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Abstract 
Psychiatric disorders are highly genetically correlated, and many studies have focused on their shared 
genetic components. However, little research has been conducted on the genetic differences between 
psychiatric disorders, because case-case comparisons currently require individual-level data from 
cases of both disorders. We developed a new method (CC-GWAS) to test for differences in allele 
frequency among cases of two different disorders using summary statistics from the respective case-
control GWAS; CC-GWAS relies on analytical assessments of the genetic distance between cases and 
controls of each disorder. Simulations and analytical computations confirm that CC-GWAS is well-
powered and attains effective control of type I error. We applied CC-GWAS to publicly available 
summary statistics for schizophrenia, bipolar disorder and major depressive disorder, and identified 
116 independent genome-wide significant loci distinguishing these three disorders, including 21 CC-
GWAS-specific loci that were not genome-wide significant in the input case-control summary 
statistics. Two of the CC-GWAS-specific loci implicate the genes KLF6 and KLF16 from the Kruppel-like 
family of transcription factors; these genes have been linked to neurite outgrowth and axon 
regeneration. We performed a broader set of case-case comparisons by additionally analyzing ADHD, 
anorexia nervosa, autism, obsessive-compulsive disorder and Tourette’s Syndrome, yielding a total of 
200 independent loci distinguishing eight psychiatric disorders, including 74 CC-GWAS-specific loci. 
We confirmed that loci identified by CC-GWAS replicated convincingly in applications to data sets for 
which independent replication data were available. In conclusion, CC-GWAS robustly identifies loci 
with different allele frequencies among cases of different disorders using results from the respective 
case-control GWAS, providing new insights into the genetic differences between eight psychiatric 
disorders.  
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Introduction 

Psychiatric disorders are highly genetically correlated, and many studies have focused on their shared 

genetic components, including genetic correlation estimates of up to 0.71–3 and recent identification 

of 109 pleotropic loci across a broad set of eight psychiatric disorders3. However, much less research 

has been conducted on the genetic differences between psychiatric disorders, and biological 

differences between psychiatric disorders are poorly understood. Currently, differential diagnosis 

between disorders is often challenging and treatments are often non-disorder-specific, highlighting 

the importance of studying genetic differences between psychiatric disorders.  

 A recent study4 progressed the research on genetic differences between disorders by 

comparing 24k SCZ cases vs. 15k BIP cases, yielding two significantly associated loci. However, ~25% 

of the cases were discarded compared to the respective case-control data (owing to non-matching 

ancestry and genotyping platform). Methods that analyse case-control summary statistics may be 

advantageous, because they make use of all genotyped samples and because summary statistics are 

often broadly publicly available5. Indeed, several methods have been developed to analyse GWAS 

summary statistics of two complex traits3,6–13, but none of these methods can be used to conduct a 

case-case comparison (see Discussion). Currently, case-case comparisons of two disorders require 

individual-level data from cases of both disorders.  

 In this study, we propose a new method (CC-GWAS) to compare cases of two disorders based 

on the respective case-control GWAS summary statistics. CC-GWAS relies on a new genetic distance 

measure (!"#,%&'(&)) quantifying the genetic distances between cases and controls of different 

disorders. We first apply CC-GWAS to publicly available GWAS summary statistics of the mood and 

psychotic disorders3, schizophrenia (SCZ)14,15, bipolar disorder (BIP)16 and major depressive disorder 

(MDD)17. Subsequently, we analyse all comparisons of eight psychiatric disorders by additionally 

analysing attention deficit/hyperactivity disorder (ADHD)18, anorexia nervosa (ANO)19, autism 

spectrum disorder (ASD)20, obsessive–compulsive disorder (OCD)21, Tourette’s Syndrome and Other 
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Tic Disorders (TS)22. Finally, we replicate CC-GWAS results of SCZ vs. MDD based on subsets of the data 

for which independent replication data were available.  

 

Results 

Overview of methods 

CC-GWAS detects differences in allele frequencies among cases of disorders A and B by analysing case-

control GWAS summary statistics for each disorder. CC-GWAS relies on the analytical variances and 

covariances of genetic effects of causal variants distinguishing caseA vs. controlA (A1A0), caseB vs. 

controlB (B1B0), and caseA vs. caseB (A1B1). We note that these variances are proportional to the 

average normalized squared difference in allele frequencies of causal variants; we call this quantity 

!"#,%&'(&) (defined separately for A1A0, B1B0, A1B1), as it is related to the quantity !"# in population 

genetics (see Methods)23. !"#,%&'(&)  is defined at the population level, i.e. assuming infinite sample 

size, and is derived based on estimates of the SNP-based heritabilities (ℎ),+,  and ℎ),-, ), lifetime 

population prevalences (.+ and .-), genetic correlation (/0), and number of independent causal 

variants (1). 

 CC-GWAS weights the effect sizes from the respective case-control GWAS using weights that 

minimize the expected squared difference between estimated and true A1B1 effect sizes; we refer to 

these as ordinary least squares (OLS) weights (see Methods). The OLS weights are designed to 

optimize power to detect A1B1, and depend on sample size, sample overlap, and the expected 

variance of effect sizes reflected in !"#,%&'(&). The OLS weights may be susceptible to type I error for 

SNPs with nonzero A1A0 and B1B0 effect sizes but zero A1B1 effect size, which we refer to as “stress 

test” SNPs. To mitigate this, CC-GWAS also computes sample-size independent weights based on 

infinite sample size; we refer to these as Exact weights (see Methods). (At very large sample sizes, the 

OLS weights converge to the Exact weights.) CC-GWAS uses the OLS weights and Exact weights to 

compute p-values (see Methods). Specifically, CC-GWAS reports a SNP as statistically significant if it 

achieves P<5x10-8 using OLS weights and P<10-4 using Exact weights, balancing power and type I error 
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(see Simulations). For statistically significant SNPs, CC-GWAS outputs OLS effect sizes reflecting 

direction and magnitude of effect. We note that the OLS weights assume that A1A0 and B1B0 effect 

sizes for causal variants follow a bivariate normal distribution. Violation of this assumption may result 

in increased type I error when using the OLS weights only; as noted above, the Exact weights protect 

against type I error in such scenarios. We further note that sample overlap of controls increases the 

power of CC-GWAS, by providing a more direct comparison of caseA vs. caseB. Further details of the 

CC-GWAS method are provided in the Methods section; we have released open-source software 

implementing the method (see URLs). 

 

Quantifying genetic distances between cases and/or controls of each disorder  

The CC-GWAS weights depend on a new population-level quantity !"#,%&'(&), the average normalized 

squared difference in allele frequencies of causal variants. !"#,%&'(&) is derived based on the SNP-

based heritabilities (ℎ),+,  and ℎ),-, ), lifetime population prevalences (.+ and .-), genetic correlation 

(/0), and number of independent causal variants (1). Estimates of !"#,%&'(&) for SCZ, BIP and MDD, 

based on parameters estimated in recent GWAS15–17, are reported in Figure 1 and Table S1. !"#,%&'(&) 

allows for a direct comparison of cases and controls using 21 ∗ !"#,%&'(&)  as a new genetic distance 

measure, where the square root facilitates 2-dimensional visualization (see Figure 1A and Methods). 

(CC-GWAS assumes that the set of causal variants is the same for both disorders, with causal effect 

sizes following a bivariate normal distribution, but !"#,%&'(&)  does not rely on this assumption; see 

Methods). We note that 1 ∗ !"#,%&'(&) is independent of 1 when other parameters are fixed, because 

the equation for !"#,%&'(&) has 1 in the denominator (see Methods). For SCZ and BIP, despite the 

large genetic correlation (/0 	= 	0.70), the genetic distance between SCZ cases and BIP cases is 

substantial (21 ∗ !"#,%&'(&) = 0.49, which is comparable to 0.66 for SCZ case-control and 0.60 for BIP 

case-control; Figure 1B). For SCZ and MDD (/0 = 0.31), the genetic distance between MDD cases and 

SCZ cases (0.63) is larger than for MDD case-control (0.29) (Figure 1C) owing to the larger prevalence 

and lower heritability of MDD, consistent with our empirical findings (see below). For MDD and BIP 
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(/0 	= 	0.33), genetic distances are similar to MDD and SCZ (Figure 1D). To aid intuitive understanding 

of this new genetic distance measure, we note that the distances can be roughly interpreted as (i) the 

square root of the average squared difference in allele frequency at causal SNPs, (ii) proportional to 

the average power in GWAS (assuming equal sample sizes and numbers of causal SNPs), (iii) 

heritability on the observed scale based on 50/50 ascertainment (although the heritability has no clear 

interpretation when comparing overlapping small subsets of the population), and (iv) an indication of 

the accuracy of polygenic risk prediction. Furthermore, the cosine of the angle between the lines A1-

A0 and B1-B0 is equal to the genetic correlation between disorder A and disorder B (see Methods). 

Figure S1 and Table S1 reports genetic distances across all eight psychiatric disorders, and for the 

autoimmune disorders (Crohn’s disorder (CD)24, ulcerative colitis (UC)24 and rheumatoid arthritis 

(RA)25; analysed below to help validate the CC-GWAS method).  

 

Simulations 

We assessed the power and type I error of CC-GWAS using both simulations with individual-level data 

and analytical computations (see Methods). We compared four methods: CC-GWAS; the OLS 

component of CC-GWAS; the Exact component of CC-GWAS; and a naïve method that uses weight +1 

for A1A0 and −1 for B1B0 (Delta method). All four methods are unpublished; we are not currently 

aware of any published method for performing case-case GWAS using case-control summary statistics 

(see Discussion). We assessed (i) power to detect causal SNPs with case-control effect sizes for both 

disorders drawn from a bivariate normal distribution (allele frequencies A0≠A1, B0≠B1, A1≠B1); (ii) 

type I error for “null-null” SNPs, defined as SNPs with no effect on either disorder (A0=A1, B0=B1, 

A1=B1); and (iii) type I error for “stress test” SNPs, defined as SNPs with A0≠A1, B0≠B1, A1=B1 (see 

above). Default parameter settings were loosely based on the genetic architectures of SCZ and MDD 

with liability-scale h2=0.2, prevalence K=0.01, and sample size 100,000 cases + 100,000 controls for 

disorder A; liability-scale h2=0.1, prevalence K=0.15, and sample size 100,000 cases + 100,000 controls 

for disorder B; genetic correlation rg=0.5 between disorders; and m=5,000 causal SNPs affecting both 
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disorders with causal effect sizes following a bivariate normal distribution. For these parameter 

settings, the weights are 0.86 for A1A0 and –0.55 for B1B0 for the OLS approach, and 0.99 and –0.85 

respectively for the Exact approach. The OLS approach assigns relatively more weight to A1A0 

(0.86/0.55=1.56) than the Exact approach (0.99/0.85=1.16), because of the larger heritability and 

lower prevalence of A1A0 (implying higher signal to noise ratio at the same case-control sample size). 

The OLS-weights are shrunk in comparison to the Exact weights, accounting for the imperfect signal 

to noise ratio at finite sample size (however, CC-GWAS p-values are insensitive to rescaling the weights 

at a fixed ratio). Stress test SNPs were set to explain 0.10% of liability-scale variance in A and 0.29% of 

liability-scale variance in B (resulting in allele frequency A1=B1). Other parameter settings were also 

explored. 

