores. The gsub coefficient only 92 

used the distribution of z scores obtained from cells expressing the gene. The gwhole coefficient 93 

would use the distribution of all z scores. The Gini coefficient formula is as in [28] 94 

𝑔𝑔 =
1

2𝑛𝑛2𝑧𝑧̅
���𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗�

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

    (2) 95 

Here, i and j are arbitrary indices in the list of z scores being used in the computation, 𝑧𝑧̅ is the 96 

average of these z scores, and n is the size of the z score list. Repeating (1) and (2) for multiple 97 

angles θ spanning from 0 to 2π would yield the corresponding lists between g and θ, as shown in 98 

the bottom-right table in Figure 1. This would lead to two polar curves for Gini coefficients, one 99 

for the cell-points expressing the gene in the cluster, and one for all cell-points in the cluster. We 100 

hypothesize that the two curves would be closer in the marker-gene scenario than in the non-101 

marker gene scenario. Therefore, we used the root-mean-square deviation (RSMD) metric, which 102 

is popular in computing fitness in Bioinformatics [31], to determine whether a gene is a marker in 103 

the cluster. 104 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ �𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(θ) − 𝑔𝑔𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜(θ)�

2
∀θ

𝑛𝑛θ
   (3) 105 

Here, nθ, also called resolution, is the number of angles θ for which we repeat (1) and (2). In this 106 

work, we chose nθ = 1000, which makes the angle list θ = 0, π/500, 2π/500, …, 999π/500, 2π. 107 

 108 

To compute the RSMD statistical p-value for each gene in each cluster, first, we linearly 109 

normalized (scaled) the RSMD computed in (3) such that the normalized RSMD is between 0 and 110 

1. This could be done by diving (3) by the largest RSMD among all genes in each cluster. Then, 111 

we applied the estimated p-value calculation in [32] to assign a p-value for each gene in each 112 

cluster. Briefly, from the RSMD scores in (3), we verified that the RSMD scores followed a bell-113 
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shaped distribution. Then, we computed the mean µ and standard deviation σ of the normalized 114 

RSMD. Then, the p-value for each gene in the cluster is 115 

𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑖𝑖) =
1

√2𝜋𝜋𝜎𝜎2
� 𝑣𝑣−

(𝑠𝑠−𝜇𝜇)2
2𝜎𝜎2 𝑑𝑑𝑣𝑣

𝑈𝑈

−∞
 (4) 116 

In (4), U stands for the normalized RSMD. 117 

 118 

 119 

Setting up simulation 120 

In this work, to demonstrate how the PGC-RSMD functions, we setup two simulations. In the 121 

first simulation, the cell cluster in the x-y embedding space had 5000 points, which were uniformly 122 

generated in the unit circle x2 + y2 ≤ 1. In the second simulation, the 2D visualization of cell clusters 123 

had the shape identical to the real-world cluster obtained from visualizing the mouse fetal lung 124 

single-cell data [29] using tSNE [33]. We applied the sampling-by-rejection technique [34] to 125 

generate these cluster points as follows. In the first simulation, we randomly generated a point 126 

whose coordinates are between -1 and 1 using uniform sampling, then accepted the point if it had 127 

x2 + y2 ≤ 1. In the second simulation, the random point coordinates were within the cluster 128 

coordinate range. We extracted the cluster boundary points, compute the polygon from these 129 

boundary points, which allowed deciding whether a point was inside the polygon using Matlab 130 

[35, 36]. In each simulation, we randomly chose m percentage of points (m = 5, 10, 15, …, 95) and 131 

assumed that they represent the cells expressing gene. For each m percentage, we repeat the 132 

simulation 1000 times. 133 

In addition, to evaluate how the performance of PGC-RSMD would change in drop-out 134 

scenario, we modified the single-cell data simulator in [37] as follow. First, we use [37] default 135 

parameters to synthesize 2 clusters such that each cluster has 6000 cells, 250 markers (total 500 136 

cluster markers) and other 4500 genes. For each cluster marker, the average expression fol-change 137 

when comparing two clusters was between 4 and 1000. We assigned the drop-out probability for 138 

each gene from 0, 5, 10, …, to 45% such that there were 25 markers for each drop-out probability. 139 

