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Abstract

Spectacular advances in imaging and data processing techniques are revealing a wealth
of information about brain connectomes. This raises an exciting scientific opportunity:
to infer the underlying circuit function from the structure of its connectivity. A potential
roadblock, however, is that – even with well constrained neural dynamics – there are
in principle many different connectomes that could support a given computation. Here,
we define a tractable setting in which the problem of inferring circuit function from
circuit connectivity can be analyzed in detail: the function of input compression and
reconstruction, in an autoencoder network with a single hidden layer. Here, in general
there is substantial ambiguity in the weights that can produce the same circuit func-
tion, because largely arbitrary changes to “input” weights can be undone by applying
the inverse modifications to the “output” weights. However, we use mathematical argu-
ments and simulations to show that adding simple, biologically motivated regularization
of connectivity resolves this ambiguity in an interesting way: weights are constrained
such that the latent variable structure underlying the inputs can be extracted from the
weights by using nonlinear dimensionality reduction methods.
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1 Introduction
The past years have seen spectacular effort, and spectacular success, in mapping synap-
tic connections in the brain. For example, the hemi-brain connectome of Drosophila
was recently released, and imaging of the whole brain connectome is currently un-
derway [1]. The synaptic connections in a cubic millimeter of mouse visual cortex
have also recently been imaged [2]. These data build on pioneering efforts to map the
connectome of c. elegans. From these advances there have emerged stunning new
opportunities and new challenges for modelers and theoreticians.

Connectivity data has long been leveraged to shed light on circuit function. This
includes the discovery of hierarchical organization in mammalian visual systems [3],
which is thought to support the assembly of complex and abstract visual information in
higher areas out of combinations of simple, local neural responses in lower areas; and
the repeated structure across different neocortical regions [4, 5], indicating that neocor-
tex supports general-purpose learning. As connectivity data become more complete,
they can be used to more precisely constrain models [6]. For instance, while a variety
of mechanisms have been proposed to explain motion processing in the retina, recent
connectivity data allowed the authors of [7] to refine this class of models into one that
better fits the observed connectivity. Additional studies link connectivity to the func-
tion of sensory circuits through the lens of increasing or decreasing the dimension of
their inputs. For example, connections between mossy-fiber and granule cells in the
Drosophila mushroom body appear to be random and sparse [8], which is thought to
support associative learning by expanding dimension [9–11]. Other studies point out
physical bottlenecks in sensory circuits that strongly suggest a compression of dimen-
sion, particularly in early visual pathways (for a review, see [12]). Such a compression
forces circuits to select elements of their inputs which are necessary for downstream
computations. Often this operation is modeled as extracting a low-dimensional set of
latent variables that generate the higher-dimensional input signal.

Our work follows on these observations by probing the following question: in com-
pressive circuits, can the actual structure of the selected-for latent variables be extracted
from the connectome? While this question will prove to be a significant challenge to an-
swer in general, here we start with a simple and mathematically tractable model of input
compression: a linear autoencoder with a single layer of hidden units. This work sets
out to discover if the weights that optimally compress inputs (in an L2 reconstruction
sense) contain recoverable information about the input stimulus; namely, the latent vari-
ables generating the inputs. Here we focus on using dimensionality reduction methods
on the weight matrices to recover this information.

Our main finding is that structure from the latent variables underlying the inputs can
be extracted from the weights of our network, provided that the model is regularized by
biologically inspired costs on weight resources (i.e. penalizing large weights). The
structure that can be extracted includes the basic topology of the latent space; in partic-
ular, it can be inferred if the latent variables live on a space that wraps around (like a
circle) or that doesn’t wrap around (like a line). We give both mathematical arguments
in the case of linear autoencoders and the simulation results of training autoencoders
with hyperbolic tangent nonlinearities. Our results have several important implications.
First, they are an important proof of concept that meaningful information about network
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function can be extracted from the optimal weights alone. Second, they shed light on
how the weights can be processed to reveal this latent structure. Specifically, we show
that nonlinear (as opposed to linear) dimensionality reduction techniques are important
for finding this structure. This can guide efforts to find structure in the weights of more
complex models or biological data. Third, we establish that combinations of latent vari-
ables are reflected in the weight structure in a predictable way. This can be used as a
tool for looking at complicated inputs that may be formed from many latent variables.
These results reinforce an emerging narrative in the analysis of neural networks: that
regularization is important not only for producing network models that generalize, but
also for producing models that are interpretable (see [13, 14]).

2 Network Architecture
The model we consider is an autoencoder network with a single layer of hidden units,
as illustrated in Fig. 1. The equation for the hidden unit activations in response to an
input xs is

hs = φ(W inxs) + b1 ∈ RN

where N is the number of hidden units and φ is the activation function for the hidden
units. The length N vector b1 is a bias term. For our mathematical analysis we take φ
equal to the identity, but we also show the results of simulations where φ = tanh. The
activation of the output units is

ys =W ouths + b2 ∈ Rm. (1)

where m is the dimension of the input space. The network is trained via stochastic
gradient descent (SGD) with momentum (RMSprop) to minimize the regularized L2
reconstruction error

L (W ) =
T∑
s=1

‖xs − ys‖22 + λ(‖W out‖2F + ‖W in‖2F ) (2)

where T is the size of the training dataset. Here the network is trained so that outputs
ys are close to xs, regularized by a cost on weights.