 Results of analytical computations are reported in Figure 2 and Table S2; simulations with 

individual-level data produced identical results (Table S3), thus we focus primarily on results of 

analytical computations. We reached three main conclusions. First, CC-GWAS attains similar power as 

the OLS method, higher power than the Exact method, and much higher power than the Delta method 

(Figure 2A); we note that this is a best-case scenario for CC-GWAS, as the simulated bivariate genetic 

architecture follows the CC-GWAS assumptions. As expected, power increases with increasing sample 

size and decreases with increasing genetic correlation. The power of CC-GWAS to detect case-case 

differences lies in between the power of the input A1A0 and B1B0 summary statistics to detect case-

control differences (Figure S2). Second, all methods perfectly control type I error at null-null SNPs 

(Figure 2B). Third, although the OLS method has a severe type I error problem at stress test SNPs 

(particularly when the genetic correlation is large), CC-GWAS attains effective control of type I error 

at stress test SNPs (type I error rate < 10-4; Figure 2C), an extreme category of SNPs that is likely to 

occur rarely in empirical data. Notably, with increasing sample size the OLS weights converge towards 

the Exact weights (Figure S3), resulting in decreasing type I error rate for stress test SNPs. In 

conclusion, CC-GWAS balances the high power of the OLS method with effective control of type I error.  
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 We performed seven secondary analyses, yielding the following conclusions. First, results 

were similar when varying .- , ℎ),-,  and 1 (Figure S4); in particular, results were similar when 

increasing from m=5,000 causal SNPs to m=10,000 causal SNPs (Figure S5; we used m=5,000 causal 

SNPs in our main assessment because this setting corresponds to higher absolute power). Second, 

sample overlap in controls increases power, as this provides a more direct case-case comparisons 

(Figure S6). Third, the type I error rate of CC-GWAS is slightly less 1 in 10,000 for stress test SNPs 

explaining a large proportion of case-control variance (0.29% for disorder B in Figure 2C), but is much 

smaller for stress test SNPs explaining less variance (Figure S7). Fourth, when employing a more 

stringent p-value threshold for the Exact component of CC-GWAS than the default threshold of 10–4, 

both the power for causal SNPs and the type I error rate for stress test SNPs decrease (Figure S8). We 

believe that the default threshold of 10–4 provides sufficient protection against type I error of stress 

test SNPs, which cannot be numerous (e.g. 100 independent stress test SNPs as defined in Figure 2C 

would explain 29% of liability-scale variance in disorder B). Fifth, we assessed CC-GWAS using the type 

S error rate, defined as the proportion of significantly identified loci (true positives) identified with the 

wrong sign26,27; this is an appealing metric for CC-GWAS, whose complexity precludes metrics based 

on distributions of test statistics. We determined that the type S error rate was negligible: less than 1 

in 1,000,000 significantly identified variants for all parameter settings of Figure 2A (Table S4). Sixth, a 

direct case-case comparison (which requires individual-level data) may be more powerful than CC-

GWAS when a great majority of cases can be included (Figure S9). Seventh, when case-case GWAS 

results are available, a method incorporating these results can be applied to further increase power 

(CC-GWAS+; Figure S10).  

 

CC-GWAS identifies 116 loci with different allele frequencies among cases of SCZ, BIP and MDD 

We applied CC-GWAS to publicly available summary statistics for SCZ,15 BIP16 and MDD17 (Table 1; see 

URLs). To run CC-GWAS, we assumed 10,000 independent causal SNPs for each psychiatric disorder28. 

The underlying OLS weights and Exact weights used by CC-GWAS are reported in Table 1, along with 
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the disorder-specific parameters used to derive these weights. We defined independent genome-wide 

significant CC-GWAS loci by clumping correlated SNPs (r2≥0.1) in 3MB windows and collapsing 

remaining SNPs within 250kb15 (Table S5). We defined CC-GWAS-specific loci as loci for which none of 

the genome-wide significant SNPs had r2>0.8 with any of the genome-wide significant SNPs in the 

input case-control GWAS results (Table S5). We note that this definition of CC-GWAS-specific loci may 

include loci previously reported as genome-wide significant in analyses of other case-control data sets 

(see below). We further note that CC-GWAS loci that are not CC-GWAS-specific also contribute to our 

understanding of differences between different disorders.  

 For each pair of SCZ, BIP and MDD, the total number of independent CC-GWAS loci and 

number of independent CC-GWAS-specific loci are reported in Table 1. The CC-GWAS analysis 

identified 121 loci, summed across pairs of disorders: 12 for SCZ vs. BIP, 99 for SCZ vs. MDD, and 10 

for BIP vs. MDD. CC-GWAS loci were considered shared between two pairs of disorders when at least 

one pair of genome-wide significant SNPs for the respective pairs of disorders had r2>0.8 (Table S5). 

Thus, 4 of the CC-GWAS loci were shared between SCZ vs. BIP and SCZ vs. MDD and 1 was shared 

between SCZ vs. MDD and BIP vs. MDD, resulting in 116 independent CC-GWAS loci. 5 of the 12 SCZ 

vs. BIP loci were also significant in the SCZ case-control comparison while none were significant in the 

BIP case-control comparison (consistent with the larger SCZ case-control sample size); 89 of the 99 

SCZ vs. MDD loci were also significant in SCZ case-control comparison while only 1 of those was also 

significant in the MDD case-control comparison (consistent with the relative genetic distances in 

Figure 1C); and 5 of the 10 BIP vs. MDD loci were also significant in the BIP case-control comparison 

while only 1 was significant in the MDD case-control comparison. The remaining 21 (7+10+4) loci were 

CC-GWAS-specific (and independent from each other); 8 of these loci have not been reported 

previously (conservatively defined as: no SNP in 1000 Genomes29 with r2>0.8 with a genome-wide 

significant CC-GWAS SNP in the locus reported for any trait in the NHGRI GWAS Catalog30; Table S5). 

Notably, the Exact approach did not filter out any variants identified using the OLS approach, i.e. all 
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SNPs with P<5x10–8 using OLS weights also had P<10–4 using Exact weights, because the OLS weights 

were relatively balanced.  

For each CC-GWAS locus, the respective input case-control effect sizes for each disorder are 

reported in Figure 3 and Table S6. Details of the 21 CC-GWAS-specific loci are reported in Table 2, and 

details of the remaining 100 CC-GWAS loci are reported in Table S6 (the locus names reported in these 

tables incorporate results of our SMR analysis31; see below). For all 21 CC-GWAS-specific loci, the input 

case-control effect sizes were non-significant with opposing signs. For CC-GWAS-specific SCZ vs. BIP 

loci, the input case-control effect sizes had comparable magnitudes for SCZ and BIP, reflecting their 

similar SNP-heritabilities and prevalences (case-control effect sizes are on the standardized observed 

scale based on 50/50 case-control ascertainment). For CC-GWAS-specific SCZ vs. MDD and BIP vs. MDD 

loci, the input case-control effect sizes were smaller for MDD due to its lower SNP-heritability and 

higher prevalence, implying much lower observed-scale SNP-heritability and !"#,%&'(&)  (Figure 1). For 

the remaining 100 loci, 4 of 5 had opposing case-control association signs in the respective input 

GWAS results for SCZ vs. BIP, 43 of 89 had opposing signs for SCZ vs. MDD, and 4 of 6 had opposing 

signs for BIP vs. MDD.  

 We performed five secondary analyses, yielding the following conclusions. First, when we 

employed a more stringent p-value threshold for the Exact component of CC-GWAS than the default 

threshold of 10–4, significant loci were removed only when a threshold of 10–6 or below was employed 

(Table S7). Second, results were similar when applying a different clumping strategy to define 

independent loci (Table S8). Third, when conservatively correcting input summary statistics for their 

stratified LD score regression (S-LDSC) intercept32–35 (similar to Turley et al.6), the number of significant 

CC-GWAS independent loci decreased (e.g. from 99 to 75 for SCZ vs. MDD; Table S9). However, we 

believe this correction is overly conservative, as S-LDSC intercept attenuation ratios36 were relatively 

small, implying little evidence of confounding (Table S10); we note that any confounding, if present, 

would have a similar impact on CC-GWAS results as on the confounded input summary statistics (when 

applying no correction for S-LDSC intercept) (see Methods and Table S11). Fourth, results were little 
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changed when estimating heritabilities provided as input to CC-GWAS using LD score regression 

(LDSC)32 instead of S-LDSC33–35, despite systematically lower heritability estimates (Table S12). Fifth, 

when changing the number of causal SNPs 1 to 5,000 (resp. 20,000), slightly fewer (resp. slightly 

more) loci were detected (Table S13). Sixth, we extended the SCZ vs. BIP analysis by applying CC-

GWAS+ (see above) to incorporate case-case summary statistics4, but this did not increase the number 

of independent CC-GWAS-specific loci (Table S14).  

 

CC-GWAS-specific loci implicate known and novel disorder genes 

We used two approaches to link the 21 CC-GWAS-specific loci to genes (Table 2). First, we linked 

exonic lead SNPs to the corresponding genes. Second, we used the SMR test for colocalization31 (see 

URLs) to identify CC-GWAS loci with significant associations between gene expression effect sizes in 

cis across 14 tissues (13 GTEx v7 brain tissues37 and a meta-analysis of eQTL effects in brain tissues38; 

see URLs) and OLS case-case effect sizes (P<0.05 divided by the number of probes tested for each pair 

of disorders; see Methods), and used the HEIDI test for heterogeneity31 to exclude loci with evidence 

of linkage effects (P<0.05) (see Methods and Table S15). Below, we highlight 4 CC-GWAS-specific loci 

from Table 2, representing both known and novel findings.  

  The CC-GWAS-specific SCZ vs. MDD CC-GWAS locus defined by lead SNP rs2563297 

(chr5:140,097,072) produced significant SMR colocalization results for 11 gene-tissue pairs 

representing 7 unique genes (Table S15). The 7 unique genes included 5 protocadherin alpha (PCDHA) 

genes, which play a critical role in the establishment and function of specific cell-cell connections in 

the brain39, and the NDUFA2 gene, which has been associated with Leigh syndrome (an early-onset 

progressive neurodegenerative disorder)40. Significant CC-GWAS SNPs in this locus have previously 

been associated to schizophrenia41–44 (in data sets distinct from our input schizophrenia GWAS15, in 

which this locus was not significant due to sampling variance and/or ancestry differences), depressive 

symptoms6, neuroticism45, educational attainment44,46, intelligence47, blood pressure48,49, and a meta-

analyses of schizophrenia, education and cognition44, implying that this is a highly pleiotropic locus. 
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This implies that CC-GWAS can increase power to detect associated loci in the input case-control 

GWAS data sets analyzed here. 

 The CC-GWAS-specific SCZ vs. MDD locus defined by lead SNP rs2944833 (chr7:71,774,496) 

produced a significant SMR colocalization result for one gene-tissue pair, involving the CALN1 gene in 

meta-analyzed brain eQTL38 (Table S15). CALN1 plays a role in the physiology of neurons and is 

potentially important in memory and learning50. Indeed, SNPs in this locus have previously been 

associated to educational attainment46,51, intelligence47,52, cognitive function53, and a meta-analysis of 

schizophrenia, education and cognition44. Again, this implies that CC-GWAS can increase power to 

detect associated loci in the input case-control GWAS data sets analyzed here. 

 Finally, two distinct CC-GWAS-specific loci implicated genes in the Kruppel-like family of 

transcription factors. The CC-GWAS-specific SCZ vs. BIP locus defined by lead SNP rs1054972 

(chr19:1,852,582) lies within an exon of KLF16, and the CC-GWAS-specific SCZ vs. MDD locus defined 

by lead SNP rs17731 (chr10:3,821,561) lies within an exon of KLF6. The respective case-control effect 

sizes suggest that rs1054972 and rs17731 both have an impact on SCZ, but have not yet reached 

significance in the respective case-control analyses (P=1.3e–5 and P=2.9e–7 respectively; Table 2 and 

Table S16). KLF16 and KLF6 play a role in DNA-binding transcription factor activity and in neurite 

outgrowth and axon regeneration54, and we hypothesize they may play a role in the previously 

described schizophrenia pathomechanism of synaptic pruning55. Furthermore, the KLF5 gene from the 

same gene family has previously been reported to be downregulated in post-mortem brains of 

schizophrenia patients56. At the time of our analyses, KLF16 and KLF6 had not previously been 

associated to schizophrenia; KLF6 has very recently been associated to schizophrenia in a meta-

analysis of East Asian and European populations43, but KLF16 has still not been associated to 

schizophrenia. This implies that CC-GWAS can identify novel disorder genes. 
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CC-GWAS identifies 200 loci distinguishing cases of eight psychiatric disorders 

We applied CC-GWAS to all 28 pairs of eight psychiatric disorders by analysing ADHD18, ANO19, ASD20, 

OCD21, and TS22 in addition to SCZ15, BIP16 and MDD17 (Table 3; see URLs). To run GG-CWAS, we 

assumed 10,000 independent causal SNPs for each psychiatric disorder28. The underlying OLS weights 

and Exact weights used by CC-GWAS are reported in Table S7.  

For each pair of psychiatric disorders, the total number of independent CC-GWAS loci and 

number of independent CC-GWAS-specific loci are reported in Table 4. The CC-GWAS analysis 

identified 321 loci, summed across pairs of disorders (0 to 99 loci per pair of disorders). Many of the 

loci were shared between pairs of disorders, resulting in 200 independent loci; in particular, 49 SCZ 

case-control loci were shared across 10 pairs of disorders (SCZ and one other disorder), explaining 88 

of the 121 overlapping loci. 126 of the 200 loci were also significant in one (or both) of the two input 

case-control comparisons. The remaining 74 loci were CC-GWAS-specific; 33 (45%) of these loci have 

not previously been reported in the NHGRI GWAS catalog30. The proportion of independent loci that 

were CC-GWAS-specific (74/200) was larger than in our above analysis of SCZ, BIP and MDD (21/116), 

but the proportions were more similar when summing across pairs of disorders (85/321 and 21/121, 

respectively); the difference between 74/200 and 85/321 reflects the fact that CC-GWAS-specific loci 

are less likely to be shared between pairs of disorders. Notably, the Exact approach filtered out 

variants identified using the OLS approach for three pairs of disorders: from 9 to 1 for SCZ vs. OCD, 

from 30 to 19 for SCZ vs. TS, and from 3 to 2 for ADHD vs. OCD, a consequence of highly imbalanced 

OLS weights for these specific pairs of disorders due to differences in sample sizes of the input case-

control GWAS (Table S7). However, the Exact approach did not filter out any variants identified using 

the OLS approach for the remaining 25 pairs of disorders. 

