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Abstract 

Cell-to-cell communication can be inferred from ligand-receptor expression in cell transcriptomic 

datasets. However, important challenges remain: 1) global integration of cell-to-cell communication, 

2) biological interpretation, and 3) application to individual cell population transcriptomic profiles. 

We developed ICELLNET, a transcriptomic-based framework integrating: 1) an original expert-

curated database of ligand-receptor interactions accounting for multiple subunits expression, 2) 

quantification of communication scores, 3) the possibility to connect a cell population of interest with 

31 reference human cell types (BioGPS), and 4) three visualization modes to facilitate biological 

interpretation. We applied ICELLNET to uncover different communication in breast cancer 

associated fibroblast (CAF) subsets. ICELLNET also revealed autocrine IL-10 as a switch to control 

human dendritic cell communication with up to 12 other cell types, four of which were experimentally 

validated. In summary, ICELLNET is a global, versatile, biologically validated, and easy-to-use 

framework to dissect cell communication from single or multiple cell-based transcriptomic profile(s). 
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Introduction  

Cell-to-cell communication is at the basis of the higher order organization observed in tissues, organs, 

and organisms, at steady-state and in response to stress. It involves a “messenger” or “sender” cell, 

which transmits information signals to a “receiving” or “target” cell. Information is generally coded 

in the form of a chemical molecule that is sensed by the target cell through a cognate receptor. 

Multiple cells or cell types communicating with each other form cell communication networks. 

In mammalian organisms, endocrine communication involves cells that may be at very distant 

anatomical sites. However, cell communication also takes place locally through cell-to-cell contacts, 

or through inflammatory molecules. Cytokines and other mediators can be involved in distant as well 

as local communication1–3. Hence, when deciphering cell-to-cell communication, one should account 

for potential signals coming both from spatially proximal and distal cells. 

Most studies in the past decades have focused on a limited number of communication molecules in a 

given anatomical site or physiological process. The availability of large-scale transcriptomic datasets 

from several cell types, tissue locations, and cell activation states, opened the possibility of 

reconstructing cell-to-cell interactions based on the expression of specific ligand-receptor pairs on 

sender and target cells, respectively. Many of them exploit single cell RNAseq datasets to infer 

communication between groups of cells within the same dataset4–7. Despite leading to interesting and 

often innovative hypotheses4,6,8, these methods do not integrate putative signals that may come from 

more distant cells. Also, they cannot be applied to bulk transcriptomic data derived from a given cell 

population. Such datasets are numerous in public databases, and can be a source of novel insights 

into how each cell type may send or receive communication signals. 

Another important aspect when inferring cell-to-cell communication is the use of databases of ligand-

receptor interactions. Some are very broad with over 2000 ligand-receptor pairs9, but lack systematic 

manual or expert curation, which may impact the quality and biological relevance of the annotation. 

Others include lower numbers of ligand-receptor pairs and provide manually curated information 
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from the literature4,10, without necessarily providing systematic combinatorial rules for the 

association of protein subunits into multimeric ligands or receptors.  

The last point relates to the granularity that is structuring the biological information into families and 

subfamilies of functionally and structurally related molecules. We only found one tool that provides 

a classification into four families of communication molecules5, while suffering from other 

limitations in particular the lack of manual curation. 

 

In this study we developed ICELLNET, a novel and versatile computational framework to infer cell-

to-cell communication from a wide range of bulk and single cell transcriptomic datasets. Each family 

of communication molecules was expert curated and organized into biologically relevant sub-

families. ICELLNET offers an array of visualization tools in order to facilitate biological 

interpretation and discoveries. We provide applications to public datasets, and our own original 

transcriptomic datasets in non-immune (tumor fibroblasts) and immune cell types. Experimental 

validation of ICELLNET-derived predictions demonstrated IL-10 control of human dendritic cell 

communication. 

	

Results 

Expert-curated database of ligand-receptor interactions  

In order to globally reconstruct cell communication networks, we curated a comprehensive database 

of ligand-receptor interactions from the literature3,11,12 and public databases10,13. Rather than focusing 

on the breadth of the resource, we used a strategy that prioritizes expert manual curation and 

biological insight based on precise biochemical and functional classifications. This led to the 

integration of 380 ligand-receptor interactions into the ICELLNET database (Suppl. Table S1). 