To build some intuition, consider the characteristics of the model for φ equal to the
identity, λ = 0, and zero bias terms. The loss function Eq. (2) is then the same as that
of principal component analysis, except that here we do not require orthonormality of
the input (output) weight rows (columns). Without this constraint, the model is highly
non-identifiable: it is impossible to infer the value of the parameters (here W in and
W out) by sampling from the model. This is because

y =W outAA
−1W inx =W outW inx.

for any N × N invertible matrix A, so that the same input-output mapping is satisfied
byW outA andA−1W in for any invertibleA. When the orthonormality condition is en-
forced, the same statement holds excepting thatA in this case is an arbitrary orthogonal
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Figure 1: Overview of the characteristics of an autoencoder network trained to repro-
duce inputs that are generated by a periodic latent variable. Top: Network architecture.
A low-dimensional set of latent variables is transformed into a high-dimensional in-
put via a function g. The network is then trained to reconstruct this input under the
constraint of a bottleneck in the number of hidden unit neurons. A hyperbolic tangent
nonlinearity is used for the hidden units. Bottom: Example network measurements for a
periodic, scalar latent variable θs. Network is trained with λ = 4e−6 andm = 60. (A-C)
Color denotes value of θs. (A) Latent variable θs drawn from S1. Color denotes value
of θs. (B) Responses of receptive field neurons 1, 10, and 20 to θs. The receptive fields
are periodic. Bottom: The response ensemble projected down to a two-dimensional
space with PCA. (C) Responses of hidden units 1, 5, and 10 to θs, out of 10 hidden
units. Bottom: The hidden unit response projected down to a two-dimensional space
with PCA. (D) Columns 1, 5, and 10 of the output weight matrix, out of 10 columns.
Color corresponds to the receptive field neuron index. While the structure is similar to
(C), the relative scaling of the axes is different, as evidenced by the grid lines. Bottom:
The output weight matrix projected onto a two-dimensional space with Isomap.

matrix as opposed to an arbitrary invertible matrix. Since we are focused on investigat-
ing the structure of the weights, it is important to push the network toward finding a
set of solutions that is unique up to orthogonal transformations, as these are geometry
preserving. This is accomplished by the reqularizer term ‖W out‖2F +‖W in‖2F in Eq. (2)
as we will discuss in more detail in Sec. 4.

Note that the matrix A that is found when training a neural network on the unreg-
ularized loss (λ = 0) may in practice not disturb geometric information very much.
Specifically, if the Frobenius norm of A is not far from 1, then the geometric struc-
ture of W outA compared to W out will be similar, and similarly for W in. Choice of
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initialization of the weights before training, adding noise to the inputs while training,
or implicit regularization caused by SGD may bias solutions toward regimes where the
regularizer term of Eq. (2) is small. We have found experimentally that random weight
initializations are often sufficient to lead to learned weights with recoverable structure
even without regularization (data not shown).

We describe the training dataset next.

3 Constructing inputs generated by latent variables

3.1 Receptive field encoding of latent variables
Suppose that our inputs have the form xs = g (θs) ∈ Rm, where θs ∈ S is some
low-dimensional underlying process in a space S and g maps this process into a higher-
dimensional space embedded in Rm. Here θs is a latent variable that underlies the
inputs xs, and the induced process xs can be thought of as a high-dimensional encoding
of θs. The subscript s is the index for samples of the corresponding variables, and is
sometimes suppressed when context makes it clear. Throughout, mathematical symbols
in bold font denote vectors or vector-valued functions, while scalars are denoted by
lowercase symbols with normal font. When indexing the entries of these vectors with
an index k, we either use the notation (xk)s or suppress the s, simply writing xk. In
our mathematical analysis and simulations we assume that the samples θs are drawn
uniformly from S .

The high-dimensional nature of the inputs is important in our framework. While
networks that take lower-dimensional inputs and project them into a higher-dimensional
hidden representation space are also of general interest, our objective here is to require
the network to extract latent variables from a high-dimensional signal. This more con-
strained scenario affords a greater possibility that the weights will contain information
about the latent variables. In particular, when treating weight matrices as geometric
objects (as in Fig. 1D), the number of input dimensions m is the number of datapoints
that we plot, and these points are embedded in an N -dimensional space. From this
perspective, m will need to be large enough for meaningful structure to emerge.

One important class of encodings that increase the dimensionality of the encoded
variables are the tuned neural response functions. In this case, each component xk of
x is the response of a neuron with tuning curve gk to the variable θ. As an example,
consider the classic case of direction-selective retinal ganglion cells. We suppose each
ganglion cell to be tuned as a Gaussian centered at its preferred orientation, gk(θ) ∝
exp(−d(θ, zk)2/σ2), where θ is an angle in the interval from 0 to 2π, zk is the neuron’s
preferred orientation, and σ captures the width of the tuning. Here d is a distance
function in angle space, which can be written d(θ, θ′) = min{|θ− θ′|, 2π− |θ− θ′|}. A
visualization of θ and the response g(θ) is shown in Fig. 2A. The characteristics of an
autoencoder network trained to reproduce this periodic input is shown in Fig. 1. Here
we see that the periodicity of the inputs appears in both the hidden representation of the
network as well as the weights. This will be elucidated in Sec. 4.