For each CC-GWAS locus, the respective input case-control effect sizes for each disorder are 

reported in Figure S11 and Table S6. Details of the 74 CC-GWAS-specific loci and of the remaining 126 

CC-GWAS are reported in Table S6. For all 74 CC-GWAS-specific loci, the input case-control effect sizes 

were non-significant with opposing signs. For the remaining 126 CC-GWAS loci, 51 had opposite case-
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control association signs in the respective input GWAS results. Results of SMR analyses31 of the CC-

GWAS-specific loci are reported in Table S15.  

 

CC-GWAS loci replicate in independent data sets 

We investigated whether case-case associations identified by CC-GWAS replicate in independent data 

sets. Of the eight psychiatric disorders, only SCZ and MDD had sufficient sample size to perform 

replication analyses of the SCZ vs. MDD results based on publicly available GWAS results of subsets of 

the data14,57. The other psychiatric disorders had much lower sample sizes (Table 3), precluding 

replication efforts based on subset data. For SCZ vs. MDD, we applied CC-GWAS to publicly available 

summary statistics for subsets of the SCZ data14 and MDD data57 (discovery data; Table S17; see URLs). 

We replicated these findings using independent summary statistics constructed by subtracting these 

summary statistics from the full SCZ data15 and full MDD data17 using MetaSubtract58 (replication data; 

Table S17). If the discovery data are not exact subsets of the full data, we anticipate that replication 

results would be conservative, as independent signals from the discovery data would be subtracted 

from the full data when producing the replication data. To further validate the CC-GWAS method, we 

also analysed three case-case comparisons of three autoimmune disorders with publicly available 

GWAS results for independent discovery and replication data sets with substantial sample sizes 

(Crohn’s disorder (CD)24, ulcerative colitis (UC)24 and rheumatoid arthritis (RA)25; Table S17; see URLs); 

we assumed 1 = 1,000 independent causal SNPs for each autoimmune disorder28. The genetic 

distances between the autoimmune disorders are displayed in Figure S1; the OLS weights, Exact 

weights and number of CC-GWAS loci and CC-GWAS-specific loci are reported in Table S17; and details 

of the CC-GWAS loci are reported in Table S18. We replicated the results of the CC-GWAS analysis of 

the autoimmune disorders (discovery data24,25) using independent Immunochip replication data24,25, 

which was available for 63 loci (Table S17).  

Results for these four pairs of disorders are reported in Figure 4, Table S17 and Table S18. For 

SCZ vs. MDD, the CC-GWAS discovery analysis identified 58 independent loci (less than the 99 
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independent loci in Table 1, due to smaller sample size), of which 54 (93%) had the same effect sign 

in the CC-GWAS replication analysis and 29 (50%) had same sign and POLS<0.05. The power of the 

replication sample for SCZ vs. MDD was considerable smaller than of the discovery sample (effect size 

SE 2 times larger, corresponding to 4 times smaller effective sample size). The replication slope (based 

on a regression of replication vs. discovery effect sizes59) was equal to 0.57 (SE 0.06) (Figure 4A), which 

was comparable to the replication slopes for SCZ case-control (0.62, SE 0.05) and MDD case-control 

(0.60, SE 0.11) genome-wide significant loci using the same discovery and replication data sets (Figure 

S12, Table S17 and Table S19); we hypothesize that all slopes were smaller than 1 owing to within-

disorder heterogeneity1. For the autoimmune disorders, 63 independent CC-GWAS loci were available 

for replication, of which 63 (100%) had the same effect sign in the CC-GWAS replication analysis and 

59 (94%) had same sign and POLS<0.05. For the autoimmune disorders, power for discovery and 

replication were similar (similar effect size SE and effective sample size). The replication slope for the 

three autoimmune disorders was equal to 0.83 (SE 0.03) (Figure 4B), comparable to the corresponding 

case-control replication slopes (Figure S12). We further investigated the replication of the subset of 

22 CC-GWAS-specific loci (9 for SCZ vs. MDD and 13 for the 3 autoimmune disorders), pooling the 4 

replication studies to overcome the limited number of CC-GWAS-specific loci. We obtained a 

replication slope of 0.70 (SE 0.07) for the 22 CC-GWAS-specific loci (Figure 4C), which was borderline 

significantly different (P=0.07) from the slope of 0.83 (0.02) for the 99 remaining loci (Figure 4D); we 

note that CC-GWAS-specific loci had smaller case-case effect sizes and are thus expected to be more 

susceptible to winner’s curse60 (and to attain a lower replication slope). We conclude that case-case 

associations identified by CC-GWAS replicate convincingly in independent data sets.  

 

Discussion 

We identified 200 independent loci with different allele frequencies among cases of eight psychiatric 

disorders by applying our CC-GWAS method to the respective case-control GWAS summary statistics. 

116 of these loci had different allele frequencies among cases of the mood and psychotic disorders3 
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(SCZ, BIP and MDD). 74 of the 200 loci were CC-GWAS-specific, highlighting the potential of CC-GWAS 

to produce new biological insights. In particular, the lead SNPs of two distinct loci were located in 

exons of KLF6 and KLF16, which have been linked to neurite outgrowth and axon regeneration54; we 

hypothesize that these genes may be involved in the role of synaptic pruning in SCZ55. We confirmed 

the robustness of CC-GWAS via simulations, analytical computations, and independent replication of 

empirical CC-GWAS results. 

 Although there exist other methods to combine GWAS results from two disorders or complex 

traits3,6–13, CC-GWAS is the first method to compare cases of two disorders based on the respective 

case-control GWAS summary statistics – and also the first method to compute the genetic distance 

between cases and/or controls of two disorders (using !"#,%&'(&)). For example, the methods of refs.6–

8 combine GWAS results of correlated disorders or traits to increase power; these methods can be 

applied to increase the power of case-control analyses, but not to perform case-case analyses. Our 

CC-GWAS-specific loci are inherently different from the loci identified by those methods, because CC-

GWAS computes a weighted difference while those methods compute a weighted sum of the 

respective case-control GWAS results. The GWIS method9 provides a general framework to derive 

GWAS results from a function of phenotypes, but does not naturally extend to case-case comparisons. 

The ASSET method10 conducts subset-based meta-analyses to increase power and explore subsets of 

studies for effects that are in the same or possibly opposite directions; CC-GWAS differs from ASSET10 

by applying weights based on the genetic distance between cases and controls to specifically test 

difference in allele frequency among cases of two disorders. The method of ref.11 investigates results 

from meta-analysis and provides a statistic representing the posterior predicted probability of 

association (m-value) for each study included in the meta-analysis. The method of ref.11 can identify 

SNPs with predicted disorder-specific effects (i.e. SNPs with a large m-value for one disorder and low 

m-value for another disorder): these SNPs are expected to have different allele frequencies among 

cases, but CC-GWAS models the case-case comparison more directly while explicitly controlling for 

potential false positive detection of stress test SNPs and providing a formal test of significance. In 
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recent work from the Cross-Disorder Group of the Psychiatric Genomics Consortium3, the same eight 

psychiatric disorders were analyzed with the ASSET method10 and the method of ref.11 yielding (i) 146 

independent genome-wide loci based on the ASSET method10, including 109 pleiotropic loci with m-

values11 larger than 0.9 for more than one disorder, and (ii) 11 loci with opposing directions of effect 

across disorders based on analyses of ASSET-loci with suggestive significance (P<10-6) with subsequent 

false discovery rate (FDR) correction in both of the respective disorders. The 146 ASSET-loci analyzed 

in ref.3 overlapped with 58/200 (29%) of CC-GWAS loci and 5/74 (7%) of CC-GWAS-specific loci (Table 

S6), confirming that CC-GWAS is different from ASSET (we note that CC-GWAS analyses were based 

on different input GWAS results for ANO, MDD and SCZ). The 11 loci with opposing effects from ref.3  

are expected to have different allele frequencies among cases, but CC-GWAS is more inclusive as it 

does not require controlling FDR in both of the respective case-control GWAS results and because loci 

with similar direction of case-control effects can still have different allele frequency among cases of 

both disorders. Of the 11 loci with opposing effects3, 8 overlapped with CC-GWAS loci for the same 

set of disorders, confirming that CC-GWAS detects these loci as expected while being more inclusive. 

The mtCOJO method12 estimates genetic effects conditional on other traits. Some mtCOJO loci and 

CC-GWAS loci may overlap, but CC-GWAS addresses a conceptually different question than conditional 

analyses. In ref.13, mtCOJO12 is applied on case-control GWAS results of SCZ, BIP, MDD, ADHD and ASD 

to identify putative disorder-specific SNPs by correcting GWAS results of one disorder for the causal 

relationships with the four other disorders. Of the 162 CC-GWAS loci detected in comparisons of these 

five disorders, 102/162 (63%) of CC-GWAS loci and 8/50 (16%) of CC-GWAS-specific loci overlapped 

with loci from ref.13, confirming that CC-GWAS is different from mtCOJO12 (we note that CC-GWAS 

analyses were based on different GWAS results for MDD only). In summary, although some of these 

previous methods3,6–13 identify loci that are expected to have different allele frequencies among cases, 

none of these methods explicitly compares the allele frequency among cases of different disorders or 

explicitly controls for potential false positives at stress test SNPs. Indeed, the most natural method to 

compare CC-GWAS to is a case-case GWAS based on individual-level data, as performed in ref.4 for 
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SCZ vs. BIP based on individual level data from ref.14 and ref.16 respectively. CC-GWAS identified 12 

SCZ vs. BIP loci (or 10 when applied to data from ref.14 and ref.16, as in ref.4) compared to 2 SCZ vs. BIP 

loci in ref.4, which discarded ~25% of the cases compared to the respective case-control data (owing 

to non-matching ancestry and genotyping platform); we note that CC-GWAS is much less sensitive to 

subtle differences in ancestry and genotyping platform (Table S20) because the case-case comparison 

accounts for the allele frequency in matched controls by comparing case-control effects.  

The CC-GWAS method has several limitations. First, the OLS case-case effect size estimates 

depend on the sample sizes of the input case-control GWAS summary statistics, because the OLS 

weights depend on these sample sizes. This bias-variance tradeoff can be avoided by using Exact effect 

size estimates (which are independent of sample size), e.g. in genetic correlation analyses2. Second, 

the choice of the threshold for the Exact p-values in CC-GWAS is somewhat arbitrary, but we believe 

10–4 is a reasonable choice as it (i) effectively protects against false positives due to stress test SNPs 

(Figure 2 and Figure S7), which cannot be numerous (e.g. 100 independent stress test SNPs as defined 

in Figure 2C would explain 29% of liability-scale variance in disorder B), and (ii) has only limited impact 

on the power of CC-GWAS (Figure 2); other choices of this threshold produced identical results in most 

of our empirical analyses (25 of 28 pairs of disorders; Table S7). Third, for significant CC-GWAS-specific 

loci (P<5x10–8) with input case-control p-values > 5x10–8, CC-GWAS does not provide a formal 

assessment of which case-control effect(s) the locus is associated to. However, the case-control p-

values at the locus can provide suggestive evidence. In some instances (e.g. SCZ vs. MDD), CC-GWAS-

specific loci are likely to largely derive from one of the disorders (SCZ) due to differential power (Figure 

1 and Table 2), but this does not limit the value of identifying novel loci distinguishing these disorders. 

Fourth, we have analyzed 28 pairs of disorders using the significance threshold of 5x10–8, which may 

raise concerns about multiple testing. However, we note that the threshold of 5x10–8 is much more 

conservative than false discovery rate61 (FDR) approaches using either a per-pair of disorders FDR of 

0.05 or a global FDR of 0.05 (Table S21), and that our use of the 5x10–8 threshold is analogous to the 

use of this threshold in GWAS studies that analyze many traits (e.g. 58 traits in ref.62). Fifth, when 
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comparing cases of more than two disorders, CC-GWAS must be applied in pairwise fashion. Extending 

CC-GWAS to more than two disorders is a direction for future research. Sixth, CC-GWAS could in 

principle be susceptible to confounding due to subtle ancestry differences between the two input 

case-control GWAS. However, for null-null SNPs, we verified that type I error rate is not inflated 

because there are no case-control allele frequency differences (other than due to sampling variance) 

in the input case-control GWAS (Table S20). For stress-test SNPs (which cannot be numerous; see 

above), there is a somewhat increased risk of false positives if the allele frequency difference between 

populations is on the order of 0.20 for a common SNP (which is typical for differences between 

continental populations23), but no increased risk of false positives if the allele frequency differences 

between populations is on the order of 0.05 for a common SNP (which is typical of differences within 

a continental population63) (Table S20); although SNPs can be highly differentiated within a 

continental population in rare instances63, the existence of a SNP that is both a stress-test SNP and 

highly differentiated within a continental population is very unlikely. Seventh, CC-GWAS was designed 

to compare two disorders (with different definitions of controls and potential overlap of cases), but it 

is also of interest to compare subtypes within a disorder64 (with same definitions of controls and no 

overlap of cases). However, we confirmed via simulation that CC-GWAS can be applied to subtypes 

(replacing the Exact approach with the Delta method; Table S22).  