Then, in each cell, we randomly change the marker expression to 0 according to the markers’ drop-140 

out probability. For each of the 4500 non-cluster markers, the expression in each cell was randomly 141 

between 0 and 500. We assigned the sparisity – defined as the percentage of non-expressing cells 142 

(0 expression) – for each non-cluster marker from 0, 5, 10, …. to 95%. In each cell, we randomly 143 
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changed the non-cluster marker to 0 according to its sparsity. We used the AUC metric to evaluate 144 

whether the PGC-RSMD score could differentiate the 500 cluster-markers: whether each marker 145 

is specific for the first or the second clusters. 146 

 147 

 148 

Identifying cardiac muscle cell clusters and marker genes from the neonatal mouse heart 149 

single-cell data 150 

We obtained the neonatal mouse heart single-cell case-study from the Mouse Cell Atlas [29]. 151 

We processed the data as specified in [29]. After preprocessing, the dataset covered 19,494 genes 152 

expression in 5075 cells. We use tSNE [33] (without dimensional reduction) to embed the dataset 153 

into the 2D space. We used the density-based clustering algorithm [38] implemented in Matlab 154 

[39] to identify 9 cell clusters. In the implementation [39], we chose the clustering parameters 155 

epsilon = 4, minpts = 40. There were 788, 397, 2966, 156, 288, 123, 76, 125, 87 cell-points in 156 

cluster 1, 2, …, 9, correspondingly. There were 69 cell-points for which the algorithm is unable to 157 

assign to any clusters (Supplemental Data 3). 158 

 159 

We computed the percentage of expressing cells (the naïve approach) and PGC-RSMD for all 160 

genes in all clusters. We removed genes expressing in less than 10% of the cluster cells. For 161 

comparison, in the naïve approach, in each cluster, we selected the top genes sorted by the highest 162 

percentage of expressing cells as the cluster markers. In the PGC-RSMD approach, we selected  163 

the smallest-RSMD genes with its p-value < 0.05 as the cluster marker. In this work, we focused 164 

on identifying the heart muscle cell clusters and their markers. We manually examine the 165 

distribution of cells expressing the well-known heart muscle cell markers: Myh7, Actc1, and Tnnt2 166 

[40-47]. 167 

 168 

 169 

Seting up the re-identifying cluster ID problem 170 

To compare the robustness of our PGC-RSMD markers with other approaches, we setup the 171 

re-identifying cluster ID as follow. From the visual coordinates and 9 clusters of 5075 cells in [29], 172 

we randomly divided the dataset into the training set (4060 cells – 80%) and the test set (1015 cells 173 

– 20%) such that set has samples of all 9 clusters. Using the training set and markers’ expression 174 
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found by PGC-RSMD, in comparison with other approaches, we applied the neural network 175 

algorithm [48] to train models that identify cluster ID. We evaluated these models in the test set 176 

and recorded the classification accuracy and area-under-receiving characteristic curve (AUC). 177 

Here, we hypothesized that the ‘better’ markers would yield higher classification accuracy and 178 

AUC. The other approaches being compared with PGC-RSMD are: 179 

- The baseline approach: in this approach, we would train the classification models using all 180 

genes expression. 181 

- The differential expression approach: in this approach, we use Fisher’s exact test [49], which 182 

computes the likelihood of a gene being expressed (raw expression > 0) in a cluster, compare to 183 

the likelihood of the gene being expressed outside the cluster. In this work, we select the DEG 184 

markers in each cluster according to the following criteria: odd ratio > 5 and the percentage of 185 

expressing cell (m) > 50%. 186 

- The SpatialDE [26] approach: SpatialDE finds the gene with high variance regarding the 187 

distribution of ‘point’ on the spatial 2D space. The ‘null’ hypothesis in this approach is the gene 188 

distribution in the ‘spatial space’ follows a multivariate normal distribution. The marker is selected 189 

if the gene expression distribution is significantly different from the null distribution, recorded in 190 

the p-value. In this work, we select the SpatialDE marker according to the following criteria: q-191 

value (adjusted p-value) < 0.05 and percentage of expressing cell (m) > 50%. 192 

In both the DEG and the SpatialDE approach, we sort the markers according to the decreasing 193 

order of m. To make a fair comparison, we use the same number of markers, ranging from 5 to 194 

100, found by PGC-RSMD, DEG and SpatialDE to train the classification models. 195 