Fig. 2B depicts a latent variable θ that is also scalar-valued, but differs from the
previous example in that the latent space S is the closed interval [0, 1] with the standard
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Figure 2: Depiction of latent variables on different spaces S. (A) Example where S
is a circle. A periodic scalar latent variable is transformed into a higher-dimensional
encoding via the receptive field neural response function g. The periodicity of θ is
expressed by a periodic colormap for θ. The periodic structure is revealed by PCA. (B)
Same as (A), but for a nonperiodic scalar latent variable, so that S is a line segment.
(C) Example where S is a cylinder. Tensor product of a nonperiodic (θ1) and a periodic
(θ2) latent variable is transformed into a higher-dimensional encoding via the receptive
field neural response function g. The scatter plots to the left depict the samples θs with
coloration based on θ1 (top) and coloration based on θ2 (bottom). Receptive field centers
zk,k′ tile the latent space S. Specifically, the top and bottom edges of the space are
glued together. The responses of the first and 190th out of 400 receptive field neurons
are shown on the right.
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topology of an interval, as opposed to a circle. In this case the natural encoding is
gk(θ) ∝ exp(−d(θ, zk)2/σ2) where d(θ, zk) = |θ − zk|.

Another important case is that of “place cell” neurons tuned to (x, y) position on a
grid over a two-dimensional flat surface S. The space S can be thought of as the product
space of the product of two line segments. In this case we suppose each place cell to be
tuned as a gaussian centered at its location on the grid, gk,`(θ) ∝ exp(−d(θ, zk,`)2/σ2)
where zk,` is the neuron’s tuning center and d(θ, zk,`) = ‖θ − zk,`‖2. Note that in
this case the indices (k, `) need to be “unrolled” into a vector to form the vector-valued
g(θs). The idea can be further extended to other latent variables, such as the joint
spatial and orientation tuning seen also in retinal ganglion cells. To illustrate such a
joint encoding, consider “place cell” neurons as before, but instead of tiling a grid,
suppose that one edge of the grid wraps around and connects to the opposite edge, so
that the neurons tile a cylinder. A realization of a latent variable on a cylinder and the
responses of two receptive field neurons is depicted in Fig. 2C.

3.1 The latent variables appear in the weights of the trained autoencoder

Each of these examples illustrates a different topology of the space S on which the la-
tent variable θs can live. Our main finding is that, in our network trained to autoencode
the inputs xs generated by θs, the weights of the network generally reflect the topology
of S. This is in addition to the hidden unit activations in response to the inputs reflect-
ing the topology of S . An overview of this phenomenon in the case of a periodic latent
variable is given in Fig. 1 as well as in Figs. 3A to 3C. In Fig. 3A, a trained autoen-
coder’s response to the inputs xs generated by a periodic latent variable θs is plotted in
the top two-dimensional principal component space. In Fig. 3B, the top two principal
components of the columns of the output weights are plotted. The resulting structure
suggests periodicity, but isn’t always clearly seen. Using the nonlinear dimensionality
reduction method Isomap [15] to reduce the output weights to a two-dimensional space
reveals the circular structure of the latent variable space clearly (Fig. 3C). A description
of Isomap and explanation of its success in recovering the periodic structure is given in
Sec. 4.3. This shows that the structure of the latent variable of the trained autoencoder
is apparent not only in the hidden unit activities, but also in the learned weights of the
network.

A similar phenomenon occurs for an autoencoder trained to reconstruct inputs xs
formed by receptive field responses g(θs) to a non-periodic latent variable θs. Here we
see that the topology of the latent space S is again reflected in the network weights
(Figs. 3E and 3F).

This phenomenon also occurs in the case of inputs generated by tensored latent
variables as in Fig. 2C, resulting in the weights reflecting the cylindrical topology of S
(Figs. 3G to 3I). When both tensored variables are periodic, the structure in the weights
is that of a torus (Fig. 3L)

While in the examples above the latent variables are reflected both in the structure
of the weights and the structure of the hidden layer activations of the trained network,
structure in the activations depends on the choice of inputs given to the network after
training. In the example of a periodic random variable, the ring structure in the activa-
tions does not appear if white noise inputs are shown to the trained network (data not
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shown). This illustrates how the information provided by the weights is in some ways
distinct from that provided by the hidden unit activations.

Note also that the structure of the weights is most clearly extracted by the nonlinear
dimensionality reduction method Isomap (Figs. 3C, 3F and 3I) as opposed to the linear
method of principal component analysis (Figs. 3B, 3E and 3H). We shed light on why
this is in Sec. 4.3.

4 Extracting latent variables from network weights
We now explain these observations through mathematical analysis. For ease of analysis,
we consider a linear autoencoder model where φ is taken to be the identity. Our anal-
ysis involves three steps. The first is to relate the minimizers of Eq. (2) to the familiar
solutions found by principal component analysis (PCA). The second is to resolve the
problem of non-identifiability of the model, as introduced in Sec. 2. Once the minimiz-
ers of Eq. (2) have been related to the PCA solutions and the degeneracy of the solution
space has been resolved, the third step in our analysis is to look more closely at the PCA
solutions and to show that these solutions in fact encode the latent variable information.