In conclusion, we have shown that CC-GWAS can reliably identify loci with different allele 

frequencies among cases (including both case-control loci and CC-GWAS-specific loci), providing novel 

biological insights into the genetic differences between cases of eight psychiatric disorders. Thus, CC-

GWAS helps promote the ambitious but important goal of better clinical diagnoses and more disorder-

specific treatment of psychiatric disorders. 

 

URLs 

CC-GWAS software: https://github.com/wouterpeyrot/CC-GWAS;  

CC-GWAS results for 8 psychiatric disorders: https://data.broadinstitute.org/alkesgroup/CC-GWAS/;  
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LDSC software: https://github.com/bulik/ldsc;  

SMR software: https://cnsgenomics.com/software/smr/;  

PLINK1.9 software: www.cog-genomics.org/plink/1.9/;  

GWAS results for ADHD, ANO, ASD, BIP, BIP vs. SCZ, MDD (Wray 2018), OCD, SCZ (Ripke 2014), and TS: 

https://www.med.unc.edu/pgc/results-and-downloads/;  

GWAS results for MDD (Howard 2019): https://datashare.is.ed.ac.uk/handle/10283/3203;  

GWAS results for SCZ (Pardinas 2018): https://walters.psycm.cf.ac.uk/;  

GWAS results for CD and UC: https://www.ibdgenetics.org/downloads.html;  

GWAS results for RA: http://www.sg.med.osaka-u.ac.jp/tools.html;  

eQTL data of 13 GTEx v7 brain tissues and meta-analysis of eQTL effects in brain tissues: 

https://cnsgenomics.com/software/smr/#DataResource. 
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Methods 

Quantifying genetic distances between cases and/or controls of each disorder 

We derive !"#,%&'(&) for the comparisons =1=0, >1>0, =1>1, =1>0, =0>1, =0>0 as follows. 

Consider two disorders = and > with lifetime prevalences .+ and .- , liability-scale heritabilities ℎ)+,  

and ℎ)-, , and genetic correlation /0. Assume the heritabilities and genetic correlation have been 

assessed on data of 1 independent SNPs, and assume these SNPs impact both traits with effects 

following a bivariate normal distribution. First, the heritabilities are transposed to the observed scales, 

ℎ?+
,  and ℎ?-, , with proportions of cases of 0.5 in line with refs.65,66 

 

ℎ?, = ℎ)
, A.B

C(EFA.B)CHC

IC(EFI)C
        Eq 1 

 

where J is the height of the standard normal distribution at threshold K defined as . =

L(M > K	|	M~Q(0,1)). The coheritability is also expressed on this scale as: RSℎ?+,?- = /0Tℎ?+
, 	ℎ?-

, 	. 

The average variance explained per SNP in = is ℎ?+, /1 and in > ℎ?-, /1, and the average genetic 

covariance per SNP is RSℎ?+,?-/1. For SNP V, the allele frequencies of the reference allele in cases 

and controls are represented as WX,+E, WX,+A, WX,-E, and WX,-A. 

 Throughout the paper, the effect-sizes Y are on the standardized observed scale (i.e. with 

standardized genotype and standardized phenotype) based on 50/50 case-control ascertainment. 

When assuming Hardy-Weinberg equilibrium and assuming small effect sizes (typical for polygenic 

disorders), the Y of linear regression of standardized case-control status =1=0 on standardized 

genotype ZX can be approximated in terms of allele frequencies as 

 

YX,+E+A = RS[(\(=), \(ZX)) ≈
^[((+)`a]

2,ca(EFca)
≈

ca,deFca,df
2,ca(EFca)

    Eq 2 

 

Simulations confirm that these approximations are justified for loci with 0.5 < hi < 2 (Table S23). 

For comparison, all estimated effect sizes for SCZ15, BIP16 and MDD17 have 0.7 < hi < 1.4. 

The derivations of !"#,%&'(&),+E+A and !"#,%&'(&),-E-A follow from Eq 2. On the standardized 

scale the variance explained equals the square of the beta. Because the loci are assumed 

independent, the average variance explained gives  

 

!"#,%&'(&),+E+A =
^[kca,deFca,dfl

C
]

^[,ca(EFca)]
≈ m n

kca,deFca,dfl
C

,ca(EFca)
o ≈ pqd

C

r
    

!"#,%&'(&),-E-A ≈
pqs
C

r
        Eq 3 
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The first approximations has been proposed23 to obtain stable estimates of !"# and assumes the 

standardized SNP effects are equally distributed across the allele frequency spectrum. 

Deriving !"#,%&'(&)  for the comparisons =1>1, =1>0, =0>1 and =0>0 requires some 

additional steps. First note the covariance of YX,+E+A and YX,-E-A equals 

 
^[kca,deFca,dflkca,seFca,sfl]

^[,ca(EFca)]
≈

%?pqd,qs
r

      Eq 4 

 

Second, note that allele frequencies and difference in allele frequencies can be rewritten as 

 

WX,+E = {WX − (1 − .+)WX,+A}/.+  

WX,+A = {WX − .+WX,+E}/(1 − .+)  

WX,+E − WX,+A = WX,+E − {WX − .+WX,+E}/(1 − .+) = {WX,+E − WX}/(1 − .+)  

WX,+E − WX,+A = {WX − (1 − .+)WX,+A}/.+ − WX,+A = {WX − WX,+A}/.+  Eq 5 

 

Substituting Eq 5 in Eq 3 and Eq 4, gives 

 

mw(WX,+E − WX),x ≈
pqd
C

r
	(1 − .+),m[2WX(1 − WX)]       

mw(WX,+A − WX),x ≈ (−1,) pqd
C

r
	.+

,m[2WX(1 − WX)]     

mw(WX,-E − WX),x ≈
pqs
C

r
	(1 − .-),m[2WX(1 − WX)]     

mw(WX,-A − WX),x ≈ (−1,) pqd
C

r
	.-

,m[2WX(1 − WX)]     

mw(WX,+E − WX)(WX,-E − WX)x ≈
%?pqd,qs

r
	(1 − .+)(1 − .-)m[2WX(1 − WX)]   

mw(WX,+E − WX)(WX,-A − WX)x ≈ −1 ∗
%?pqd,qs

r
	(1 − .+).-m[2WX(1 − WX)]   

mw(WX,+A	−	WX)(WX,-E − WX)x ≈ −1 ∗
%?pqd,qs

r
	.+(1 − .-)m[2WX(1 − WX)]   

mw(WX,+A − WX)(WX,-A − WX)x ≈ −1 ∗ −1 ∗
%?pqd,qs

r
	.+.-m[2WX(1 − WX)]   

mw(WX,+E − WX)(WX,+A − WX)x ≈ −1 ∗ pqd
C

r
(1 − .+).+m[2WX(1 − WX)]   

mw(WX,-E − WX)(WX,-A − WX)x ≈ −1 ∗ pqs
C

r
(1 − .-).-m[2WX(1 − WX)]  Eq 6 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.977389doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 -22- 

While noting that that the !"#,%&'(&),yz is estimated as  

 

!"#,%&'(&),yz =
^[kca,{Fca,|l

C
]

^[,ca(EFca)]
=

^[k(ca,{Fca)F(ca,|Fca)l
C
]

^[,ca(EFca)]
=

^[(ca,{Fca)C]F,^w(ca,{Fca)(ca,|Fca)x}^[(ca,|Fca)C]

^[,ca(EFca)]
,      Eq 7 

 

we find 

 

!"#,%&'(&),+E-E ≈
pqd
C

r
(1 − .+), − 2

%?pqd,qs
r

	(1 − .+)(1 − .-) +
pqs
C

r
(1 − .-),  

!"#,%&'(&),+E-A ≈
pqd
C

r
(1 − .+), + 2

%?pqd,qs
r

	(1 − .+).- +
pqs
C

r
.-

,   

!"#,%&'(&),+A-E ≈
pqd
C

r
.+

, + 2
%?pqd,qs

r
	.+(1 − .-) +

pqs
C

r
(1 − .-),   

!"#,%&'(&),+A-A ≈
pqd
C

r
.+

, − 2
%?pqd,qs

r
	.+.- +

pqs
C

r
.-

,    Eq 8 

 

 

These approximations of !"#,%&'(&) were confirmed with simulations (Table S24). (CC-GWAS depends 

on the assumption that all 1 SNPs have an impact on both traits and that effects sizes follow a 

bivariate normal distribution (see below). However, we note that the equations of !"#,%&'(&)  require 

less stringent assumptions. To illustrate, the equations also hold when simulating data (see below) of 

1,000 independent SNPs of which 500 have no impact on either disorder, 154 have uniform and similar 

sized effects on both disorders, 282 have uniform effects on disorder A only, and 64 have uniform 

effects on disorder B only (Table S24 Panel B).) 

 We now proceed with using !"#,%&'(&)  to display =1, =0, >1 and >0 in a 2-dimensional plot 

(Figure 1 and Figure S1). Because the loci are assumed independent, 2!"#,%&'(&),yz =

√Ä
^[kca,{Fca,|l

C
]

^[,ca(EFca)]
Å can be interpreted as a Euclidian distance measure in an 1-dimensional space, 

where the 4 points =1, =0, >1 and >0 are defined by their 1 allele frequencies (e.g. 

kWX,+E − WXl 22WX(1 − WX)Ç  represents the coordinate of point =1 on the axis corresponding to SNP V). 

The allele frequency in the full population represents the origin (population mean). While realizing 

that the lines (=1-=0) and (>1->0) must both go through the population mean, one can see that =1, 

=0, >1, >0 and the population mean can be represented in a 2-dimensional plot. From Eq 3 and Eq 6, 

it follows that the distance between the population mean and =1 (resp. >1) equals (1 −

.+)2!\É%&'(&),+E+A (resp. (1 − .-)2!\É%&'(&),-E-A). While noting that the distance between =1 and 

>1 equals 2!\É+E-E, we know the lengths of the three sides of triangle defined by the population 
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mean, =1 an >1. The law of cosines gives the angle of the lines (population mean - =1) and (population 

mean - >1) as 

 

Ñ/RRS\Ö
(1 − .+),!"#,%&'(&),+E+A + (1 − .-),!"#,%&'(&),-E-A − !"#,%&'(&),+E-E

2(1 − .+)2!"#,%&'(&),+E+A(1 − .-)2!"#,%&'(&),-E-A
Ü = 

Ñ/RRS\á
,	(EFId)(EFIs)

àqâqd,qs
ä

,(EFId)(EFIs)T
âqd
C

ä

âqs
C

ä

ã = Ñ/RRS\k/0l     Eq 9  

 

Thus, the genetic correlation /0  is equal to the cosines of the angle of the lines (population mean - =1) 

and (population mean - >1). It can analogously be shown that the angle between (population mean - 

=0) and (population mean ->0) is the same, and that the angle between (population mean - =1) and 

(population mean - >0) equals 180 minus the angle between (population mean - =1) and (population 

mean - >1), which confirms the use of !"#,%&'(&)  to display =1, =0, >1, >0 and the population mean 

in a 2-domensional plot. To aid further interpretation, the perpendicular projection of line (=1 − =0) 

on line (>1 − >0) has a length equal to /0  times length (=0-=1) (i.e. /02!\É%&'(&),+E+A), because /0  

equals the cosines between these lines.  

 In application, we derive !"#,%&'(&)  analytically based on the heritabilities, population 

prevalences and genetic correlation. We note two important differences between !"#,%&'(&) and the 

!"# from population genetics23. First, we restrict our definition of !"#,%&'(&) to independent SNPs, 

while !"# from population genetics is based on all genome-wide SNPs. If one where to extend 

!"#,%&'(&) to genome-wide SNPs, !"#,%&'(&) at loci with large LD-scores would be larger than at SNPs 

with low LD-scores due to tagging. In contrast, the !"# from population genetics is mainly attributable 

to drift and more or less evenly distributed over the genome (except for small effects of selection). 

Second, !"#,%&'(&) between cases and controls is of the order of magnitude of 10Få depending on the 

number of SNPs 1 considered. In contrast, the !"# between European and East Asian has been 

estimated23 at 0.11. Because of the low magnitude of !"#,%&'(&), we report 1 ∗ !"#,%&'(&) in Figure 1 

and Figure S1 (note that 1 ∗ !"#,%&'(&) is independent of 1 when other parameters are fixed, because 

the equations for !"#,%&'(&) has 1 in the denominator (see Eq 3 and Eq 8)).  