Whenever relevant, we took into account the multiple subunits of the ligands and the receptors 
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(Figure 1A). Interactions were classified into 6 major families of communication molecules, with a 

strong emphasis on inflammatory and immune processes: Growth factors, Cytokines, Chemokines, 

Immune Checkpoints, Notch signaling and Antigen binding (Figure 1B and Suppl. Table S1). Other 

families such as hormones or adhesion molecules were more scarcely represented. In order to simplify 

the subsequent graphical visualization, these were grouped as “other” in our current classification 

(Figure 1B and Suppl. Table S1).  

Cytokine-receptor pairs were mapped in an exhaustive manner, by exploiting a series of reference 

articles and consensus classifications. They represent 50% of the total interactions included in the 

database (194 interactions), and were further classified into 7 sub-families according to structural 

protein motifs: type 1 cytokines, type 2 cytokines, IL-1 family, IL-17 family, TNF family, TGF-ß 

family and RTK cytokines 3,14–16(Figure 1C). 

 

Development of a computational pipeline to dissect intercellular communication 

In the ICELLNET framework, we developed an automatized tool in R script to infer communication 

between multiple cell types by integrating; 1) prior knowledge on ligand-receptor interactions 

(Figure 1); 2) computation of a communication score between pairs of cells based on their 

transcriptomic profiles, and; 3) several visualization modes to guide results interpretation. 

Quantification of intercellular communication was achieved by scoring the intensity of each ligand-

receptor interaction between two cell types from their expression profiles (Figure 2). 

From each transcriptomic profile, all genes or only differentially expressed genes could be used, and 

no filtering threshold was applied to gene expression. Taking advantage of the ICELLNET database, 

the genes coding for ligands/receptors were selected from all 380 interactions to compute the score, 

but it is also possible to restrict the database to specific families of molecules, depending on the 

biological question.  

A unique feature and strength of ICELLNET is its ability to infer cell-to-cell communication even 

from an individual cell population-based transcriptome of interest (the “central cell”). ICELLNET 
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first considers the transcriptomic profile of each “central cell”, which may correspond to different 

cell subsets or the same cell type cultured in different biological conditions (Fig 2 top-left). 

ICELLNET separately considers other cell types with known transcriptomic profiles that can connect 

to the central cell, called « peripheral cells ». These can be cell types coming from the same dataset 

as the central cell, or from any other transcriptomic dataset. The ICELLNET pipeline has integrated  

reference transcriptomic profiles by using the Human Primary Cell Atlas17,18. This public dataset 

includes transcriptomic profiles of 31 cell types including immune cells, stromal cells, neural cells, 

and tissue specific cell types, all generated with the same Affymetrix technology (Fig 2 top-right). 

Human Primary Cell Atlas has been downloaded and added to ICELLNET framework, in order to be 

used as reference transcriptomic profiles of peripheral cell types (Suppl Table S2). 

 

Establishment of a score to assess the communication between cells 

From the transcriptomic profiles, we selected the genes coding for the ligands and the receptors in 

our database. We designed the tool to enable the user to focus either on the ligands and/or receptors 

that are differentially expressed between conditions of study, or to use the entire ligand-receptor 

database to compute the communication score. 

Since cell-to-cell communication is directional, we considered ligand expression from the central cell, 

and receptor expression from the peripheral cells in order to assess outward communication. 

Conversely, we then selected receptor expression from the central cell, and ligand expression from 

peripheral cells in order to assess inward communication (Figure 2 middle). Gene expression levels 

were scaled to avoid a communication score driven predominantly by highly expressed genes. In the 

ICELLNET framework, quantification of intercellular communication consists of scoring the 

intensity of each ligand-receptor interaction between two cell types with known expression profiles. 

Whenever relevant, we took into account multiple ligand subunits, or receptor chains, using logical 

rules to impose their co-expression in order to consider functionality. The score of an individual 

ligand-receptor interaction was computed as the product of their expression levels by the respective 
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source (central) and target (peripheral) cell. When a communication molecule (ligand or receptor or 

both) was not expressed by a cell, the score of this particular interaction was set to zero. Individual 

scores were then combined into a global metric assessing the overall exchange of information 

between the cell types of interest (Figure 2 middle), defining a global communication score. 

ICELLNET provides a matrix summarizing all global communication scores as an output of these 

analytical steps. 

 

ICELLNET offers different graphical representations allowing multiple layers of interpretation 

ICELLNET generates a large quantity of data and scores, which are complex to interpret and analyse. 