4.1 Relating autoencoders to PCA
We start by rewriting the loss Eq. (2) in matrix form with λ = 0 and with φ taken to be
the identity:

L(W out,W in, b1, b2) =
∥∥X −W outW inX +W outb11

>
T + b21

>
T

∥∥2
F

(3)

whereX is an m× T matrix with column s holding the sample xs and 1T is the length
T vector of all ones. Let µx = 〈xs〉s and µh = 〈hs〉s. The optimal values for the bias
terms have the effect of transforming the problem into one that has been mean-centered,
i.e. the minimal weights of Eq. (3) coincide with those of

‖X ′ −W outH
′‖2F (4)

where X ′ = X − µx1> and H ′ = W inX − µh1> [16]. Minimizing this loss while
enforcing thatW in andW out have orthonormal rows and columns, respectively, results
in the PCA solution. This solution is naturally expressed in terms of the singular value
decomposition (SVD) of X ′: X ′ = UΣV T where U is an m×m orthogonal matrix,
V is a T ×m matrix with orthonormal columns, and Σ is an m ×m diagonal matrix
with nonnegative entries σ1, σ2, ..., σm called the singular values of X ′. The standard
PCA solutions are then W ∗

out = UN and W ∗
in = (UN)

T where UN is the matrix
U truncated to the first N columns. However, as discussed above any solution of the
form W ∗

out = UNA and W ∗
in = A−1(UN)

T is also a global minimum, where A is an
arbitrary invertible N × N matrix. This is the most general form of optimal solution
[17, 18].
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Figure 3: The structure of the latent variables can be recovered from the weights of the
trained autoencoder by nonlinear dimensionality reduction methods. (A) Hidden unit
activations of the autoencoder trained to reconstruct an encoding g(θs) of a periodic
latent variable θs as in Fig. 2A and using the same coloration. (B) Principal components
of the columns of the output weights of the autoencoder trained on the periodic latent
variable. (C) Two-dimensional embedding via Isomap of the columns of the output
weights for the network trained on the periodic inputs. (D-F) As in (A-C) but for an
encoding g(θs) of a nonperiodic latent variable θs as in Fig. 2B. (G-I) As in (A-C) but
for a joint encoding g(θs) of a periodic and non-periodic latent variable, such as that
illustrated by Fig. 2C. In this case the Isomap embedding in (I) is three-dimensional.
In (G) color corresponds with the periodic latent variable, while in (H-I) coloration is
by the index of the receptive field centers corresponding to the periodic latent variable.
(J-L) Same as in (G-I), but for a joint encoding of two periodic latent variables. Color
corresponds with the first latent variable. The latent space S in this case is a torus.
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Figure 4: The structure of the latent variables can be recovered from the eigenvec-
tors of the covariance matrix of the inputs. (A) Covariance matrix for the responses of
m = 60 receptive field neurons to a periodic latent variable as in Fig. 2A. (B) Low-
est frequency eigenvectors of the circulant matrix in A, plotted against each other and
colored by index. (C) Covariance matrix for the responses of m = 60 receptive field
neurons to a nonperiodic latent variable as in Fig. 2B. (D) Lowest frequency eigenvec-
tors of the covariance matrix in (C), plotted against each other and colored by index. (E)
Covariance matrix resulting from the tensored responses to a periodic and nonperiodic
latent variable as in Fig. 2C, where the periodic variable is in the first coordinate and the
nonperiodic variable is in the second. (F) Eigenvectors of the covariance matrix in (E),
reduced to three dimensions by Isomap. Coloration is by the index of the receptive field
centers corresponding to the periodic latent variable. The eigenvectors for the covari-
ance matrix in (G) look similar. (G) Covariance matrix as in (E) but with the position
of the nonperiodic and periodic variable switched. (H) Same as (F), but colored by the
index of the receptive field centers corresponding to the nonperiodic latent variable.

4.2 Resolving non-uniqueness of the optimal weights
The arbitrary invertible linear transformation A described in the previous section can
potentially skew the structure of the weights past the point where the latent variables
can be extracted. While A preserves topological information, it doesn’t necessarily
preserve local distances between points. Nonlinear dimensionality reduction methods
like Isomap are generally designed to embed points in a lower-dimensional space while
preserving local distances, and losing information about these local distances can be
destructive. This can become a problem in practice since the number of columns (rows)
ofW in (W out) are finite, and the structure of local distances among finitely many points
can be lost as skewing becomes large. Here we describe biologically motivated condi-
tions that address this issue.

If we add the regularizer λ(‖W out‖2F + ‖W in‖2F ) with λ > 0 to Eq. (3), then the
solution becomes more constrained. Let Σλ be the diagonal matrix Σλ = diag(b1 −
λ/σ2

1c+, ..., b1 − λ/σ2
Nc+), where the σk are again the singular values of X , λ is the

scaling of the regularizer, and b·c+ is the threshold function max{·, 0}. [17, 18] recently
showed that, under the assumption that σ1 > σ2 > ... > σN , the optimal weights in
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this case have the form W ∗
in = QTΣ

1/2
λ (UN)

T and W ∗
out = UNΣ

1/2
λ Q where Q is

an arbitrary N × N orthogonal matrix. In particular, these solutions are unique up to
arbitrary orthogonal transformationsQ, rather than arbitrary invertible transformations
A.

Therefore, this regularizer can help to preserve the geometric information encoded
in the weights found by optimization methods. In particular, for positive but small λ,
W ∗

in ≈ QT (UN)
T andW ∗

out ≈ UNQ. SinceQ preserves distances (in other words,Q
preserves geometric information), analyzing the geometric structure of optimal weights
W ∗

in andW ∗
out reduces to analyzing the geometric structure of UN .

As we show next, the matrix UN contains geometric information about the inputs.