 The purpose of !"#,%&'(&)  is to aid intuition to the bivariate genetic architecture of two 

disorders and to develop the CC-GWAS method (see further), and we do not provide formal standard 

errors of !"#,%&'(&). However, an approximation of the standard errors of !"#,%&'(&) can be obtained 

from the standard errors of the estimates of the heritabilities and co-heritability (typically assessed 

with methods like LD score regression). For !\É+E+A and !\É-E-A, this follows directly from Eq 3. For 

!\É+E-E, we assume that the error of the three terms in Eq 8 are independent. This assumption is 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.977389doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 -24- 

likely violated, but it serves in obtaining approximations of the standard errors of !"#,%&'(&)  (given in 

the legend of Figure 1).  

 

CC-GWAS method 

The CC-GWAS method relies on !"#,%&'(&), and assumes that all 1 SNPs impact both disorders with 

effect sizes following a bivariate normal distribution. CC-GWAS weights the effect sizes from the 

respective case-control GWAS using weights that minimize the expected squared difference between 

estimated and true A1B1 effect sizes; we refer to these as ordinary least squares (OLS) weights. To 

obtain the OLS weights, we analytically derive the expected coefficients of regressing the causal effect 

sizes =1>1 on the GWAS results of =1=0 and >1>1 

 

Y+E-E~ç+E+A
éè" Yê+E+A

`ë+" + ç-E-A
éè" Yê-E-A

`ë+"       Eq 10  

 

Ordinary least square (OLS) regression gives  

 

Ö
ç+E+A
éè"

ç-E-A
éè" Ü = 

í1á
1 0 0
0 [Ñ/kYê+E+A

`ë+"l RS[kYê+E+A
`ë+", Yê-E-A

`ë+"l

0 RS[kYê+E+A
`ë+", Yê-E-A

`ë+"l [Ñ/kYê-E-A
`ë+"l

ãì

FE

í1á
0

RS[kYê+E+A
`ë+", Y+E-El

RS[kYê-E-A
`ë+", Y+E-El

ãì 

           Eq 11 

      

When assuming error terms are independent from effect sizes, we find 

 

[Ñ/kYê+E+A
`ë+"l = [Ñ/(Y+E+A) + [Ñ/(î+E+A) ≈

ℎ?+
,

1
+ [Ñ/(î+E+A) = 

!"#,%&'(&),+E+A + [Ñ/(î+E+A)       Eq 12 

 

and the analogue for [Ñ/kYê-E-A`ë+"l. For the covariance of the GWAS results, we find based on Eq 4 

 

RS[kYê+E+A
`ë+", Yê-E-A

`ë+"l ≈
%?pqd,qs

r
+ RS[(î+E+A, î-E-A)    Eq 13 

 

(At the end of this section, we discuss the expectation and estimation of the variance and covariance 

of error terms as well as scaling of odds ratios to standardized observed scale based on 50/50 case-
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control ascertainment.) The expectation of the covariance between the GWAS results and Y+E-E 

follow from Eq 6 as 

 

RS[kYê+E+A
`ë+", Y+E-El = RS[(Y+E+A, Y+E-E) + RS[(î+E+A, Y+E-E) = m[Y+E+A ∗ Y+E-E] = 

(1 − .+)!"#,%&'(&),+E+A − (1 − .-)
RSℎ?+,?-

1
 

 

RS[kYê-E-A
`ë+", Y+E-El = −(1 − .-)!"#,%&'(&),-E-A + (1 − .+)

%?pqd,qs
r

  Eq 14 

 

Thus, the OLS weights are defined to minimize the expected squared distance between estimated and 

causal effect sizes Y+E-E.  

 

Yê+E-E
éè" = ç+E+A

éè" Yê+E+A
`ë+" + ç-E-A

éè" Yê-E-A
`ë+"       Eq 15 

 

To summarize, the OLS weights depend on the number of independent causal SNPs, the heritabilities, 

population prevalences, the genetic correlation, and the variance and covariance of error terms of the 

betas (depending on sample sizes Q+E, Q+A, Q-E, Q-A and the overlap between =0 and >0).  

 The OLS weights may be susceptible to type I error for SNPs with nonzero A1A0 and B1B0 

effect sizes but zero A1B1 effect size, which we refer to as “stress test” SNPs (see further). To mitigate 

this, CC-GWAS also computes sample-size independent weights based on infinite sample size; we refer 

to these as Exact weights. The Exact weights depend only on the population prevalences .+ and .- . 

From Eq 2 it follows that 

 

YX,+E+A ≈
ca,deFca

2,ca(EFca)
−

ca,dfFca
2,ca(EFca)

= \RÑïñókWX,+El − \RÑïñókWX,+Al  Eq 16 

 

Multiplying with (1 − .+) and substituting WX,+A based on Eq 5, gives  

 

(1 − .+)YX,+E+A ≈
(EFId)ca,deF{caFIdca,de}

2,ca(EFca)
= \RÑïñókWX,+El   Eq 17 

 

From this, YX,+E-E follows as 

 

YX,+E-E ≈ \RÑïñókWX,+El − \RÑïñókWX,-El ≈ (1 − .+)YX,+E+A − (1 − .-)YX,-E-A 

Eq 18 
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We note that simulations confirm that this approximation is justified for loci with 0.5 < hi < 2 for 

both = and > (Table S23). The Exact weights thus follow as 

 

ç+E+A
^ò&%ô = (1 − .+)  

ç-E-A
^ò&%ô = −(1 − .-)         Eq 19 

 

and 

 

Yê+E-E
^ò&%ô = (1 − .+)Yê+E+A

`ë+" − (1 − .-)Yê-E-A
`ë+"      Eq 20 

 

 The p-values of the OLS- and Exact approach are estimated as follows. First note that the 

standard error of YêX,+E-E  of the OLS- and Exact approach at SNP V follow as  

 

ömkYêX,+E-El =

Tç+E+A
, [Ñ/kîX,+E+Al + ç-E-A

, [Ñ/kîX,-E-Al + 2ç+E+Aç-E-ARS[kîX,+E+A, îX,-E-Al  

Eq 21 

 

While noting that ç+E+A > 0 and ç-E-A < 0, this indicates that sample overlap of controls 

(introducing positive covariance between îX,+E+A and îX,-E-A) will increase power of CC-GWAS. Betas 

and their standard errors give J-values, from which p-values follow (assuming normally distributed 

error terms). CC-GWAS reports a SNP as statistically significant if it achieves L < 5 ∗ 10Fõ using OLS 

weights and L < 10Fú	using Exact weights, balancing power and type I error. 

 When GWAS results are available for a direct case-case comparison, Yê+E-E`ë+" , CC-GWAS can be 

extended to CC-GWAS+. The OLS+ weights are defined as 

 

Yê+E-E
éè"} = ç+E+A

éè"}Yê+E+A
`ë+" + ç-E-A

éè"}Yê-E-A
`ë+" + ç+E-E

éè"}Yê+E-E
`ë+"   Eq 22 

 

The OLS+ weights follow analogue to Eq 11 for the OLS weights while noting that 

 

[Ñ/kYê+E-E
`ë+"l ≈ !"#,%&'(&),+E-E + [Ñ/(î+E-E) 

RS[kYê+E+A
`ë+", Yê+E-E

`ë+"l ≈ (1 − .+)!"#,%&'(&),+E+A − (1 − .-)
RSℎ?+,?-

1
+ RS[(î+E+A, î+E-E) 

RS[kYê-E-A
`ë+", Yê+E-E

`ë+"l ≈ −(1 − .-)!"#,%&'(&),-E-A + (1 − .+)
RSℎ?+,?-

1
+ RS[(î-E-A, î+E-E) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.977389doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 -27- 

RS[kYê+E-E
`ë+", Y+E-El ≈ !"#,%&'(&),+E-E      Eq 23 

 

The standard error ömkYêX,+E-Eéè"} l follows as  

 

√Äkç+E+A
éè"}l

,
[Ñ/kîX,+E+Al + kç-E-A

éè"}l
,
[Ñ/kîX,-E-Al + kç+E-E

éè"}l
,
[Ñ/kîX,+E-El +

2ç+E+A
éè"}ç-E-A

éè"}RS[kîX,+E+A, îX,-E-Al + 2ç+E+A
éè"}ç+E-E

éè"}RS[kîX,+E+A, îX,+E-El +

2ç-E-A
éè"}ç+E-E

éè"}RS[kîX,-E-A, îX,+E-ElÅ      Eq 24 

 

The Exact+ approach is simply defined as Yê+E-E`ë+"  (i.e. ç+E+A^ò&%ô} = 0,	ç-E-A^ò&%ô} = 0 and ç+E-E^ò&%ô} = 1). 

CC-GWAS+ reports a SNP as statistically significant if it achieves L < 5 ∗ 10Fõ using OLS+ weights and 

L < 10Fú	using Exact+ weights.  

 We now derive the expectation of the variance and covariance of the error terms of the betas. 

Assume the GWAS results are based on Q+E (resp.	Q-E) cases and Q+A (resp. Q-A) controls of disorder 

A (resp. disorder B). First, while assuming small effect loci (typical for polygenic disorders), note that 

the variance of the allele frequency of SNP V in ù (with ù representing one of =1, =0, >1, >0) can be 

approximated by 

 

[Ñ/kîX,yl =
ca,{(EFca,{)

,û{
≈ ca(EFca)

,û{
      Eq 25 

 

From Eq 2, we find 

 

[Ñ/kîX,+E+Al ≈ [Ñ/ Ä
cüa,deFcüa,df
2,cüa(EFcüa)

Å ≈
†ake°†al
C¢de

}
†ake°†al
C¢df

,cüa(EFcüa)
≈ E

úûde
+ E

úûdf
= E

û£§§,dedf
  

[Ñ/kîX,-E-Al ≈
E

úûse
+ E

úûsf
= E

û£§§,sesf
  

[Ñ/kîX,+E-El ≈
E

úûde
+ E

úûse
= E

û£§§,dese
      Eq 26 

 

When assuming an overlap of Q?•¶ß)&c,+A-A of controls, the expectation of the covariance of the error 

can be derived as follows. First, note that the error term of the allele frequency in all controls =0 can 

be expressed in terms of the error terms of (=0, V®	S[ñ/ïÑW) and (=0, ®SÉ	V®	S[ñ/ïÑW) as 

 

îX,+A =
ûq©™´¨≠†,dfsf

ûdf
îX,+A,XÆ	?•¶ß)&c +

ûdf,Øq∞	aØ	q©™´¨≠†
ûdf

îX,+A,Æ?ô	XÆ	?•¶ß)&c   Eq 27 
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Thus, the covariance of error terms follows as  

 

RS[kîX,+E+A, îX,-E-Al = m n
(±a,deF±a,df)

2,cüa(EFcüa)
∗
(±a,seF±a,sf)

2,cüa(EFcüa)
o ≈

^nÄ
¢q©™´¨≠†,dfsf

¢df
Å±a,df,aØ	q©™´¨≠†∗Ä

¢q©™´¨≠†,dfsf
¢sf

Å±a,sf,aØ	q©™´¨≠†o

^[,cüa(EFcüa)]
≈

ûq©™´¨≠†,dfsf
úûdfûsf

  Eq 28 

 

Now, assume of number of Q+E	XÆ	+E-E  and Q-E	XÆ	+E-E are available for a direct case-case comparison 

included in CC-GWAS+ (typically Q+E	XÆ	+E-E < Q+E and Q-E	XÆ	+E-E < Q-E). This gives the following 

expected covariance of error terms 

 

RS[kîX,+E+A, îX,+E-El ≈ m n
(±a,deF±a,df)

2,cüa(EFcüa)
∗
(±a,de	aØ	deseF±a,se	aØ	dese)

2,cüa(EFcüa)
o ≈

^nÄ
¢de	aØ	dese

¢de
Å±a,de	aØ	dese±a,de	aØ	deseo

^[,cüa(EFcüa)]
≈

Ä
¢de	aØ	dese

¢de
Å

†ake°†al
C¢de	aØ	dese

,ca(EFca)
= E

úûde
   

 

RS[kîX,-E-A, îX,+E-El ≈ − E

úûse
       Eq 29 

 

Thus, the expectations of the variance and the covariance of the error terms are given. We note that 

in practical application of CC-GWAS, the covariances of error terms are based on analytical 

computation and the intercept of cross-trait LD score regression (described in the section ‘Application 

of CC-GWAS to empirical data sets’). 