In order to facilitate hypothesis generation, three graphical representations were generated to help 

visualise and interpret the results (Figure 2 bottom). The first representation allows the visualization 

of intercellular communication networks in directed connectivity maps. In these graphs, nodes 

represent cell types, the width of the edges connecting two cell types is proportional to their global 

communication score and the arrows indicate the direction of communication. The second 

visualization mode breaks down the global scores into the contribution of specific molecular families 

through a barplot representation. This allows the identification of patterns of co-expressed molecules 

from the same family, potentially contributing to coordinated biological functions. We implemented 

statistical analyses of the scores (see Methods) to evaluate the robustness of the differences between 

scores. The resulting p-values can be visualized as an additional heatmap. The third representation 

displays the highest contributing ligand-receptor pairs to the communication score within a given 

channel in a balloon plot. This enables the identification of specific interactions that may drive the 

global intercellular communication. Thus, the ICELLNET framework is a powerful tool to assess 

intercellular communication with different visualisation modes that can be helpful to dissect 

underlying mechanisms and extend biological knowledge and understanding. 
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Application of ICELLNET to study human breast cancer-associated fibroblasts  

Cancer-associated fibroblasts (CAFs) are stromal cells localized in the tumor microenvironment that 

are known to enhance tumor phenotypes, notably cancer cell proliferation, and inflammation. 

Recently, four subsets of CAFs have been identified and characterized in the context of previously 

untreated Luminal and Triple Negative Breast Cancer (TNBC)19. CAF-S1 and CAF-S4 specifically 

accumulated in TNBC and CAF-S1 was associated with an immunosuppressive microenvironment. 

This study raised important questions about the regulatory mechanisms involved, in particular the 

role of cell-to-cell communication. Using the available transcriptional profiles of CAF-S1 and CAF-

S4 in TNBC (Figure 3A), we applied the ICELLNET pipeline to reconstruct the intercellular 

communication network with 14 other cell types potentially localized in the tumor microenvironment 

(TME) (Figure 3B and Suppl. Table S3A-B). The peripheral cells were selected from Human 

Primary Cell Atlas and included innate immune cells (monocytes, macrophages, pDC, DC1, DC2, 

NK cells, neutrophils), adaptive immune cells (CD4+ T cells, CD8+ T cells, Tregs, B cells), epithelial 

and stomal cells (fibroblasts and endothelial cells). In order to assess the global intercellular 

communication, we first used the network graphical vizualisation. This strongly suggested that CAF-

S1 has a greater communication potential than CAF-S4 (Figure 3B). The rescaled communication 

scores were higher for CAF-S1 compared to CAF-S4, and the differences were statistically significant 

for epithelial cells (score CAF S1 > Epith = 6, score CAF S4 > Epith = 4, pvalue< 0.1), endothelial 

cells (score CAF S1 > Endoth = 6, score CAF S4 > Endoth = 4, pvalue < 0.1), plasmocytoid dendritic 

cells (score CAF S1 > pDC = 6, score CAF S4 > pDC = 4, pvalue < 0.1) and B cells (score CAF S1 

> B cells = 3, score CAF S4 > B cells= 1, pvalue < 0.1) (Figure 3B, 3C and Suppl. Table S3A-B). 

 

CAF-S4 uses specific communication channels to interact with the TME components 

We focused on the biological composition of the score, to identify families of molecules highly 

involved in CAFs communication with the selected cells. We selected 4 peripheral cell types: 
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epithelial cells, fibroblasts, Tregs and B cells. Using the barplot representation, we looked for 

differences between CAF-S1 and CAF-S4 in terms of genes coding for families of communication 

molecules. We found that genes coding for communication molecules inducing Notch signaling were 

specifically expressed by CAF-S4 to communicate with other cells (Figure 3C). Looking at 

individual communication interactions between CAF subsets and Tregs demonstrated that gene 

coding for JAG1 protein was only expressed by CAF-S4 to interact with NOTCH receptors 

(NOTCH1 and NOTCH2 genes expressed), and thus potentially having a role in activating the Notch 

signaling pathway (Figure 3D and Suppl. Table S3A-B). For both CAF subsets, the barplot 

representation indicated that cytokines-receptors interactions were highly contributing to the global 

communication scores compared to other families of molecules (Figure 3C). This observation led us 

to focus on cytokine-mediated communication using the ICELLNET pipeline (Figure 3E). By 

considering only cytokine-receptor interactions, the CAFs appear to communicate more with other 

fibroblasts compared to other cell types with a significant p-value (Figure 3E, Suppl. Figure S1A). 