4.3 Relating the weights to the latent variables
In the previous section we showed how the optimal weights share the same geometric
structure as UN : W ∗

in ≈ QT (UN)
T and W ∗

out ≈ UNQ for λ small. We now show
how UN is related to the latent variables underlying the inputs. To do so, we first note
that according to basic properties of the SVD,U is a matrix of normalized eigenvectors
of the covariance matrix C =

〈
xsx

T
s

〉
s
− 〈xs〉s 〈xs〉

T
s of X , so C = UΣ2UT (recall

that Σ holds the singular values for the mean-centered X ′). Assuming that x has the
form xj = gj(θ) ∝ exp(−d(θ, zj)2/σ2), we can work out the form of the covariance
between xj and xk. Taking the limit T →∞ and invoking the law of large numbers, we
have that 〈(xj)s〉s=1,...,∞ = 〈gj(θ)〉θ and 〈(xj)s(xk)s〉s=1,...,∞ = 〈gj(θ)gk(θ)〉θ. Letting
µj = 〈gj(θ)〉θ, it follows that in this limit

Cjk = 〈gj(θ)gk(θ)〉θ − µjµk.

From this form of the covariance matrix, we can now work out the eigenvector structure
for different choices of the latent space S and distance function d.

Periodic latent variables give rise to periodic weight structure

We first consider the case of a periodic latent variable θ. Recall that the inputs are
formed by encoding θ via orientation selective receptive fields gk(θ) ∝ (exp(−d(θ, zk)2/σ2),
with d being a distance function in angle space, d(θ, θ′) = min{|θ− θ′|, 2π− |θ− θ′|}.
Assume that the receptive field centers zk evenly tile the space.

The salient structure of this encoding can be expressed through the idea of equivari-
ance. Let a+ b denote addition of a and bmodulo the number,m, of receptive field neu-
rons. In our scenario, equivariance means that shifting the identity of the receptive field
neuron is the same as shifting the input to the receptive field neuron: gk+`(θ) = gk(θ−z`
mod 1). This equivariance implies a special structure of the input covariance matrixC:
C is a circulant matrix. This means that every row in C is a shifted version of the first
row, where the shifting operation wraps around at the edges of the matrix. To show this,
we show that entry Cjk is equal to Cj+`,k+`, where ` is any integer.

Recall our assumption that θ is uniformly distributed on the circle S = S1, and
suppose without loss of generality that S has Lebesque measure 2π (so θ varies from 0
to 2π). Then the probability density function of θ is the constant function that returns
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1/(2π) for all θ. This means in particular that the expected value of f(θ) is 〈f(θ)〉 =
1
2π

∫ 2π

0
f(θ)dθ for any reasonably well-behaved function f .

To show that C is circulant, we first compute that

〈gj+`(θ)gk+`(θ)〉 = 〈gj (θ − z` mod 1) gk (θ − z` mod 1)〉

=
1

2π

∫ 2π

0

gj (θ − z` mod 2π) gk (θ − z` mod 2π) dθ

=
1

2π

∫ 2π−z` mod 2π

0−z` mod 2π

gj (θ) gk (θ) dθ

=
1

2π

∫ 2π

0

gj (θ) gk (θ) dθ

= 〈gj(θ)gk(θ)〉. (5)

Computing shifts of the mean µj has a similar flavor:

µj+` =
1

2π

∫ 2π

0

gj (θ − z` mod 2π) dθ

=
1

2π

∫ 2π−z` mod 2π

0−z` mod 2π

gj (θ) dθ

=
1

2π

∫ 2π

0

gj (θ)

= µj,

so that µj is independent of its index. Hence we can write µjµk = µ2. Combining this
with Eq. (5), we have that Cj+`,k+` = Cjk. An example of the resulting circulant matrix
is shown in Fig. 4A.

In addition to being circulant, the covariance matrix C is by definition symmetric:
C = CT . The eigenvectors of circulant matrices are known and together make up
the discrete Fourier transform matrix [19]. In the case where the circulant matrix is
also symmetric, the real and imaginary parts of the eigenvectors are themselves eigen-
vectors. This means that an eigenvector basis for C can be taken to be real, which
results in eigenvectors that have one of three forms: cosine transforms, sine trans-
forms, and the all-ones vector 1m (recall that m is the dimension of the inputs xs).
More precisely, the jth cosine transform eigenvector has the form v

(j)
k = cos(2πjk/m)

for k ∈ {0, 1, ...,m − 1} and the jth sine transform eigenvector has the form w
(j)
k =

sin(2πjk/m). In particular, the eigenvectors are periodic, reflecting the periodicity of
the latent variable θ. These eigenvectors together form the columns of the matrixU . As
an illustration, the eigenvectors v(1) and w(1) are plotted against each other in Fig. 4B.

Consider the truncation UN of U to N columns. We’re interested in the properties
of UN embedded as a geometric object, with each row constituting a single data point
in N -dimensional space. The sine and cosine structure of the eigenvectors ensures that
this structure is periodic. In particular, the rows of UN are m samples from a loop that
nonlinearly curves through N -dimensional space.

