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Abstract
Interactions between bacteria are thought to play an important role in the assembly of plant microbial 
communities (1), yet the extent of temporal variation in these interactions is unclear. We inferred 
interactions from sequence-based counts of bacteria in a series of Arabidopsis thaliana tissue samples 
spanning major developmental transitions in the plant life cycle (2). Bacterial interactions were 
transient, even among variants found together at consecutive developmental stages. The overwhelming 
majority of these interactions were positive, indicating that competition for the plant niche might be a 
less important driver of bacterial abundances than cooperation or common responses to host and 
environmental factors. Over time, interaction networks diverged from an initial scale-free structure and 
became increasingly modular. In all networks, we found evidence of a hierarchical structure in which 
hub bacteria bridged network modules. However, the identities of bacteria in these influential roles also
varied during plant growth.

Main
Microbial communities undergo shifts in diversity and composition as seasons change and their hosts 
mature (3,4). However, temporal variation of microbe-microbe interactions within these communities 
has not been characterized. Since most natural surveys of plant microbial communities take snapshots 
of a single life stage, it is difficult to assess whether the inferred interactions, especially those of highly 
influential “hub” bacteria, consistently shape the community or are subject to turnover as the host ages. 

To characterize this temporal variation, we inferred bacterial interactions in tissue samples spanning the
vegetative, flowering, and senescent phases of an annual plant's development. Over two years, the 
bacteria inhabiting A. thaliana were surveyed by amplifying and sequencing a portion of the 16S rRNA
gene (16S) in root and phyllosphere samples from plants grown at two sites in southeast Michigan: 
Michigan State Extension Center (ME) and Warren Woods Ecological Field Station (WW). Amplicon 
sequence variants (ASVs) defined the bacterial lineages present in each sample, albeit with limited 
resolution below the family level (5). Using the SPIEC-EASI pipeline (6), interactions were inferred 
between ASVs based on an inverse covariance matrix generated from transformed counts. We assigned 
direction and magnitudes to the interactions based on abundance correlations (7) between the ASVs 
(Supplementary Methods).

A previous study of A. thaliana leaf microbial networks reported that most (86.5%) interactions 
between bacteria were positive (8). We too found that the abundance correlations were overwhelmingly
positive throughout development, regardless of the tissue sampled or the site of harvest (Table 1). 
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Interactions are visualized for root networks in Figure 1A and for phyllosphere networks in Figure S1. 

The high fraction of positive relationships suggests that competitive interactions do not stabilize plant 
bacterial communities as they do in models of the human gut microbiome (9). A preponderance of 
positive interactions is perhaps not surprising given that we considered bacteria only; broader surveys 
of the plant microbiome indicate that negative interactions are more common between kingdoms than 
within them (8,10). Positive correlations between bacterial ASV abundances might arise from 
metabolic cooperation (11), a confounding non-bacterial microbe (10) or a confounding abiotic factor 
(12). Irrespective of the cause, we found that the strength of these inferred ecological relationships was 
unrelated to the phylogenetic distances between bacteria (estimated by Pearson correlation coefficients 
(PCC) and phylogenetic branch length (PD) respectively) (Table 1), although we note that 16S has poor
resolution in distinguishing closely related species.

Bacterial interactions in the roots and the phyllosphere were transient, at least with respect to our 
relatively coarse temporal sampling. With each successive developmental transition in roots, 60 to 80%
of bacteria present before the transition were retained. These bacteria increased their number of 
interaction partners (Figure S2), but less than 10% of their previous interactions remained intact 
(Figure S3). In leaves, a smaller fraction of the community was conserved across the transition from 
vegetative growth to flowering. Of bacteria that entered the network during vegetative growth, 35% to 
51% were present after flowering. Again, less than 10% of their relationships were conserved across 
stages. No more than 30% of interactions were conserved across any two networks within a tissue type,
developmental stage, or field site.