Also, this approach highlighted that RTK cytokines, and notably PDGFB coding for PDGF, were 

preferentially expressed by CAF-S4 compared to CAF-S1 (Figure 3E, Suppl. Figure S1B and 

Suppl. Table S3C). We also applied ICELLNET pipeline to study inward communication between 

the peripheral cells and the CAF subsets, which revealed no difference between CAF-S1 and CAF-

S4 in term of communication score intensities but also in terms of the families of molecules involved 

in communication (Suppl. Figure S2). Thus, the ICELLNET framework allowed us to identify 

specific communication channels revealing potential interactions between CAF-S4 and TME 

components. 

Application of ICELLNET to study communication between specific immune cells  

After using TNBC-infiltrating CAFs dataset to test the connectivity map reconstruction, we wanted 

to test the hypothesis that the ICELLNET tool would allow us to characterize cellular communication 

using the immune system as a model. Particularly, we were interested in studying communication of 

resting and perturbed immune cells. To explore the role of autocrine loops, we cultured LPS-activated 
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human monocyte-derived dendritic cells (DCs) in the presence or absence of blocking antibodies 

(Abs) to the TNF and IL-10 receptors (aTNFR and aIL-10R). No effect on cell viability was observed 

(Suppl. Figure S3A). The most prominent effect of LPS on DC hallmark maturation markers was 

observed at the mRNA level in the time frame of 4 to 8 hours following activation20. We performed 

large-scale microarray analysis after 4 and 8 hours of culture of DC with LPS, with and without 

blocking Abs to TNF and IL-10 receptors (Figure 4A).  

Despite extensive studies of both TNF and IL-10 in the context of innate immunity, their different 

contribution to DC intercellular communication could not be predicted a priori at this systems level. 

We applied ICELLNET to reconstruct the intercellular networks between DCs and the putative target 

cells. The network representation demonstrated an increase of the global communication score in all 

12 channels, when comparing 8-hours LPS-activated DC to resting (medium) DC (Figure 4B). 

Importantly, these maps revealed that blocking the IL-10 loop determined the largest amplification 

of DC communication with all 12 cellular targets, while the blocking of TNF loop in LPS-activated 

DCs had a negligible effect on the global communication score (Figure 4B, Suppl. Figure S3B and 

Suppl. Table 4A-E)  

IL-10 controls an intercellular communication module in LPS-activated dendritic cells 

We compared the transcriptomic profiles of each condition (aTNFR and aIL-10R) to the LPS-alone 

condition to extract the differentially expressed genes (DEG) (Suppl. Table 4F). We then screened 

the IL-10 and TNF DEG to identify ligands and receptors included in the database. We were able to 

extract 27 ligands and 23 receptors which were differentially regulated from the aIL-10R condition, 

while there were only 12 ligands and 10 receptors differentially regulated from the aTNFR condition 

(Figure 4C). 

ICELLNET barplots suggested that cytokines were driving the increase in the communication score 

when blocking IL-10R. We looked at the subfamilies of cytokines to precisely identify the key 

communication channels (Suppl. Figure S3B). Type 1 and TNF subfamilies were increased in aIL-
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10R condition compared to others. This was confirmed by individual channel communication scores 

(Figure 4D). To confirm the hypothesis that IL-10 controls cytokine-mediated DC communication, 

we selected four important immunoregulatory molecules from the IL-6- and IL-12-families, and 

further validated expression at the protein level in 24 hours culture DC supernatants using cytometric 

bead array (CBA) and ELISA (Figure 4E).  

Experimental validation of multiple IL-10-dependent communication channels 

To assess communication efficiency, i.e. how increased connectivity translates into functional 

changes in target cells, we turned to experimental validation of predicted communication channels 

using immunological assays adapted to the output response of each cell type. Due to its 

physiopathological relevance, we first investigated the DC-T cell axis through co-culture experiments 

of T cells with DCs treated by LPS with or without TNFR and IL-10R blocking antibodies (Figure 

5). We found that naive CD4+ T cells, when co-cultured with LPS-DC in the absence of the IL-10 

loop, globally increased and shifted their pattern of cytokine secretion, compared to LPS-DCs, while 

blocking the TNF loop had almost no effect (Figure 5A). Similar results were obtained with memory 

T cells (Figure 5B).  