Since this loop structure of UN is nonlinearly embedded, nonlinear dimensionality
reduction methods are well suited for recovering this structure. Indeed, since the sin-
gular values of UN are all 1, trying to extract structure from it with the linear method
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of PCA will only return a random set of the columns of UN . In general, the ability
of nonlinear dimensionality reduction methods to successfully extract the structure of
interest from a dataset depends on having enough datapoints, and our situation is no
exception. In our case, the number of datapoints is m, and this will need to be a large
enough number for the dimensionality reduction method to succeed. The precise num-
ber of datapoints needed will depend on the specifics of the dimensionality reduction
method used. To proceed, we will assume that m is sufficiently large.

For intuition as to why nonlinear methods work, we focus on the approach of the
nonlinear method Isomap. The first step of Isomap involves building a graph on the
datapoints where points that are sufficiently close are connected by an edge. Let’s
consider the strategy of connecting every point to its two nearest neighbors. Then in our
case this graph will indeed be a loop through high-dimensional space, and embedding
this graph in two dimensions in a way that best preserves distance information reveals
a ring.

Recall the minimizer W ∗
out ≈ UNQ, W ∗

in ≈ QT (UN)
T of the regularized loss

for the linear model. In practice we find that the periodicity of UN is reflected in the
weightsW out in the autoencoder trained with stochastic gradient descent. As illustrated
by Fig. 3, this extends to networks with tanh nonlinearity. Here the network is trained
with λ = 4e−6 and m = 100. The latent variable structure can be partially seen in
the apparent periodicity of points obtained by using PCA to project the columns of
W out onto a three-dimensional space in Fig. 3B. As discussed above, this periodicity
is revealed more clearly by using Isomap to “unravel” the coils caused by the higher
frequency modes, as can be seen in Fig. 3C.

Nonperiodic latent variables give rise to nonperiodic weight structure

The above analysis can be repeated in a similar form for the case of a nonperiodic latent
variable θ on a line segment, where this time gk(θ) ∝ exp(−|θ − zk|2/σ2). Suppose
the receptive field centers z1 through zm evenly tile the line segment [0, 1], with z1 = 0
and zm = 1. While we are interested in the case where θ is uniformly distributed on
[0, 1], this becomes mathematically challenging to work with due to conditions at the
boundary being different than conditions in the center of the interval. Instead, we let
S be the interval [−s, s + 1], with the usual interval topology. Taking s sufficiently
large will allow us to deal with boundary effects; for instance, this assumption ensures
that 〈gk(θ)〉 is approximately independent of k. In this case the covariance matrix,
instead of being circulant, is approximately Toeplitz, which means that the entries on
each descending diagonal from left to right are the same. This can be seen by choosing
indices j, k and ` constrained such that j, k ∈ {1, ...,m}, j + ` ∈ {1, ...,m}, k + ` ∈
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{1, ...,m} and computing

〈gj+`(θ)gk+`(θ)〉 = 〈gj (θ − z`) gk (θ − z`)〉

=
1

2s+ 1

∫ s+1

−s
gj (θ − z`) gk (θ − z`) dθ

=
1

2s+ 1

∫ s+1−z`

−s−z`
gj (θ) gk (θ) dθ

≈ 1

2s+ 1

∫ s+1

−s
gj (θ) gk (θ) dθ

= 〈gj(θ)gk(θ)〉.

The approximation is justified when s is much larger than zm, since the contribution
to the integral near the integration limits is vanishingly small. This approximation be-
comes exact for large enough s if we clip the receptive field functions gj to have finite
support.

Computing the shifted means has a similar flavor:

〈gj+`(θ)〉 = 〈gj (θ − z`)〉

=
1

2s+ 1

∫ s+1

−s
gj (θ − z`) dθ

=
1

2s+ 1

∫ s+1−z`

−s−z`
gj (θ) dθ

≈ 1

2s+ 1

∫ s+1

−s
gj (θ) dθ

= 〈gj(θ)〉.

Taken together, these equations imply that Cj+`,k+` = Cj,k, so thatC is Toeplitz. In our
simulations we take s = 0 so that C is only approximately Toeplitz, but find that the
conclusions below still hold in practice.

While the eigenvectors of Toeplitz matrices are not in general determined as they
are for circulant matrices, they are known for tridiagonal Toeplitz matrices. Symmet-
ric tridiagonal Toeplitz matrices all have the same eigenvectors, of the form u

(k)
j =

a sin
(
jπk
m+1

)
for k, j = 1, ...,m, where a is an arbitrary nonzero scalar. The odd eigen-

vectors u(2k+1) are symmetric (which in particular means that u(2k+1)
1 = u

(2k+1)
m ) while

the even eigenvectors are antisymmetric (in particular, u(2k)1 = −u(2k)m ). Recall that the
u(k) make up the columns of U .

As before, we consider UN as a geometric object embedded in N dimensional
space, where the rows are datapoints. Under the assumptions of tridiagonal covariance
matrix, the eigenvectors u(k) given above reveal a particular structure: in our numerical
tests, the rows of UN lie along a curve with the endpoints disconnected, provided that
N < m. To show this, we need to show that the distance the first and last row of UN

is larger than the distance between adjacent rows. While we do not prove this here, in
practice we have found this to be the case numerically (data not shown). In fact, for
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m−N sufficiently large we find that the distance between the first and last row is larger
than the distance between rows k and k + 2, for k = 1, ...,m− 2 as well.

With this “gap” between the first and last row of UN , we can use nonlinear dimen-
sionality reduction methods to reveal the structure of a line segment. Consider again
the strategy of connecting every point to its two nearest neighbors, as is done in using
Isomap. In this case the “middle” sections of the curve will look as in the case of the
periodic latent variable, but the ends will be different. Ifm−N is large enough then the
two endpoints of the line will not be connected, and the general structure of the graph
will be that of a line.