 In practice, case-control GWAS results are not presented on the standardized observed scale 

based on 50/50 case-control ascertainment (YX) but as odd ratios (hiX) from logistic regression. We 

apply two approaches to transpose results from logistic regression to YX. First, we assume for large 

sample sizes that the J-value from logistic regression is equal to the J-value from linear regression on 

the observed scale. With the expected variance of error-terms derived as  E

û£§§
 (Eq 26), we find 

 

YX ≈ JX,)?0X(ôX%	ß¶0ß¶((X?ÆT
E

û£§§
       Eq 30 

 

The second approach is based on equation 5 in the paper from from Lloyd-Jones et al.67, which reads 

for 50% cases as 

 

hiX =
[A.B}≤a(EFca)][EFA.B}≤aca]

[A.BF≤aca][EFA.BF≤a(EFca)]
       Eq 31 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.977389doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.977389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 -29- 

 

Rewriting gives 

 

(1 − WX)WX(1 − hiX)YX
, + 0.5(1 + hiX)YX + 0.25(1 − hiX) = 0  Eq 32 

 

The solution from this quadratic equation with 0 < YX < 2 for hiX > 1, and −2 < YX < 0 for hiX <

1, gives an approximation of YX. We confirm in simulation (see below) that both approaches 

approximate YX  well, but the first approach is slightly less noisy. In the CC-GWAS software, we 

therefore transform the betas with the first approach, and compare these to transformations with the 

second approach to provide a rough double-check of whether Q^≥≥  has been defined accurately. 

 

CC-GWAS simulations to assess power and type I error 

We simulated individual level data of 1 independent SNPs in line with ref.66 for disorders = and > as 

follows. Liability-scale effect sizes (YX,)+  and YX,)-) were drawn from a bivariate normal distribution 

with variances ℎ)+, /1 and ℎ)-, /1 and covariance E
r
/0√(ℎ?+

, 	ℎ?-
, ). Effective allele frequencies (m=!) 

of 1 SNPs were drawn from a uniform distribution [0.05,0.5]. Individuals were simulated one-by-one 

by 

 

1. Randomly assigning 1 genotypes ZX (i.e. 0, 1 or 2 effective alleles) with the probabilities given 

by the m=!\ while assuming Hardy-Weinberg equilibrium  

2. Defining genetic liabilities as ¥)+ = ∑YX,)+(ZX − 2m=!X)/22m=!X(1− m=!X), and ¥)- =

∑YX,)-(ZX − 2m=!X)/22m=!X(1− m=!X) 

3. Defining liabilities as ï+ = ¥)+ + ñ)+ and ï- = ¥)- + ñ)-, with ñ)+ drawn from a standard 

normal distribution with variance 1 − ℎ)+, , and ñ)- drawn from a standard normal distribution 

with variance 1 − ℎ)-, . (Here we simulate ñ)+ and ñ)- to be uncorrelated, but note that 

correlation of ñ)+ and ñ)- does not impact simulation results.) 

4. Defining disorder status as = = 1 (resp. > = 1) when ï+ > K+ (resp. ï- > K-) with K+ (resp. 

K-) corresponding to a population prevalence of .+ (resp. .-) 

 

Individuals were simulated until the required number of nonoverlapping cases and controls 

(Q+E, Q+A, Q-E, Q-A) were obtained. Subsequently, GWASs =1=0 and >1>0 were performed with 

logistic regression in Plink 1.968, CC-GWAS was applied as described above, and the power of CC-

GWAS, the OLS approach, the Exact approach and the delta method were recorded. A second set om 

3 ∗ 1 SNPs with no effect on ï= and ï> were included in the simulation to estimate the respective 
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type I error rates of null-null SNPs. Then, we simulated  3 ∗ 1 stress test SNPs as follows. We defined 

a stress test SNP to explain a proportion of ∂)+ of variance on the liability scale of =, and a proportion 

of ∂?+ on the observed scale via the standard transformarion65,66. The effect of the stress test SNP on 

the observed scale follows as Y(ôß¶((	ô¶(ô	"û∑,?+ = 2∂?+, and the allele frequency in cases of A is 

approximated by (1 − .+)Y(ôß¶((	ô¶(ô	"û∑,?+   (Eq 17) and the allele frequency in controls of A by 

−.+Y(ôß¶((	ô¶(ô	"û∑,?+. The allele frequency in cases of B is per definition equal to (1 −

.+)Y(ôß¶((	ô¶(ô	"û∑,?+, thus giving Y(ôß¶((	ô¶(ô	"û∑,?- = (1 − .+)Y(ôß¶((	ô¶(ô	"û∑,?+/(1 − .-) (Eq 17). 

The allele frequency in controls is approximated by −.-Y(ôß¶((	ô¶(ô	"û∑,?- . We simulated cases and 

controls in line with these allele frequencies. Thus, simulating 3 ∗ 1 stress test SNPs allowed recording 

of type I error of stress test SNPs. Simulations were repeated 50 times. We note that simulations using 

real LD patterns are essential for methods impacted by LD between SNPs, but the CC-GWAS method 

is not impacted by LD between SNPs and simulations were therefore based on independent SNPs. 

The parameters of simulation were largely in line with those used in Figure 2, but in order to 

reduce computational time, sample sizes were reduced to Q+E = Q+A = Q-E = Q-A = 4,000, number 

of causal SNPs to 1 = 1,000, and required levels of significance were reduced to W < 0.01 for the 

OLS weights and W < 0.05 for the Exact weights. Three values of genetic correlation were simulated 

(0.2, 0.5 and 0.8). Simulation results are displayed in Table S3 and match analytical computations 

(described below). The confirmation of analytical computations, allows increasing parameters in 

Figure 2 to more realistic values.  

 

CC-GWAS analytical computations to assess power and type I error 

For analytical computations, first consider one sets of weights to derive expected results for the OLS 

approach, Exact approach and the delta method 

 

Yê+E-E = ç+E+AYê+E+A
`ë+" + ç-E-AYê-E-A

`ë+"       Eq 33 

 

The variance of betas and error terms follow as  

 

[Ñ/kYê+E-El = ç+E+A
, [Ñ/kYê+E+A

`ë+"l + ç-E-A
, [Ñ/kYê-E-A

`ë+"l + 2ç+E+Aç-E-ARS[kYê+E+A
`ë+", Yê-E-A

`ë+"l 

[Ñ/(î+̂E-E) = ç+E+A
, [Ñ/kî+E+A

`ë+"l + ç-E-A
, [Ñ/kî-E-A

`ë+"l + 2ç+E+Aç-E-ARS[kî+E+A
`ë+", î-E-A

`ë+"l 

           Eq 34 

 

the analytical expectations of which have been derived above. The variance of J-values at causal loci 

follows as [Ñ/(J+E-E) = [Ñ/kYê+E-El/öm, = [Ñ/kYê+E-El/[Ñ/(î+̂E-E), and the power as 
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L ∫|J+E-E| > Jôp	|	J+E-E~Q(0, [Ñ/(J+E-E
y )ª with Jôp = ºFE(1 − Wôpß¶(p?)Ω/2) and ºFE the standard 

normal quantile function (with Wôpß¶(p?)Ω = 0.01 to compare to simulation and Wôpß¶(p?)Ω = 5 ∗ 10Fõ 

in Figure 2). Type I error rate at null-null loci is well controlled (i.e. equals p-value) while noting that 

[Ñ/kJ+E-E|Æ'))FÆ'))	"û∑(
y l = 1. Type I error at stress test SNPs follows as Lk|J+E-E| >

Jôp	|	J+E-E~Q(ç+E+AY(ôß¶((	ô¶(ô	"û∑,?+ + ç-E-AY(ôß¶((	ô¶(ô	"û∑,?-, 1l.  

 Now consider CC-GWAS combining the estimates of Yê+E-Eéè"  and Yê+E-E^ò&%ô  requiring Wéè" <

Wôpß¶(p?)Ω
éè"  and W^ò&%ô < Wôpß¶(p?)Ω

^ò&%ô  (with corresponding Jôpéè"  and Jôp^ò&%ô ) for significance (with 

thresholds set at 0.01 and 0.05 to compare to simulation, and 5 ∗ 10Fõ and 10Fú in Figure 2). The 

covariance of Yê+E-Eéè"  and Yê+E-E^ò&%ô  follows as 

 

RS[kYê+E-E
éè" , Yê+E-E

^ò&%ôl = 	ç+E+A
éè" ç+E+A

^ò&%ô[Ñ/kYê+E+A
`ë+"l + ç+E+A

éè" ç-E-A
^ò&%ôRS[kYê+E+A

`ë+", Yê-E-A
`ë+"l +

ç-E-A
éè" ç+E+A

^ò&%ôRS[kYê-E-A
`ë+", Yê+E+A

`ë+"l + ç-E-A
éè" ç-E-A

^ò&%ô[Ñ/kYê-E-A
`ë+"l   Eq 35 

 

the analytical expectations of which are given in the above. The covariance of the error terms 

RS[kî+E-E
éè" , î+E-E

^ò&%ôl follow analogously, and the covariance of z-values follows at causal SNPs as 

RS[kJ+E-E
éè" , J+E-E

^ò&%ôl = RS[kYê+E-E
éè" , Yê+E-E

^ò&%ôl√([Ñ/kî+E-E
éè" l[Ñ/kî+E-E

^ò&%ôl). In combination with the 

expectations of [Ñ/kJ+E-Eéè" l and [Ñ/kJ+E-E^ò&%ôl, this defines the variances and covariance of the 

bivariate normal distribution ækM = J+E-E
éè" , ø = J+E-E

^ò&%ôl around mean (0,0) at causal SNPs. The power 

follows as 
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           Eq 36 

 

We note that the last two terms (i.e. with OLS and Exact approach meeting the required level of 

significance at opposite sign) have negligible magnitudes. The type I error at null-null SNPs is found by 

substituting in the equation above the bivariate normal distribution æ′ with mean (0,0) and variance 

covariance of z-values at null-null SNPs, i.e. [Ñ/kJ+E-E|Æ'))FÆ'))	"û∑(éè" l = [Ñ/kJ+E-E|Æ'))FÆ'))	"û∑(
^ò&%ô l =

1 and RS[kJ+E-E|Æ'))FÆ'))	"û∑(éè" , J+E-E|Æ'))FÆ'))	"û∑(
^ò&%ô l = RS[kî+E-E

éè" , î+E-E
^ò&%ôlT[Ñ/(î+E-E

éè" )[Ñ/(î+E-E
^ò&%ô). 

The type I error at stress test SNPs is found by substituting in the equation above the bivariate normal 

distribution æ′′ with mean (∂+E+AY(ôß¶((	ô¶(ô	"û∑,?+ + ∂-E-AY(ôß¶((	ô¶(ô	"û∑,?-, (1 −
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.+)Y(ôß¶((	ô¶(ô	"û∑,?+ + (1 − .-)Y(ôß¶((	ô¶(ô	"û∑,?-) and the same variance covariance as of J-values 

at null-null SNPs.  

 In secondary analyses, we investigate the impact of overlap in controls. For simulation, we 

therefore exchanged double controls (= = 0 and > = 0) between those selected as =0 and >0 

selected by chance (thereby preventing the impact of double screening of controls69). For analytical 

computations, we simply adjusted the covariance of error terms in line with the equation above. We 

also assessed CC-GWAS using the type S error rate, defined as the proportion of significantly identified 

loci (true positives) identified with the wrong sign26,27. We therefore extended the bivariate normal 

distribution æ at causal loci to æ′′′kM = J+E-E
éè" , ø = J+E-E

^ò&%ô, [ = Y+E-El with an additional dimension 

covering the causal effects Y+E-E, while noting that [Ñ/(Y+E-E) = !\É+E-E and RS[(J+E-E, Y+E-E) =

wç+E+ARS[kYê+E+A
`ë+", Y+E-El + ç-E-ARS[kYê-E-A

`ë+", Y+E-Elx/2[Ñ/(î+E-E
y ) and mean (0,0,0). The type S 

error follows as 
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           Eq 37 

 

When a direct case-case comparison is available, CC-GWAS can be extended to CC-GWAS+, the 

derivations of which follow analogue to the above and are not shown here. These analytical 

computations were confirmed with simulation (Table S3). 