Since the IL-10/IL-10R pathway may have a direct effect on T helper cells during the differentiation 

process, we verified that the observed T helper polarization was indeed due to the IL-10 loop blockade 

in the DCs, and not due to a direct effect on T cells (Suppl. Figure S4A). It is possible that residual 

IL-10R blocking antibodies could have acted directly on T cells during DC-T co-culture. By adding 

IL-10R antibodies during DC-T co-culture (not only during DC activation) we demonstrated that any 

IL-10R antibodies in this setting would not have any direct effect on T cell polarization.  

Among the factors explaining the secretion profile of T cells determined by LPS+aIL-10R-DCs, we 

observed a remarkable emergence of Th17 cytokines (Figure 5C), in line with recent murine 

studies21,22. Strikingly, IL-9 secretion was also increased (Figure 5C), and produced by a T cell 

population distinct from the Th17 cells producing IL-17A alone or co-expressed with IL-9 and IFN-
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g (Figure 5D). This provides the first demonstration that LPS-activated DCs, in the absence of an IL-

10 loop, determine Th17 and Th9 polarization in humans, both of which participate in host defense 

and autoimmunity23,24. 

In order to validate the model-based hypothesis that there is increased communication between DC 

and multiple cell types, we considered three additional types of target cells: keratinocytes, 

plasmacytoid DCs (pDC) and neutrophils. Similar to T cells, these cell types play key roles in the 

inflammatory microenvironment and had an increased global communication score. Target cells were 

cultured with DC-derived supernatants, and their activation assessed by qRT-PCR or FACS. LPS-

DC supernatant induced marginal keratinocyte activation, as assessed by the expression of TNF, IL-

1β and this was not affected by aTNFR (Figure 6A). However, blocking the IL-10 loop dramatically 

increased both factors (Figure 6A), validating a potent DC to keratinocyte communication controlled 

by IL-10. This extends DC-induced keratinocyte activation25,26 to the context of bacterial infection.  

The DC-pDC communication channel was also controlled by IL-10, since LPS+aIL-10R-DC 

supernatants activated pDCs (as assessed by CD86, HLA-DR, and ICOSL surface expression), in 

comparison to LPS-DCs (Figure 6B). DC-induced activation of pDC and keratinocytes was not due 

to the presence of residual aIL-10R (Suppl. Figure S4B and C). DC-pDC crosstalk was suggested 

to be important in antiviral27, antibacterial28, and antitumor29 immune responses. Through our systems 

approach, we have shown that IL-10 controls DC-pDC connectivity. 

Neutrophils contribute to DC migration to infection sites and to their subsequent activation30,31. 

Reciprocally, it was proposed that DCs can promote neutrophil survival32. LPS-DC supernatant 

induced only a mild activation of neutrophils (as evaluated by rapid upregulation of CD11b with 

concomitant downregulation of CD62L), while LPS+aIL-10R-DC supernatants led to a strong 

activation of neutrophils (Figure 6C), establishing an IL-10 loop control of DC-neutrophils 

communication.  
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For all the above-mentioned communication channels, we aimed at getting further mechanistic 

insight. First, we performed control experiments using exogenous LPS that formally excluded any 

direct effect of LPS at the concentrations found in the DC supernatants (Suppl. Figure S4D). We 

then considered ligand-receptor interactions showing high intensity, and thus more likely to mediate 

cellular crosstalk as observed with the LPS+aIL-10R-DC supernatants (Suppl. Table S5). We 

blocked, in each DC communication channel, 4 of the ligands known as potential activators of the 

target cell type: GCSF, GM-CSF, IL-6 and TNF for neutrophils, IL-19, IL-36 gamma, OSM and TNF 

for keratinocytes, and G-CSF, GM-CSF, TNF and IL-12 for pDCs. Importantly, blocking TNF alone 

in the LPS+aIL-10R-DC supernatant was sufficient to inhibit keratinocyte, pDC and neutrophil 

activation (Figure 6A-C). By comparing the predicted communication intensities with a global score 

describing the activation level of keratinocytes, pDC and neutrophils, we observed a qualitative 

agreement (Figure 6D), demonstrating increased communication efficiency. In all cases, the target 

cells were most activated in LPS+aIL10R condition.  

Discussion 

The majority of studies which aim to reconstruct intercellular communication from transcriptomic 

datasets integrate prior knowledge in the form of a ligand-receptor interaction database. This 

provides a straightforward manner to infer communication when a match is identified between a 

ligand and a cognate receptor for two respective cell types. The largest of such databases9 integrated 

over 2500 ligand-receptor pairs through literature mining and computational analysis, and has been 

exploited in multiple computational tools for predicting cell-to-cell communication5,8,33,34. 