Now we consider Toeplitz matrices with more than three (but still finitely many)
nonzero diagonals. For fixed k, the eigenvector u(k) in this case approaches the form
a sin

(
jπk
m+1

)
in the asymptotic limit of large m [20]. It follows that, after truncating

to UN for finite N and taking m to be large, we can use the same reasoning as in
the tridiagonal case to infer that the rows of UN lie along a curve with the endpoints
disconnected. The structure of the eigenvectors is illustrated by plotting u(1) and u(2)

against each other in Fig. 4D for m = 60.
This topology appears in the weights of the trained autoencoder, as shown by Isomap

in Fig. 3F. Here the network is trained with λ = 4e−6 and m = 100. PCA projections
of the weights do not reveal this structure as clearly (Fig. 3E).

Tensored latent variables give rise to tensored weights

In this section we consider combinations of latent variables found by taking tensor
products of other latent variables. Consider the case of “place cell” encoding on a
torus, where both boundaries of the grid are periodic. This can be thought of as a
tensored combination of two periodic latent variables. Suppose that the first and second
coordinates of θ correspond to the periodic latent variables θ1 and θ2, respectively, and
that each is i.i.d. uniformly distributed on the circle S1.

Recall our choice of Gaussian curve response function on the circle: gk(θ) =
a exp(−dS1(θ, zk)

2/σ2) where a is a positive scalar and dS1(θ, θ′) = min{|θ−θ′|, 2π−
|θ − θ′|} is distance on the circle. We abuse notation slightly and use the same name
for a Gaussian curve response function on the torus: gi,k(θ) = a2 exp(−d(θ, zi,k)2/σ2)
where d is Euclidean distance on the torus, which can be written

d(θ,θ′) =
√
dS1(θ1, θ′1)

2 + dS1(θ2, θ′2)
2.

This time the tuning curve centers zi,k have two indices and evenly tile the two-dimensional
surface of the torus. Our goal is to decomposeCi,j,k,` = 〈gi,k(θ)gj,`(θ)〉−〈gi,k(θ)〉〈gj,`(θ)〉
into contributions from tuning curves gk(θ) defined on the circle. We start with the ob-
servation that

gik(θ) = gi (θ1) gk (θ2) .

Using this, along with independence of θ1 and θ2,

Ci,j,k,` = 〈gi,k(θ)gj,`(θ)〉 − 〈gi,k(θ)〉〈gj,`(θ)〉
= 〈gi (θ1) gj (θ1) gk (θ2) g` (θ2)〉 − 〈gi (θ1) gk (θ2)〉〈gj (θ1) g` (θ2)〉
= 〈gi (θ1) gj (θ1)〉〈gk (θ2) g` (θ2)〉 − 〈gi (θ1)〉〈gk (θ2)〉〈gj (θ1)〉〈g` (θ2)〉.
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Recall that 〈gj (θ)〉 = µ is independent of j. If we let (CS1)ij = 〈gi (θ) gj (θ)〉 − µ2 be
the covariance matrix for inputs on a circle, then we can write

Ci,j,k,` = ((CS1)ij + µ2)((CS1)k` + µ2)− µ4

= (CS1)ij(CS1)k` + µ2(CS1)ij + µ2(CS1)k`.

From this equation, we can see that C can be written as sums of Kronecker tensor
products (denoted ⊗):

C = CS1 ⊗CS1 + µ2CS1 ⊗ 1m1Tm + µ21m1Tm ⊗CS1 .

Matrix multiplication of Kronecker products satisfies the mixed-product property:
(A ⊗B)(C ⊗D) = (AC) ⊗ (BD). Suppose that u and v are eigenvectors of CS1

with eigenvalues λu and λv, respectively. Then

C(u⊗ v) = λuλvu⊗ v + µ2λuu⊗ 1m1Tmv + µ2λv1m1Tmu⊗ v
= λuλvu⊗ v + µ2λu‖v‖1u⊗ 1m + µ2λv‖u‖11m ⊗ v.

This equation reveals that u ⊗ v are eigenvectors of C provided either (1) µ = 0 or
(2) ‖u‖1 = 0 or u = 1m, and ‖v‖1 = 0 or v = 1m. The eigenvectors of CS1 satisfy
condition (2), as is easy to verify. Hence in the case of inputs formed from tensoring two
periodic latent variables, we can find closed form solutions for the eigenvectors of the
covariance matrix. These eigenvectors are tensor products of periodic latent variables,
so that their structure reflects that of a torus (twisted nonlinearly throughN dimensional
space). This structure appears in the weights of the trained autoencoder (Fig. 3L). Here
the network is trained with λ = 4e−6 and m = 20 · 20 = 400.

In the case where one or both of the variables being tensored is nonperiodic, we cur-
rently lack a general mathematical characterization of the eigenvectors. In the special
case when the mean response is zero, µ = 0, the eigenvectors of C are the tensor prod-
ucts of the eigenvectors of the covariance matrices for the two latent variables. This can
be shown by similar reasoning as above. Even when µ is nonzero, we see experimen-
tally that the structure of the tensor product of a periodic and nonperiodic latent variable
resembles a breaking of the toroidal structure similar to the scalar case. In particular,
one end of the torus has a gap, which makes the structure resemble that of a cylinder.
In this case the covariance matrix has the form shown in Fig. 4E if the periodic variable
is the first coordinate and Fig. 4G if the nonperiodic variable is the first coordinate (this
relationship may be reversed depending on how the four indices of C are unrolled into
two indices). The cylindrical structure can be seen in Figs. 4F and 4H. This cylindrical
structure is also reflected in the weights of the autoencoder (Fig. 3I). Here the network
is trained with λ = 4e−6 and m = 20 · 20 = 400.