 

Empirical data sets 

We compared cases from SCZ15, BIP16, MDD17, ADHD18, ANO19, ASD20, OCD21, and TS22 based on publicly 

available case-control GWAS results (see URLs). To further validate CC-GWAS we also compare cases 

from CD24, UC24 and RA25, based on the case-control GWAS results from samples genotyped on chips 

with genome-wide coverage (see URLs). Numbers of cases and controls are listed in Table 1 and Table 

S7. The transformation of odds ratios to the standardize betas on the observed scale (Eq 30) requires 

Q¶≥≥  (Eq 26). For some of the disorders (BIP, MDD, ANO and RA), Q¶≥≥  was provided on a SNP-by-SNP 

basis in publicly available GWAS results. For other disorders (SCZ, ADHD, ASD, OCD, TS, CD and UC), 

we approximated a genome-wide fixed Q¶≥≥  by summing the Q¶≥≥  of the contributing cohorts as 

∑ ú

E ûà≠»™,àqâq´∞	a⁄ }E ûàqØ∞´q¨,àqâq´∞	a⁄%?p?ßô( . In quality control SNPs were removed with  =! < 0.01, 

ÀQ!h < 0.6, Q¶≥≥ < 0.67 ∗ 1ÑMkQ¶≥≥l, duplicate SNP names, strand-ambiguous SNPs, and the MHC 

region (chr6:25,000,000-34,000,000) was excluded due to its compilated LD structure. All reported 
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SNP names and chromosome positions are based on GRCh37/hg19. (In principle, applying a fixed Q¶≥≥  

for cohorts without SNP-by-SNP Q¶≥≥	information could lead to inaccurate transformation of beta for 

some SNPs. Therefore, we reran CC-GWAS analyses for SCZ, BIP and MDD with fixed Q¶≥≥  yielding 

nearly identical results to the primary analyses (with fixed Q¶≥≥  for SCZ and SNP-by-SNP Q¶≥≥  for BIP 

and MDD). This confirms that using fixed Q¶≥≥  is appropriate.) 

 

Application of CC-GWAS to empirical data sets 

Input parameters of CC-GWAS are the population prevalences (.), liability-scale heritabilities (ℎ),), 

genetic correlation (/0), the intercept from cross-trait LD score regression2 (used to model covariance 

of the error-terms), the sample-sizes including overlap of controls (also used to model covariance of 

the error-terms; see below), and expectation of the number of independent causal SNPs (1). 

Prevalences are displayed in Table 1 and Table S7 and were based on ref.70 for the eight psychiatric 

disorders, on ref.71 for UC and CD, and ref.25 for RA. Heritabilities were assessed with stratified LD 

score regression based on the baseline LD v2.0 model33–35, and transposed to liability-scale65,66. 

Genetic correlations were estimated with cross-trait LD score regression2. The number of causal SNPs 

was set at 1 = 10,000 for the psychiatric disorders, and 1 = 1,000 for CD, UC and RA based on ref.28.  

We note that the intercept of cross-trait LD score regression (representing covariance of J-

values at null-null SNPs6) can analytically be derived as  

 

V®Éñ/RñWÉ ≈
%?•k±dedf

ÕŒdƒ,±sesf
ÕŒdƒl

T•&ßk±dedf
ÕŒdƒl•&ßk±sesf

ÕŒdƒl
≈

QS[ñ/ïÑW

4Q=0∗Q>0T
1

4Q=1
+ 1
4Q=0

T
1

4Q>1
+ 1
4Q>0

   Eq 38 

 

The intercepts estimated with cross-trait LD score regression2 were typically larger than those 

expected analytically based on Eq 38 (Table S25) based on sample-overlap (Table S26). This could 

roughly be attributable to (i) underestimation of sample-overlap (ii) factors increasing the cross-trait 

LD score regression intercept other than covariance of error terms based on sample-overlap. For 

example, Yengo et al. showed that shared population stratification may increase the intercept72. In 

addition, it is known that attenuation bias of univariate LD score regression can increase the univariate 

LD score intercept36, and we hypothesize this phenomenon may also increase the cross-trait LD score 

regression intercept. Importantly, we note that overestimation of the covariance of error terms will 

underestimate the standard error of CC-GWAS results (Eq 21) thereby risking increased false positive 

rate. Therefore, in CC-GWAS we model the covariance of error terms based on the minimum of the 

intercept from cross-trait LD score regression and the expected intercept based on Eq 38.  
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 Based on the listed input parameters, CC-GWAS (software provided in R73; see URL section) 

was applied one disorder pair at a time. CC-GWAS first estimates !"#,%&'(&) and plots =1, =0, >1, and 

>0 as described above (and displayed in Figure 1 and Figure S1). Second, CC-GWAS transforms case-

control input GWAS results (on the per-allele hi scale) to the standardized observed scale based on 

50/50 case-control ascertainment in two ways as described above (via Q¶≥≥  and via the equation from 

Lloyd-Jones et al.67). The transformations were in concordance with correlation between betas of both 

approaches > 0.985 and only slight differences in magnitude with relative differences > 0.9 and <

1.1. Third, OLS weights and Exact weights (displayed in Table 1 and Table S7) were computed as 

described. Fourth, based on these weights, OLS estimates (Yê+E-Eéè" ) and Exact estimates (Yê+E-E^ò&%ô) were 

computed with accompanying standard errors and p-values as described above. Fifths and finally, CC-

GWAS reports SNPs as statistically significant that achieve P<5x10-8 using OLS weights and P<10-4 using 

Exact weights. 

 CC-GWAS results were clumped in line with ref.15 based using 1000 Genomes data29 as LD 

reference panel with Plink 1.968 (--clump-p1 5e-8 --clump-p2 5e-8 --clump-r2 0.1 --clump-kb 3000; see 

URLs) (Table S5). Loci within 250kb of each other after the first clumping step were collapsed. We 

defined CC-GWAS-specific loci as loci for which none of the genome-wide significant SNPs have an 

r2>0.8 with any of the genome-wide significant SNPs in the input case-control GWAS results (Table S5). 

An overview of the CC-GWAS loci is given in Table 1 and Table S7, and details are provided in Table 2 

and Table S6.  

 Secondary analyses included a different clumping strategy in line with ref.36 with Plink 1.9 (--

clump-p1 5e-8 --clump-p2 5e-8 --clump-r2 0.01 --clump-kb 5000) while subsequently collapsing loci 

within 100kb of each other. In another set of secondary analyses input case-control summary statistics 

were corrected for the respective intercepts of stratified LD score regression (similar to Turley et al.6) 

by dividing the input case-control standard errors by 2V®Éñ/RñWÉ and adjusting the J-values and W-

values accordingly. We believe this correction may be overly conservative, because some increase of 

the intercept may be expected due to attenuation bias of imperfect matching of LD patterns36. 

Nevertheless, we verified as follows that CC-GWAS provides proportionally biased results when 

applied on biased input GWAS results (i.e. CC-GWAS does not introduce an additional layer of bias). 

First, in simulation we multiplied the standard errors witch R+E+A = R-E-A = 0.9 and verified that the 

increase in [Ñ/kJ+E-E|Æ'))FÆ'))	"û∑(éè" l was proportional to the increase in [Ñ/kJ+E+A|Æ'))FÆ'))	"û∑(`ë+" l =

[Ñ/kJ-E-A|Æ'))FÆ'))	"û∑(
`ë+" l under various scenarios (Table S11). Second, we note this bias can also be 

analytically derived as  
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[Ñ/kJ+E-E|Æ'))F)?%X
éè" l

=
∂+E+A
, [Ñ/(î+E+A) + ∂-E-A

, [Ñ/(î-E-A) + 2∂+E+A∂-E-ARS[(î+E+A, î-E-A)
∂+E+A
, R+E+A

, [Ñ/(î+E+A) + ∂-E-A
, R-E-A

, [Ñ/(î-E-A) + 2∂+E+A∂-E-ARS[(î+E+A, î-E-A)
 

           Eq 39 

 

as confirmed with simulation (Table S11); note that for unbiased (R+E+A = R-E-A = 1) case-control 

GWAS results [Ñ/kJ+E-E|Æ'))F)?%Xéè" l = 1 as expected. In another set of secondary analyses, CC-GWAS 

of SCZ vs. MDD was extended to include the direct case-case comparison from ref.4 including 23,585 

SCZ cases and 15,270 BIP cases (see URL section). 

 

SMR and HEIDI analyses 

We used the SMR test for colocalization31 to identify CC-GWAS loci with significant associations 

between gene expression effect sizes in cis and OLS case-case effect sizes. We tested cis-eQTL effects 

in 13 GTEx v7 brain tissues37 (Amygdala, Anterior cingulate cortex, Caudate basal ganglia, Cerebellar 

Hemisphere, Cerebellum, Cortex, Frontal Cortex, Hippocampus, Hypothalamus, Nucleus accumbens 

basal ganglia, Putamen basal ganglia, Spinal cord cervical c-1, and Substantia nigra; see URLs), and a 

meta-analysis of eQTL effects in brain tissues38 (see URLs). In line with standard application of SMR31, 

we tested probes of genes with significant eQTL associations, with the lead eQTL SNP within 1MB of 

the lead CC-GWAS SNP. SMR analyses were performed on 2MB cis windows around the tested probe. 

The threshold of significance was adjusted per tested disorder-pair by dividing 0.05 by the respective 

number of probes tested (Table S15). We used the HEIDI test for heterogeneity31 to exclude loci with 

evidence of linkage effects (L < 0.05).  

 

Replication data sets 

For replication analyses, we used CC-GWAS discovery results of additional analyses of SCZ vs. MDD 

based on GWAS results from Ripke et al.14 and Wray et al.57 (Table S17; see URLs). To obtain 

independent replication data, we applied MetaSubtract58 separately for SCZ (results (i) Pardinas et 

al.15 – results (ii) Ripke et al.14) and for MDD (results (i) Howard et al.17 – results (ii) Wray et al.57). 

MetaSubtract58 recovers these results by subtracting results (ii) from results (i) as follows: 

 

Y(XX)F(X) =
Ö

e
ƒ£(a)

C ≤(a)Ü	F	
e

ƒ£(aa)
C ≤(aa)

e
ƒ£(a)

C 	F	
e

ƒ£(a)°(aa)
C

, with öm(X)F(XX)
, = 1

1

öm(V)
2 	−	 1

öm(VV)
2

   Eq 40 
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Replication GWAS results were thus obtained for 7,035 cases and 21,187 controls (Q¶≥≥ = 22,369) 

for SCZ and 111,175 cases and 216,289 controls (Q¶≥≥ = 242,275) for MDD, with information on 

4,105,296 SNPs for SCZ and MDD. Independence of replication results and discovery results were 

confirmed with cross-trait LD score regression intercepts of 0.037 for SCZ and −0.004 for MDD. We 

corrected the replication results for the univariate LD score regression intercepts (by multiplying SE 

with 2V®Éñ/RñWÉ), as the intercepts appeared slightly inflated (1.25 (attenuation ratio 0.58) for SCZ 

and 1.12 (attenuation ratio 0.25) for MDD). We note this correction may have been overly 

conservative, because if the discovery data are not exact subsets of the full data, we anticipate that 

MetaSubtract replication results would be conservative, as independent signals from the discovery 

data would be subtracted from the full data when producing the replication data. 

For further replication analyses, we used CC-GWAS discovery results from the three 

comparisons of CD24, UC24 and RA25 (Table S17). For CD24 and UC24, two sets of GWAS results are 

publicly available (see URLs): (a) results of 1000 genomes Phase 1 imputed SNPs from individuals 

genotyped on genotyping chips with genome-wide coverage, and (b) meta-analyses results of (a) with 

additional samples genotyped with the Immunochip covering 196,524 SNPs without genome-wide 

coverage24. Our CC-GWAS discovery results were based on GWAS results (a). For replication, we 

needed the Immunochip only results, which we obtained by subtracting (a) from (b) with 

MetaSubtract58. These Immonochip only results were thus obtained for 101,482 SNPs after QC for CD 

and 101,792 SNPs for UC, and were based on 14,594 cases and 26,715 controls (Q¶≥≥ = 37,752) for 

CD and 10,679 cases and 26,715 controls (Q¶≥≥ = 30,517) for UC. For RA, the genome-wide GWAS 

results and Immunochip results are separately available (see URLs) providing replication results of 

830,956 SNPs (note that Okada et al.25 imputed Immunochip SNP data) of 5,486 cases and 14,556 

controls (Q¶≥≥ = 15,274). (Note that LD score regression could not be applied on the Immunochip 

results from CD, UC and RA, because the Immunochip does not provide the genome-wide coverage 

required for LD score regression33. Further note that scaling of the SE based on the univariate LD score 

regression intercept only impacts the number of significant replicated loci, but not the regression 

slope in Figure 4.) 