However, this approach lacks experimental validation of predicted ligand-receptor interactions, 

and it does not take into account the different subunits of ligands or receptors. With ICELLNET, 

we have developed a fully manually curated database, combining biological relevance, ease of use, 

and experimental validation. Except for one study5, ICELLNET is the only database offering a 

classification of predicted interactions into biological families. Similar to CellPhoneDB10, 

ICELLNET takes into account the multiple subunits of ligands and receptors, by introducing 
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logical rules for co-expression of protein subunits. A systematic comparison of cytokine 

interactions revealed 14 interactions included in ICELLNET but not in CellPhoneDB, such as 

MIF/CXCR2 and MIF/CXCR435. Although ICELLNET includes a relatively small number of 

interactions compared to other existing databases, it is very specific and exhaustive for cytokine 

interactions, and will in time be extended to all chemokine and checkpoint interactions, thus 

providing a unique resource to study intercellular communication within the immune system. 

To make ICELLNET a valuable resource, we have established a strategy to keep the database 

updated and integrate missing knowledge. A significant number of interactions have been 

established in the past 20 years, but there are still receptors without known ligands, such as 

TNFRSF21 (DR6), RELT, TROY and NGFR from TNF receptor family36, and ligands without 

known receptors such as IL17D16. New receptors for existing ligand-receptor pairs can also be 

uncovered using this approach. For example, even though it was already known that IL34 and M-

CSF could separately activate M-CSFR37 it was then described that IL34/M-CSF heterodimer was 

also capable of activating M-CSFR38. We will apply a PubMed alert strategy to cover all new 

interactions that could be described on these pre-identified ligand and/or receptor partners. 

Existing tools infer communication between cells from scRNAseq datasets4,5,7. We have designed 

ICELLNET as a versatile tool, which can be applied to bulk cell profiles (Affymetrix or RNAseq) 

widely available in public databases, but also to fully documented scRNAseq datasets to infer 

communication between clusters or groups of cells. This can be easily adapted to other types of 

data such as flow cytometry data. By using the Human Primary Cell Atlas as a reference for 

transcriptomic profiles17,18, ICELLNET allows us to integrate cell communication partners (sender 

or receiver) not included in a given original experimental dataset. We identified the Human Primary 

Cell Atlas as a particularly suitable resource, as it integrates transcriptional profiles of over thirty 

human primary cell types generated with the same Affymetrix platform18. While previous 

applications of this atlas enabled the identification of specific tissue-related genes39,40, we 

developed an original use for this resource to simulate cell cross-talks in diverse 
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microenvironments. In addition, ICELLNET can accommodate other original RNAseq datasets of 

cell populations41,42 as reference profiles to infer intercellular communication. Hence, ICELLNET 

is an extremely flexible tool, which can be easily adapted depending on the biological question, by 

offering the possibility to select communication molecules families and cell types of interest.  

A key aim in studying cell-cell communication is to represent cellular interactions in a clear and 

biologically relevant manner. Visualization is important to understand the different levels of 

interactions, at the cellular and molecular levels. Most of the available tools use two main graphical 

representations; heatmaps and circos plots. These complex plots represent all possible interactions 

at once and can be difficult to read and interpret. ICELLNET offers four original visualization 

modes with different properties to represent cell-to-cell communication from a global view of 

specific interactions. These different representations simplify interpretation of the results, help 

users to elaborate hypotheses and allow in-depth analysis of cell-to-cell interactions. 

The cytokine family of communication molecules plays a key role in homeostatic processes, such 

as cell development and differentiation, tissue homeostasis, and inflammation3,14,43. In the past 20 

years, a large number of new cytokines have been identified, cloned, and studied to elucidate their 

biological function. This has significantly enriched the classification of cytokines into structural 

families matching evolution and functional processes3,44. ICELLNET is now providing an 

exhaustive and expert curated resource of all known cytokines and their receptor interactions, 

according to reference knowledge. This opens possibilities for researchers to decipher complex 

cytokine-mediated communication, and the implication of specific cytokines in disease. 