5 Discussion
It is important to investigate the ways that connectivity data can be used to help us
understand neural circuits. Here we focus on using dimensionality reduction techniques
to infer elements of the function of a neural circuit from the structure of the weights.
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We find that the latent variables that underlie the inputs can be recovered from the
weights of an autoencoder with a single layer of hidden units. This is accomplished
via nonlinear dimensionality reduction methods, such as Isomap. In particular, periodic
inputs give rise to periodic weight structure, and nonperiodic inputs to nonperiodic
weight structure. The tensor products of such inputs results in an analogous structure
in the weights. The emergence of this structure depends on regularization to penalize
large weights. It also depends on the inputs encoding low-dimensional latent variables
in a high-dimensional way.

The approach of focusing on connectivity data to deduce information about the func-
tion of a neural circuit complements other very fruitful efforts of probing the activity of
neurons in the circuit. The latter includes the seminal work of Hubel and Wiesel [21],
which provided strong evidence via recordings in cat striate cortex that neural responses
in this area are built from simple combinations of the responses of retinal ganglion cell
neurons. Another noteworthy example is the analysis of bump-attractor-like dynamics
in the Drosophila ellipsoid body [22], which demonstrated through two-photon cal-
cium imaging that the circuit tracks orientation information through integrated sensory
information. There are, however, difficulties in using neural activations alone to draw
inferences. For instance, it isn’t always clear how to satisfactorily explore the space of
all possible input stimuli. Often multiple competing models arise to reproduce neural
circuit function or neural activity, and connectivity data can be used to select among
them [6]. Connectivity data may also be useful for choosing parameters in models that
are overparametrized. In the Drosophila ellipsoid body example, fine-grain analysis of
connectivity data will probably be necessary to answer once and for all whether the
bump attractor dynamics are implemented by a ring attractor network topology, and
how this ring attractor is implemented precisely (see [23] for significant recent steps in
this direction).

As analysis of connectivity data has its own set of shortcomings – for instance,
information about neural modulation, the precise nonlinear responses of neurons to
inputs, and many other factors are left out – hybrid methods that take into account both
neural activation as well as connectivity data will be important far into the future. There
are also other promising avenues for using connectivity data in ways distinct from the
methods considered here. One approach is to develop models that fit neural activity
data or that satisfy the believed function of a neural circuit while constraining them
with connectivity data (reviewed in [6]). Another fruitful approach is to first generate
a network model with a connectivity determined through data-driven means, assume
a form of neural unit dynamics in the model, and then analyze the resulting network
dynamics (for instance, [24, 25]).

Our approach is limited both by the simplicity of the task and network model, as
well as the need to have exact values for the weights of synapses between neurons (a
value that is difficult to assign in data). Our mathematical analysis assumes linear neural
responses, and while we observe that these results extend in this case to hyperbolic
tangent nonlinear responses in simulations, more work needs to be done to see how
robust these approaches are to the type of nonlinearity used.

Our analysis opens the door to many interesting future studies. These include ex-
tensions to more complicated tasks and models such as deeper autoencoders or more
general feedforward networks trained on more sophisticated tasks. It would also be
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valuable to determine if the structure can be recovered when exact synapse values are
not known, when sparsity constraints on the weights are applied, or when different
nonlinearities are used in the model. Brain circuits contain both deep hierarchy and
recurrent connections, and it remains to be seen if our methods will be successful in
artificial networks that have these complexities. In extending to data from the brain,
persistent homology techniques could potentially be combined with nonlinear dimen-
sionality reduction techniques to help deal with inaccuracies in the data.

The observation that using nonlinear – as opposed to linear – dimensionality reduc-
tion methods is important for extracting structure in the weights, and that regularization
during training also encourages this structure to emerge, can guide efforts to investigate
more complex models. In general, network models fail to be identifiable, exemplified by
the arbitrary invertible matrix A in our model. In the same way, in deep linear networks
arbitrary invertible linear transformations of one layer’s weights can be undone by the
inverse transformation applied to the next layer’s weights. When it comes to analyzing
neural networks (be it the connectivity or unit activities), it is important to work out
the most natural constraints that result in meaningful and interpretable network struc-
tures. Here we’ve shown that the solutions enforced by Frobenius norm regularization
[17, 18] are sufficiently constrained to yield latent variable information. This regular-
ization can be viewed as a cost on weight resources, a biologically relevant constraining
factor. This indicates that biological connectivity data may indeed be constrained such
that they yield information about neural circuit function via dimensionality reduction
methods like those explored here. In addition, we’ve found that this regularization
is not always necessary for extracting the weights when training with SGD (data not
shown). This may be because, with the right initialization, the solutions found by SGD
are biased to have relatively low Frobenius norm. It is still an open question as to if L2
regularization or other constraints are sufficient for enforcing interpretability in broader
classes of network models (see [14, 26, 27] for works related to these issues).
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