The influence of bacteria was also inconsistent across tissues, sites, and developmental stages. Hub 
bacteria were identified by degree and betweenness centrality scores above the ninetieth percentile for 
nodes in a network. Neither of these metrics correlated with the prevalence or abundance of the 
bacteria in the dataset (Figure S4). No bacteria were consistently designated as hubs throughout plant 
life and only 11% persisted as hubs across any tissues, sites or more than one stage (Figure S5). For 
example, only one recurring hub was observed in root networks (Figure 1A). The inconsistency of 
influential bacteria was robust to lowering the thresholds on degree and betweenness centrality that 
defined hubs (Table S1). Hub microbes are proposed to propagate the effects of the abiotic environment
or host plant throughout the microbial community (8,13). Although hub status in computed networks is 
insufficient to establish keystone taxa (14), the inconsistency we find in hub identities indicates that the
microbes playing keystone roles in plant microbial communities could shift over a host's lifetime.

Networks from all tissues and both sites displayed a power-law relationship between node clustering 
coefficient and degree throughout development, consistent with a hierarchical structure in which hubs 
connect modules of lower-degree nodes (15). Other structural characteristics of the networks were in 
flux as communities assembled during plant growth. We tested whether the degree distribution of each 
network was well fit by the power-law distribution characteristic of scale-free networks (16, 17). 
Although early networks in roots and leaves were scale-free, some flowering networks and all 
senescent networks diverged from this structure (Table 1, Figure 1B), adding to evidence that strict 
scale-free structure is uncommon in biological networks (18) and showing that systems can move in 
and out of this paradigm over time. As networks became less scale-free, they became more modular 
relative to networks of the same size with randomized edges (Table 1). Modularity is linked to the 
stability of ecological systems. High modularity destabilizes communities, especially when interactions
are strongly positive (19).
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Figure 1. Bacterial interactions in A. thaliana remain overwhelmingly positive while hub 
identities and network structure change during development. (A) The inferred interaction networks
for root bacteria at each stage (column) and site (row) are displayed. In the top image, color indicates 
positive (green) and negative (orange) abundance correlations between 16S ASVs in the network. The 
thickness of the edges between ASVs represents the absolute value of the correlation coefficient. While
networks inference from sequencing data cannot distinguish between direct microbe-microbe 
interactions and those mediated by, for example, the plant host, patterns can be observed in the nature 
of the interactions and the ASV involved in them. At all developmental stages, a majority of 
interactions are positive. The bottom image highlights the network's hub bacteria, as determined by 
degree and betweenness centrality above the ninetieth percentile, in black. Hub identities are 
inconsistent: only one bacterial variant (40c4a, colored red) in the genus Geodermatophilus is classified
as a hub in multiple root networks. (B) The relationship between degree and the fraction of nodes with 
that degree is plotted on a log10 scale for all nodes in plant root and phyllosphere networks. The 
empirical data are distinguished by field site (shape) and developmental stage (color) and plotted 
against a null distribution (black) generated for networks of the same size with a Barabási-Albert model
(19). As shown by best-fit lines with a 95% confidence interval for the null distribution, the 
relationships increasingly depart from the expectation for a scale-free network as development 
progresses.

We inferred these interaction networks with an inverse covariance approach intended to minimize 
spurious connections in sparse networks. To determine whether our results were robust to network 
inference method (20), we repeated the analysis with networks inferred using only the correlations of 
bacterial abundances and thresholds for their p-values and magnitudes (Table 1). In correlation-based 
networks, interactions remained overwhelmingly positive and unrelated to the phylogenetic distance 
between bacteria. Interactions remained transient, with an average of only 10 to 25% of interactions 
shared between networks within a tissue, stage, or site. The identities of influential bacteria were again 
transient across space and time, with less than 30% of hubs holding that status in more than one 
network (Figure S6). However, these correlation-based networks lacked the evidence of hierarchy and 
the directional temporal trends in modularity and structure that were observed in the inverse covariance
networks. Structural features of the correlation networks varied as much within developmental stages 
as between them, perhaps because the addition of spurious edges blurred biological patterns.