Fibroblasts are important structural stromal cells at steady state and inflammation. Yet, how they 

communicate with neighboring cells is not well described. Applying ICELLNET to breast cancer 

fibroblasts’ bulk cell transcripts revealed potentially novel interactions between CAF subsets and 

tumor microenvironment components. The CXCL12/CXCR4 interaction that we found within 

CAF-S1-to-Tregs (Fig 3D) was also described in other studies19,45, and contributes to the 
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immunosuppressive phenotype displayed by CAFS1. ICELLNET also highlighted interactions 

specific to CAF-S4 subset such as JAG1 with Notch receptors (NOTCH1, NOTCH2), and 

expression of PDGF proteins interacting with their cognate receptor. These proteins have never 

been associated specifically to CAF-S4 subset at the transcriptomic level and warrant further 

experimental validation studies. 

Other studies have shown that IL-10 regulates DC-derived inflammatory cytokines and 

chemokines, in particular IL-1246, and that IL-10 secreted by LPS-activated DCs controls a 

communication channel in an autocrine manner47. Through our systems approach, we could 

demonstrate that endogenous DC-derived IL-10 governs the global connectivity of DCs with 

multiple cell types. This original in vitro dataset also provides an experimental validation of our 

intercellular communication hypotheses, making ICELLNET the first experimentally validated 

tool to assess intercellular communication.  

Thus, ICELLNET is an adaptable tool that allows us to gain insight into communication channels 

between cells from one bulk transcriptomic profile of a cell population. By focusing on specific 

cell types or families of molecules, ICELLNET provides several representation modes to help the 

interpretation of the results. Experimentally validated with an in vitro system, ICELLNET enables 

the dissection of intercellular communication in complex systems.  

Methods  

Human Primary Cell Atlas dataset  

The dataset contains 745 samples of over thirty human primary cell types in different biological 

conditions (rested or activated). Included in BioGPS platform, all the samples have been generated 

with the same Affymetrix technology (Human Genome U133 Plus 2.0 arrays). For this study, an 

already processed and normalized dataset has been downloaded and added to ICELLNET package.  
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CAFs RNA-seq data processing 

The dataset contains 77 samples from Luminal (Lum) and Triple Negative Breast Cancers (TNBC) 

from 16 patients (10 Lum, 6 TNBC)19. The samples correspond either to tumor tissue or juxtatumoral 

tissue. Cells corresponding to CAF-S1 and CAF-S4 have been isolated, collected, and sequenced. 

Average sequencing depth was 30 million for paired-end reads, with a read length of 100bp. Reads 

were mapped on the reference genome (hg19/GRCh37 from UCSC genome release) using 

Tophat_2.0.6 algorithm. Duplicates were removed and gene expression quantification was performed 

using HTSeq-Count and featuresCount. Only genes with five reads in at least 25% of all samples 

were kept for further analyses. Normalization was done using the method implemented in DESeq2 R 

package. In this study, only 6 samples of CAF-S1 and 3 samples of CAF-S4 from TNBC were 

considered in the analyses. 

Purification of Peripheral blood mononuclear cells (PBMCs) from adult blood 

Fresh blood samples were collected from healthy donors and obtained from Hôpital Crozatier 

Établissement Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical 

guidelines. In agreement with EFS rules, all informed consent and consent to publish were obtained. 

PBMCs were isolated by centrifugation on a Ficoll gradient (Ficoll-Paque PLUS, GE Healthcare Life 

Sciences). 

Monocyte-derived dendritic cells generation and activation 

Monocytes were selected from PBMCs using antibody-coated magnetic beads and magnetic columns 

according to manufacturer’s instructions (CD14 MicroBeads, MiltenyiBiotec). To generate immature 

DCs, CD14+ cells were cultured for 5 days with IL-4 (50 ng/mL) and GM-CSF (10 ng/mL) in RPMI 

1640 Medium, GlutaMAX (Life Technologies) with 10% FCS. Monocyte-derived DCs were pre-

treated for one hour with mouse IgG1 (20 µg/mL, R&D Systems), mouse anti-IL-10R blocking 

antibody (10 µg/mL, R&D Systems) or mouse anti-TNFα Receptors 1 and 2 (10 µg/mL, R&D 

Systems) (see Figure 1-Figure Supplement 4B) and then cultured with medium or LPS (100 ng/mL, 
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LPS-EB Ultrapure, activates TLR4 only, Invivogen) for 24 hours. DCs from donors which responded 

to (a) LPS and (b) IL-10R blocking antibody, as evaluated by maturation markers, were included in 

this study. The following cytokines were measured in culture supernatants by CBA (BD Bioscience): 

IL-6, IL-12p70 and OSM. IL-23 was measured using ELISA (eBioscience). 