 

Application of CC-GWAS to replication data sets 

For replication of SCZ vs. MDD, CD vs. UC, CD vs. RA and UC vs. RA we computed OLS =1>1 effect 

based on the OLS weights from the respective discovery results (Table S17). (We applied OLS weights 

from the discovery analyses rather than re-estimating the OLS weights based on the replication GWAS 

results, because OLS weights are sample-size dependent.) For SCZ vs. MDD, the covariance of the error 

terms was negligible (cross-trait LD score regression intercept of 0.012) while the covariance could 
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not be estimated for the autoimmune disease pairs (as LD score regression cannot be applied on 

Immunochip data) and was thus set to 0. Because covariance of the error terms decreases the 

standard error of OLS estimates (Eq 21), setting the covariance to 0 may lead to conservative bias with 

respect to significance in replication, but it does not impact the magnitude of the OLS estimates 

themselves nor the regression slopes displayed in Figure 4.  
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A1A0 (N case/ N control) B1B0 (N case/ N control) # SNPs K (%) h 2 K (%) h 2 r g OLS weights A1A0 B1B0 all
SCZ (40,675/64,643) BIP (20,352/31,358) 4,548,414  0.40 0.20  1.00 0.20 0.70  0.55/-0.43 139 15 12 7
SCZ (40,675/64,643) MDD (170,756/329,443) 4,483,387  0.40 0.20 16.00 0.10 0.31  0.77/-0.51 139 50 99 10
BIP (20,352/31,358) MDD (170,756/329,443) 6,265,453  1.00 0.20 16.00 0.10 0.33  0.58/-0.43 14 53 10 4

Number of significant 

independent loci 

A1A0 B1B0

CC-GWAS
CC-GWAS
specific

  
 
 
 
 
 
 
 
 
Table 1. Summary of CC-GWAS results for schizophrenia, bipolar disorder and major depressive disorder.  
For each pair of schizophrenia (SCZ)15, bipolar disorder (BIP)16 and major depressive disorder (MDD)17, we report the case-control sample sizes, #SNPs, 
prevalence (!)70, liability-scale heritability estimated using stratified LD score regression33–35 (ℎ#), genetic correlation estimated using cross-trait LD score 
regression2 ($%), OLS weights, number of independent genome-wide significant loci for each case-control comparison, number of independent genome-
significant CC-GWAS loci, and number of independent genome-significant CC-GWAS loci that are CC-GWAS-specific. Exact weights are equal to (1 − !)) for 
disorder A and – (1 − !,) for disorder B.  
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A B SNP Chr Position Freq Locus name Beta P Beta P Beta P
SCZ BIP rs9866687^a 3  94,828,190 0.44 LINC00879  1.24e-02 1.38e-04 -1.45e-02  1.70e-03  1.30e-02 4.05e-08
SCZ BIP rs7790864^a 7  28,478,625 0.38 CREB5  1.46e-02 7.18e-06 -1.23e-02  7.93e-03  1.32e-02 2.18e-08
SCZ BIP rs12554512 9  23,352,293 0.43 ELAVL2 -6.22e-03 5.54e-02  2.25e-02  1.28e-06 -1.30e-02 4.06e-08
SCZ BIP rs3764002 12 108,618,630 0.26 WSCD2^c  1.62e-02 6.05e-07 -1.54e-02  9.04e-04  1.55e-02 6.33e-11
SCZ BIP rs9319540^a 16  79,458,022 0.58 MAF  1.22e-02 1.84e-04 -1.49e-02  1.26e-03  1.30e-02 3.67e-08
SCZ BIP rs1054972 19   1,852,582 0.2 KLF16^c -1.42e-02 1.32e-05  1.31e-02  4.74e-03 -1.33e-02 1.75e-08
SCZ BIP rs11696888 20  47,753,265 0.43 CSE1L^b -1.21e-02 1.94e-04  1.80e-02  1.05e-04 -1.43e-02 1.39e-09
SCZ MDD rs2471403 2  48,490,508 0.48 FOXN2^b -1.70e-02 1.78e-07  3.08e-03  6.21e-02 -1.47e-02 2.34e-08
SCZ MDD rs16846133^a 2 212,289,728 0.31 ERBB4 -1.63e-02 5.68e-07  4.43e-03  5.84e-03 -1.48e-02 1.71e-08
SCZ MDD rs2563297 5 140,097,072 0.44 PCDHA7^b  1.60e-02 8.76e-07 -6.00e-03  3.73e-04  1.54e-02 5.25e-09
SCZ MDD rs113113059 6  43,160,375 0.19 CUL9^b -1.68e-02 2.37e-07  4.84e-03  2.93e-03 -1.55e-02 4.11e-09
SCZ MDD rs2944833 7  71,774,496 0.57 CALN1^b -1.70e-02 1.80e-07  2.52e-03  1.21e-01 -1.44e-02 4.22e-08
SCZ MDD rs71523422^a 8  31,445,336 0.08 NRG1 -1.57e-02 1.41e-06  4.69e-03  3.82e-03 -1.45e-02 3.38e-08
SCZ MDD rs10967586^a 9  26,895,808 0.13 CAAP1  1.67e-02 2.87e-07 -4.57e-03  4.60e-03  1.52e-02 6.94e-09
SCZ MDD rs17731 10   3,821,561 0.35 KLF6^c  1.67e-02 2.86e-07 -3.39e-03  3.89e-02  1.46e-02 2.64e-08
SCZ MDD rs34232444 19   4,965,404 0.3 UHRF1 -1.45e-02 8.70e-06  7.66e-03  2.56e-06 -1.51e-02 9.92e-09
SCZ MDD rs8137258^a 22  20,135,961 0.22 ZDHHC8  1.59e-02 9.87e-07 -5.65e-03  4.50e-04  1.52e-02 7.82e-09
BIP MDD rs28565152 5   7,542,911 0.25 ADCY2  2.35e-02 3.83e-07 -3.77e-03  2.23e-02  1.53e-02 2.79e-08
BIP MDD rs12538191^a 7  44,980,824 0.24 SNHG15^b -2.44e-02 1.46e-07  2.81e-03  8.21e-02 -1.54e-02 2.36e-08
BIP MDD rs4447398 15  42,904,904 0.88 LRRC57^b -2.46e-02 1.10e-07  2.54e-03  1.22e-01 -1.54e-02 2.28e-08
BIP MDD rs11908600 20  43,633,418 0.3 STK4^b -2.34e-02 4.26e-07  3.53e-03  2.90e-02 -1.51e-02 4.16e-08

A1A0 B1B0 A1B1 (OLS)Disorder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. List of 21 CC-GWAS-specific loci for SCZ, BIP and MDD. 
For each CC-GWAS-specific locus, we report the lead CC-GWAS SNP and its chromosome, physical position, and reference allele frequency, the locus name, 
the respective case-control effect sizes and p-values, and the OLS case-case effect size and p-value. Effect sizes are reported on the standardized observed 
scale based on 50/50 case-control ascertainment. adenotes loci that have not been reported previously30. bdenotes locus names based on (most) significant 
SMR results. cdenotes locus names based on exonic lead SNPs. Remaining locus names are based on nearest gene, and do not refer to any inferred biological 
function. Case-case effect sizes and p-values for the Exact approach are reported in Table S6. SCZ, schizophrenia; BIP, bipolar disorder; MDD, major depressive 
disorder. 
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Disorder N case N control K (%) h 2 # loci
SCZ 40,675 64,643  0.40 0.20 139
BIP 20,352 31,358  1.00 0.20 15
MDD 170,756 329,443 16.00 0.10 50
ADHD 19,099 34,194  5.30 0.25 9
ANO 16,992 55,525  0.90 0.15 7
ASD 18,381 27,969  1.70 0.11 2
OCD 2,688 7,037  1.10 0.25 0
TS 4,819 9,488  0.50 0.18 1

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. List of eight psychiatric disorders. 
For each of schizophrenia (SCZ)15, bipolar disorder (BIP)16, major depressive disorder (MDD)17, 
attention deficit/hyperactivity disorder (ADHD)18, anorexia nervosa (ANO)19, autism spectrum disorder 
(ASD)20, obsessive–compulsive disorder (OCD)21, Tourette’s Syndrome and Other Tic Disorders (TS)22, 
we report the case-control sample size, prevalence (!)70, liability-scale heritability estimated using 
stratified LD score regression33–35 (ℎ#), and number of independent genome-wide significant case-
control loci. 
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rg\# loci SCZ BIP MDD ADHD ANO ASD OCD TS
SCZ - 12 (7) 99 (10) 43 (14) 41 (5) 41 (9) 1 (1) 19 (6)
BIP 0.70 - 10 (4) 8 (6) 5 (2) 3 (0) 1 (1) 5 (3)
MDD 0.31 0.33 - 9 (2) 6 (1) 3 (2) 0 (0) 0 (0)
ADHD 0.16 0.18 0.44 - 4 (3) 1 (0) 2 (2) 2 (2)
ANO 0.26 0.10 0.28 0.01 - 1 (1) 0 (0) 2 (1)
ASD 0.25 0.17 0.34 0.37 0.11 - 1 (1) 1 (1)
OCD 0.32 0.27 0.25 -0.20 0.42 0.10 - 1 (1)
TS 0.11 0.08 0.23 0.19 0.08 0.16 0.50 -

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Summary of CC-GWAS results for eight psychiatric disorders. 
For each pair of disorders, we report the genetic correlation estimated using cross-trait LD score 
regression2 ($%) (lower left) and the number of independent genome-significant CC-GWAS loci 
(number of CC-GWAS-specific loci in parentheses) (upper right). The OLS weights and number of SNPs 
tested are reported in Table S7. SCZ, schizophrenia; BIP, bipolar disorder; MDD, major depressive 
disorder; ADHD, attention deficit/hyperactivity disorder; ANO, anorexia nervosa; ASD, autism 
spectrum disorder; OCD, obsessive–compulsive disorder; TS, Tourette’s Syndrome and Other Tic 
Disorders. 
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Figure 1. Genetic distance between cases and/or controls of SCZ, BIP and MDD. 
We report genetic distances for (A) an illustrative example, (B) SCZ vs. BIP, (C) SCZ vs. MDD and (D) 
SCZ vs. BIP. Genetic distances are displayed as &' ∗ )*+,-./0.1, where ' is the number of 
independent causal variants and the square root facilitates 2-dimensional visualization. The quantity 
' ∗ )*+,-./0.1  is derived based on the respective population prevalences, SNP-based heritabilities and 
genetic correlations (reported in Table 1). Approximate standard errors of ' ∗ )*+,-./0.1,2343 are 0.04 
for SCZ vs. BIP, 0.02 for SCZ vs. MDD and 0.03 for BIP vs. MDD (see Methods). The cosine of the angle 
between the lines A1-A0 and B1-B0 is equal to the genetic correlation between disorder A and disorder 
B (see Methods). Numerical results are reported in Table S1.  
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Figure 2. Power and type I error of CC-GWAS. 
We report (A) the power to detect SNPs with effect sizes following a bivariate normal distribution, (B) 
the type I error rate for loci with no effect on A1A0 or B1B0 (“null-null” SNPs) and (C) the type I error 
rate for SNPs with the same allele frequency in A1 vs. B1 that explain 0.10% of variance in A1 vs. A0 
and 0.29% of variance in B1 vs. B0 (“stress test” SNPs), for each of four methods: CC-GWAS, the OLS 
approach, the Exact approach, and a naïve Delta method (see text). Default parameter settings are: 
h2=0.2, prevalence K=0.01, and sample size 100,000 cases + 100,000 controls for disorder A; liability-
scale h2=0.1, prevalence K=0.15, and sample size 100,000 cases + 100,000 controls for disorder B; 
m=5,000 causal SNPs for each disorder; and genetic correlation rg=0.5 between disorders. Numerical 
results of these analytical computations are reported in Table S2, and confirmed with simulation 
results in Table S3.  
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Figure 3. Case-control effect sizes at CC-GWAS loci for SCZ, BIP and MDD. 
We report the respective case-control effect sizes for lead SNPs at CC-GWAS loci for (A) SCZ vs. BIP, 
(B) SCZ vs. MDD and (C) BIP vs. MDD. Effect sizes are reported on the standardized observed scale 
based on 50/50 case-control ascertainment. Red points denote CC-GWAS-specific loci, and black 
points denote remaining loci. Dashed lines denote effect-size thresholds for genome-wide 
significance. All red points (denoting lead SNPs for CC-GWAS-specific loci) lie inside the dashed lines 
for both disorders; in panel A, one black point (denoting the lead SNP for a CC-GWAS locus that is not 
CC-GWAS-specific) lies inside the dashed lines for both SCZ and BIP, because the lead SNP is not 
genome-wide significant for SCZ but is in LD with a SNP that is genome-wide significant for SCZ. 
Numerical results are reported in Table S6. SCZ, schizophrenia; BIP, bipolar disorder; MDD, major 
depressive disorder. 
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Figure 4. Independent replication of CC-GWAS results. 
We report replication case-case OLS effect sizes vs. discovery case-case OLS effect sizes for (A) 
schizophrenia (SCZ) vs. major depressive disorder (MDD), (B) three autoimmune disorders, (C) SCZ vs. 
MDD and three autoimmune disorders, restricting to CC-GWAS-specific loci, and (D) SCZ vs. MDD and 
three autoimmune disorders, restricting to remaining loci. We also report regression slopes (SE in 
parentheses), effect sign concordance, and effect sign concordance together with replication 
POLS<0.05. Red points denote CC-GWAS-specific loci, and black points denote remaining loci. Numerical 
results are reported in Table S18, and corresponding case-control replication results are reported in 
Figure S12 and Table S19. 
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