 196 

 197 

Results 198 

PGC-RSMD strongly correlates to the percentage of expressing cell in a cluster 199 

In Figure 2, we show that the fitness between the cluster PGC and the sub-cluster PGC strongly 200 

correlates to the percentage of expressing cell-points as the ‘sub-cluster’ m in the circle-shaped 201 

simulation. In addition, as m increases, the RSMD variance decreases. We represented the fitness 202 

by the root-mean-square deviation (RSMD) as showed in the method section. In this figure, for 203 

each m (from 5 to 95), we randomly generate 1000 sub-clusters and their PGCs. The detailed result 204 

of this simulation could be found at the Supplemental Data 1. 205 
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In addition, we observed a similar correlation when experimenting with the mouse fetal lung 206 

single-cell data [29]. Figure 3a shows the dataset clusters visualization using tSNE [33] and the 207 

chosen cluster. To synthesize a 3000-point cluster with the same shape to the chosen cluster, we 208 

still applied the random-by-rejection [34] as presented in the Material and Method section. Figure 209 

3b still shows a strong correlation between m and RSMD. The detailed result of this simulation 210 

could be found at the Supplemental Data 2. 211 

 212 

On the other hand, the PGC approach has the potential to answer whether the marker could 213 

identify subpopulations of cells in a cluster. Figure 4a demonstrates the 30000-point cluster with 214 

ring-shape 0.25 ≤ x2 + y2 ≤ 1, which appears to be a sub-cluster marker. In this case, m = 0.75. In 215 

this example, RSMD = 0.033 (Figure 4b), which is greater than the RSMD distribution computed 216 

from the random and uniformly-distributed cluster with the same m (Figure 4c).   217 

 218 

Figure 5 shows a decrease of PGC-RSMD performance in the drop-out scenario. Briefly, the 219 

synthetic data has 2 clusters, 250 distinct markers for each cluster. Each gene has a specific drop-220 

out rate as presented in the Material and Method section. Using the PGC-RSMD scores in each 221 

cluster to differentiate these 500 the cluster-specific markers, we observed that PGC-RSMD 222 

achieves very high area-under-receiver-characteristic curve (AUC) (>0.95) when the drop-out 223 

probability is small (≤ 5%). However, AUC decreases significantly with the probability of drop-224 

out (Figure 5a). This phenomenon further demonstrates the strong association between RSMD 225 

and the percentage of expressing-cell. When the drop-out rate increases, the percentage of 226 

expressing-cell decreases; therefore, RSMD may mischaracterize a high-dropout marker as non-227 

marker. 228 

 229 

 230 

Case-study: PGC identifies heart muscle cell in neonatal mouse heart single-cell 231 

PGC-RSMD detects markers to support cell-type identification in single-cell mouse 232 

neonatal heart data 233 

Figure 6 summarizes the neonatal mouse heart single-cell data [29] and its 9-cluster markers. 234 

Figure 6a visualizes these 9 clusters with tSNE. The PGC-RSMD founds 258 genes, which are 235 

the union of the smallest 100-PCG-RSMD genes found in each cluster, marking these clusters 236 
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(Supplemental Data 3). Figures 6b and 6c showed that the gene-cluster marker-association reflects 237 

the underlying gene expression in the single-cell data. In these heatmap figures, each row 238 

corresponds to one gene. 239 

 240 

We identified the muscle-cell clusters 1, 4 and 9 by the expression of Myh7, Actc1, and Tnnt2, 241 

which strongly express in muscle cell type [40-47] (Figure 7). Compared to the naïve method 242 

using the percentage of expressing cell, our PGC-RSMD is significantly better by detecting Actc1, 243 

which are missed by the naïve approach (Figure 8). Furthermore, our approach identified Mgrn1 244 