Data
The data used in this study can be accessed in the NCBI's Sequence Read Archive, BioProject ID 
PRJNA607544 (available March 31, 2020). The community count table, sample metadata, taxonomy, 
and 16S tree used in the analysis were generated by Beilsmith et al (2). These files and the scripts 
needed to reproduce the analysis are available at: https://github.com/krbeilsmith/KBMP2020_Networks
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Table 1. Properties of bacterial interaction networks from Arabidopsis thaliana. The top panel 
presents results from networks inferred with an inverse covariance approach and the bottom panel 
presents results from correlation-based networks. Rows are divided by stage, tissue, and field site. 
The first three columns present the number of bacteria (nodes), interactions (edges), and the fraction 
of positive interactions (% Pos) in each network. Further right, columns present results for four 
patterns in network structure: (a) The slope (m) and F-test p-value for a linear model fit to 
phylogenetic distance (PD) vs. Pearson correlation coefficient (PCC); (b) α and Kolmogorov-
Smirnov p-value for a power law fit to the network degree distribution Pr(k)  k∝ −α; (c) a z-score for 
the empirical network modularity in a distribution obtained by simulating random networks of the 
same size; and (d) the coefficient of determination (R2), slope (m) and F-test p-value for a linear 
model fit to log10 local clustering coefficient C(k) vs. log10 degree k.