[50, 51], Ifitm3 [52], Myl6b [53] marking cluster 1, which could play important roles in cardiac 245 

muscle functionality, heart failure, and heart development. These genes are not identified using 246 

the naïve approach (Figure 8). On the other hand, among genes having a high percentage of 247 

expressing cell, our PGC-RSMD suggests that Ndufa4l2, Mdh2, and Atp5g1 may not be heart 248 

muscle cell markers. However, they could suggest a subtype of heart muscle cells (Figure 9). The 249 

percentage of expressing cells, PGC-RSMD, statistical p-value and ranks for all genes could be 250 

found in Supplemental Data 3. 251 

 252 

Re-identifying the cells’ cluster ID from markers 253 

We observe that the markers found by the PGC-RSMD approach achieve better performance 254 

than the similar SpatialDE [26] markers, and similar performance to the differentially-expressed-255 

gene (DEG) when being used to re-identify cell’s cluster ID. Briefly, after computing the visual 256 

coordinate and cluster ID of all cells, we randomly split the dataset [29] into the training (80%) 257 

and test (20%) sets. We only applied the baseline PGC-RSMD, SpatialDE and DEG approaches 258 

to find the markers and built machine learning models to predict the cells’ cluster ID from these 259 

markers in the training set. In this experiment, we used all genes to train the predictor in the 260 

baseline approach. The detailed description of this experiment could be found in the method 261 

section. Evaluating the prediction models in the test set, the PGC-RSMD approach performs 262 

closely to the DEG; both have cluster ID prediction accuracy above 0.9 and AUC above 0.95 on 263 

average (Figure 10). These two approaches significantly outperform SpatialDE, whose accuracy 264 

is just above the baseline. 265 

 266 

 267 
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Discussion 268 

In this work, we show that integrating the embedded information, which does not often have a 269 

deterministic relationship with gene expression and is primarily for clustering a visualization, 270 

could lead to new insights to biomarkers in single-cell data. In the mouse neonatal heart case-271 

study, our PGC-RSMD approach could recall Actc1 as the marker characterizing heart muscle cell. 272 

Meanwhile, the approach using the ratio of expressing cell may fail to recall because a large 273 

percentage of cells does not capture Actc1 transcript. Therefore, our proposed technique has the 274 

potential to handle analytical issues due to single-cell data quality, such as short-read and low 275 

sequencing depth [54-56]. On the other hand, for genes having high percentage of expressing cell, 276 

the PGC approach could further show that these genes may characterize novel cardiac muscle cell 277 

sub-types for future studies, such as in Mdh2 and Myl6b. Therefore, we suggest that the biomarker 278 

discovery problem could be divided into two sub-problems: the ‘global markers’ specify cell types 279 

and the ‘local markers’ specify subtypes. We could solve these two sub-problems by the right 280 

integration of gene expression and visual information.  281 

 282 

In this work, we primarily demonstrate how PGC detects markers for single cluster, which 283 

does not need the gene expression from other clusters in the dataset. The approach could be 284 

extended to incorporate the ‘global’ expression as follow. First, a PGC analysis can be performed 285 

with marker cells as the foreground and all cells (regardless of their cluster assignments) as the 286 

background. Second, a PGC analysis can be performed for each cluster in the dataset 287 

independently and compare among the clusters’ marker lists. In the neonatal mouse heart case-288 

study, this approach shows two types of marker: one expressing globally in all clusters, which are 289 

likely heart-tissue specific; the other express locally in one or some specific cluster, which are 290 

likely cell-type specific.  291 

 292 

In addition to our proposed PGC approach, we could apply several alternative strategies to 293 

integrate the gene expression and visual information to solve the single-cell biomarker discovery 294 

problem. For example, the fractal dimension analysis strategies [57, 58], which focus on evaluating 295 

the uniformity of cell-point distribution, could be applied to identify markers in which the 296 

expressing cells distribute more densely than they are in the overall cluster. In addition, we could 297 

also customize the statistical texture analysis in image processing, such as homogeneity and 298 
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integrity [59, 60], to analyze the difference between the overall cluster cell-point and cell-299 

expressing gene point as the metric to determine markers. On the other hand, choosing the 300 

appropriate visual approach depends on the nature of the data and the problem. Our experiment 301 

with the re-identifying cluster ID shows that the well-established SpatialDE [26] does not 302 

outperform our approach and the DEG approach. One explanation is that in our problem, a good 303 

marker for identifying cell type usually follows a good ‘default’ distribution over the visual space; 304 

meanwhile, the SpatialDE aims to find markers that express significantly different from a default 305 

distribution. 306 

 307 

The major limitation of our proposed PGC-RSMD approach is the long computational time, 308 

especially when comparing to the DEG approaches. This is similar to SpatialDE, which also used 309 

visual information to detect marker genes. The DEG approaches may only need to compute one 310 

statistical test to determine whether a gene is a marker for all clusters. Meanwhile, to draw the 311 

curves, PGC-RSMD would need to compute hundreds to thousands, which depends on the desired 312 

curve resolution, to characterize one gene in one cluster. Due to the long computational time, we 313 

were not able to create multiple simulations, which is the ideal approach, run to compute the 314 

statistical [32] p-value for the RSMD score. Therefore, we decided to reapply the estimation 315 

presented to compute the p-value. This approach is computationally more efficient but may not 316 

well-reflect the statistical characteristic of the single-cell data. In addition, we have not fully 317 

tackled the problem of choosing the right threshold to determine whether a gene expresses in a 318 

cell. Because of the strong association between PGC-RSMD and the percentage of expressing-319 

cell, we expect that the result would significantly different when choosing a different threshold to 320 

determine whether a gene expresses in a cell. In this work, choosing 0 as the threshold still yields 321 

good performance because of the high sparsity in the real dataset. 322 

 323 

Conclusions 324 

In this work, we have presented Polar Gini Curve, a novel technique to detect markers from 325 

the single-cell RNA expression data using visual information. In principle, our technique could 326 

complement the state-of-the-art approach: the PGC technique finds markers such that the 327 

expressing cells are evenly distributed throughout the cluster space; meanwhile, the state-of-the-328 

art approach finds markers assuming a multivariate normal distribution of gene expression in the 329 
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visual space. We have demonstrated that the PGC technique performs better in some tasks in 330 

single-cell analysis. 331 

 332 
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 482 

 483 

Figure legends 484 

Figure 1. Overall workflow to compute the PGC-RSMD metric for one gene in one cluster of cells. 485 

Here, the data points, histogram, and PGC for cells expressing the gene are cyan. The ones for the 486 

whole cells in the cluster are red. 487 

 488 

Figure 2. Boxplot showing a strong correlation between ‘subcluster’ percentage (m) and cluster-489 

subcluster PGC fitness (RSMD) in uniformly-distributed and a circular cluster. 490 

 491 

Figure 3. a) The selected cluster for the experiment in [29]. b) Correlation between ‘subcluster’ 492 

percentage (m) and cluster-subcluster PGC fitness (RSMD) in the selected cluster. 493 

 494 

Figure 4. The ring-shape simulation study: a) Visualization of the cluster and ring-shape sub-495 

cluster (m = 0.75); b) PGC yield RSMD = 0.033; c) Distribution of RSMD, extracted from Figure 496 

2 with m = 75%, when the sub-cluster uniformly distributed on the cluster area. 497 

 498 

Figure 5. PGC-RSMD performance in recalling cluster marker in drop-out simulation. a) heatmap 499 

showing the simulation design of 500 markers and 4500 neutral genes, with drop out / percentage 500 

of cell expressing between 5 and 100%; b) The simulation data 2D visualization; c) the AUC drops 501 

when drop-out increases. 502 

 503 

Figure 6. The result from mouse neonatal heart single-cell [29] analysis. a) the tSNE plot shows 9 504 

clusters. b) gene-cluster marker relationship (from 258 genes) found by PGC-RSMD; dd gene is 505 

found as marker, dd gene is found as non-marker. c) expression heatmap for these genes. 506 

 507 

Figure 7: Heart muscle cell clusters, identified by Myh7, Actc1, and Tnnt2 508 

 509 
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Figure 8. PGC-RSMD highlight makers that do not have high percentage of expressing cells: PGCs 510 

of Actc1, Mgrn1, Ifitm3, Myl6b in cluster 1. The numbers in the parenthesis are ranks of these 511 

genes in each metric 512 

 513 

Figure 9. PGC-RSMD shows that gene haves high percentage of expressing cells: Ndufa4l2, Mdh2, 514 

and Atp5g1, may not be markers in cluster 1. These genes appear to highlight a local subcluster. 515 

The numbers in the parenthesis are ranks of these genes in each metric. 516 

 517 

Figure 10. Performance of the PGC-RSMD, SpatialDE, and DEG in re-identifying the cell’s 518 

cluster ID problem using dataset [26]. The x-axis shows the number of top-significant markers 519 

being selected to train the prediction models. a) accuracy; b) AUC over 9 clusters. 520 

 521 
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