Inverse Covariance Networks

Site Nodes Edges % Pos m p-value α p-value z score m p-value

Vegetative

Roots
ME 60 55 0.78 0.0 0.5 3.0 0.96 3.7 0.9 -2.3

WW 29 20 1.00 -0.1 0.3 3.1 1.00 3.9 NA NA NA

Leaves
ME 63 46 1.00 0.0 0.5 4.0 1.00 3.8 1.0 -2.7

WW 72 82 0.96 -0.1 0.0 2.8 0.39 3.3 1.0 -2.4

Flowering

Roots
ME 180 261 0.90 0.0 0.3 2.3 8.5 0.5 -1.2

WW 148 157 0.91 -0.1 0.1 3.2 0.81 7.6 1.0 -2.4

Leaves
ME 90 75 0.93 0.0 0.5 3.4 0.74 4.3 0.9 -1.6

WW 135 199 0.83 -0.1 0.0 2.4 6.8 0.5 -1.3

Senescent

Roots
ME 257 696 0.80 0.0 0.0 1.8 8.8 0.4 -1.2

WW 286 490 0.96 0.0 0.0 2.3 14.0 0.7 -1.6

Stems
ME 109 153 0.95 0.0 0.4 2.5 7.3 0.6 -1.7

WW 182 396 0.83 -0.1 0.0 2.0 8.7 0.4 -1.1

Correlation Networks

Vegetative

Roots
ME 83 159 0.73 0.0 0.4 1.9 2.8 0.2 -0.5

WW 97 448 0.60 0.0 0.5 2.0 0.1 0.0 -0.1 0.49

Leaves
ME 27 17 0.94 0.0 0.1 3.2 1.00 3.2 1.0 -2.7 0.00

WW 86 395 0.61 0.0 0.1 2.0 0.1 0.0 0.1 0.35

Flowering

Roots
ME 143 375 0.77 0.0 0.7 1.9 0.19 1.8 0.2 -0.3

WW 170 1294 0.62 0.0 0.0 2.0 0.00 13.0 0.1 0.1

Leaves
ME 108 286 0.69 0.0 0.0 1.8 0.12 3.0 0.0 -0.1 0.51

WW 144 1220 0.60 0.0 0.0 2.0 6.3 0.1 0.2

Senescent

Roots
ME 228 1052 0.71 0.0 0.4 2.0 5.4 0.0 -0.1

WW 259 1067 0.75 0.0 0.3 1.7 0.5 0.0 -0.2

Stems
ME 101 352 0.78 0.0 1.7 4.2 0.3 -0.4

WW 120 339 0.80 0.0 1.8 7.1 0.2 -0.4

PD vs. PCCa Scale-freeb Modularityc Hierarchicald

R2

1.8 x 10-5

4.3 x 10-62

2.2 x 10-13

6 x 10-7 8.2 x 10-10

1.2 x 10-15

1 x 10-4

4.2 x 10-3 6.5 x 10-7

6.9 x 10-24 2.5 x 10-20

7.8 x 10-9 8 x 10-35

8.5 x 10-3 2.5 x 10-9

2 x 10-10 1.4 x 10-9

8.1 x 10-4 2 x 10-3

1.9 x 10-9

3.2 x 10-8

1.6 x 10-4

2 x 10-3

2.8 x 10-28 1.7 x 10-4

2.4 x 10-24 4.2 x 10-2

4.5 x 10-6 4 x 10-3

1.7 x 10-7 1.1 x 10-4 2.8 x 10-7

3.9 x 10-6 5.8 x 10-3 2.6 x 10-5
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Supplementary information

Supplementary Methods
Beilsmith2020_SupplementaryMethods.doc

Figure S1
These phyllosphere bacterial networks further support points made with the root networks in Figure 
1A. Color indicates positive (green) and negative (orange) abundance correlations and line thickness 
corresponds to the correlation coefficient. Hubs are highlighted in black and those conserved across 
networks are red and labeled with partial ASV identifiers. Only one ASV (e8ab0), in the genus 
Nocardioides, was conserved.
Beilsmith2020_SupplementaryFigure_S1.tif

Figure S2
The number of ASV interaction partners tends to increase over major developmental transitions. For 
ASVs (nodes) remaining after a transition, the number of edges (degree) before and after the transition 
were compared. On the x-axis, positive numbers indicate net connections gained while negative 
numbers indicate net connections lost. The bar height on the y-axis indicates the frequency of 
conserved nodes with the corresponding number of gains or losses. Interactions gained and lost are 
shown for the transition to flowering in roots and rosette leaves and for senescence in roots (vertical 
panels).
Beilsmith2020_SupplementaryFigure_S2.tif

Figure S3
Interactions in the networks are transient, as evidenced by the low number of edges conserved between 
ASVs that occur before and after major developmental transitions. Network comparisons are indicated 
on the x-axis by filled circles connected by lines. The number of overlapping edges in each comparison
is shown on the y-axis. The total number of edges in each network is plotted to the left of the network 
name.
Beilsmith2020_SupplementaryFigure_S3.tif

Figure S4
Hubs were identified by degree and betweenness centrality. These criteria for influence did not 
correlate with ASV prevalence (the number of samples in which the ASV was present) or raw 
abundance (the total number of counts for the ASV).
Beilsmith2020_SupplementaryFigure_S4.tif

Figure S5
Distributions of recurring hubs (columns) in inverse covariance networks. Hubs are organized by 
family and compared across developmental stages, field sites (vertical panels) and tissues (rows). Black
cells indicate the ASV is both present and meets the hub criteria; white cells indicate the ASV is either 
not present or not a hub.
File type: TIFF (.tif)
File name: Beilsmith2020_SupplementaryFigure_S5.tif
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Figure S6
Distributions of recurring hubs (columns) in correlation-based networks. Hubs are organized by family 
and compared across developmental stages, field sites (vertical panels) and tissues (rows). Black cells 
indicate the ASV is both present and meets the hub criteria; white cells indicate the ASV is either not 
present or not a hub.
File type: TIFF (.tif)
File name: Beilsmith2020_SupplementaryFigure_S6.tif

Table S1
The transience of influence in networks is demonstrated by the inconsistency between them in the 
ASVs designated as putative hubs. Only 11% of hubs and 30% of hubs were conserved between at least
two inverse covariance and correlation-based networks, respectively. When the criteria for hubs were 
lowered to the eightieth percentile of degree and betweenness centrality for nodes in a network, these 
fractions did not greatly increase. Even when the thresholds were lowered to the seventieth percentile 
for hub metrics, only 21% and 37% of hubs recurred across at least two inverse covariance and 
correlation-based networks, respectively.
Beilsmith2020_SupplementaryTable_S1.xls
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