DC gene expression profiling  

Monocyte-derived DCs were pre-treated with blocking Abs as described above for one hour and then 

cultured with medium or LPS (100 ng/mL, Invivogen) for an additional 4 or 8 hours. Total RNA was 

extracted using the RNeasy micro kit (Qiagen). Samples were then amplified and labelled according 

to the protocol recommended by Affymetrix for hybridization to Human Genome U133 Plus 2.0 

arrays. If multiple probes corresponded to the same receptor, we selected the optimal probe based on 

the Jetset optimality condition48. 

Curation of the ligand/receptor database 

Surveying the literature for any potential interactions, we manually curated a ligand-receptor database 

using STRING (http://string-db.org/), Ingenuity (http://www.ingenuity.com/) and BioGRID 

(https://thebiogrid.org) online tools to verify protein-protein interactions, as well as Reactome and 

CellPhoneDB databases, already dedicated to ligand-receptor interactions. The interactions were 

classified into families of molecules based on the known biological function of the ligand and the 

receptor. The subfamilies of cytokines were defined based on molecular structures, as defined in the 

literature3,14–16. The database of ligand-receptor interactions is contained in the supplementary table 

1. 

Gene expression matrix scaling method 

After selecting the genes corresponding to the ligands and/or receptors from the transcriptional 

profiles, each ligand/receptor gene expression is scaled among all the conditions ranging from 0 to 

10. For each gene, the maximum value (10) is defined as the mean of expression of the 5% highest 
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values of expression, and the minimum value (0) is defined as the mean expression of the 5% lowest 

values of expression. Outliers are rescaled at either 0 (if below minimum value) or 10 (if above 

maximum value). 

Intercellular communication score computation  

To score the intensity of a particular ligand-receptor interaction between a central cell and a given 

peripheral cell, we considered the product of the expression of the ligand in the central cell and of the 

cognate receptor in the peripheral cells. Formally, if !"# is the average expression level of ligand i by 

the central cell in the experimental condition j, and $%#  is the average expression of the corresponding 

receptor by cell type k, the intensity &",%#  of the corresponding interaction was quantified by &",%# = !"# ∙

$%# . For interactions requiring multiple components of the ligand and/or of the receptor, we considered 

a geometric average of the receptor components. For example, if a given interaction corresponding 

to ligand i required two chains of the receptor, the score was computed as !"# ∙ +$%#,1. $%#,2, where $%#,1 

and $%#,2 are the expression levels of the two receptor chains in cell type k. To assign a global score 

.",%to the communication between the central cell in the condition j and cell type k, a composite score 

was defined by summing up the intensity of all the possible ligand-receptor interactions, i.e., .",% =

∑ &",%#0#=1 , N being the total number of interactions.   Regarding the four DC experimental conditions 

(Medium (j=0), LPS (j=1), blocking TNF loop (j=2), blocking IL-10 loop), we normalized the global 

scores .",% to the Medium condition (j=0) across the four conditions. Thus, the final scores .1,2
¯

 used 

to measure the communication intensity between DC in the condition j and the target cell k were 

computed using the following formula .1,2
_____

= .1,2/.6,2 .=
∑ 78,9:;
:<=

∑ 7>,9:;
:<=

. The score corresponding to each 

interaction and each target cell in the experimental condition of CAF subsets and the four DC 

experimental conditions are provided in supplementary table 3A-C and 4A-E respectively. The 
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generation of the inward connectivity maps was done by reversing the role of the central cell and their 

cellular targets. 

Global intercellular communication score scaling method  

The intercellular communication scores are rescaled ranging from 1 to 10, considering all the scores 

computed for each biological condition between the central cell and all selected peripheral cell types. 

This step allows us to increase the differences between the scores and facilitate the network 

visualisation of the communication scores. 

Statistical comparison of communication scores 

To compare the communication scores obtained from the same central cell to different peripheral 

cells we compute several communication scores considering the average expression of ligands for the 

central cell and each replicate separately for the receptor expression of the peripheral cells. In this 

way, for one peripheral cell type, we obtain a distribution of n communication scores, n being the 

number of peripheral cells replicates for this particular cell type. Second, we can compare 

communication scores between two biological conditions. In this case, we compute several 

communication scores considering each replicates of the central cell separately, and the average gene 

expression for the peripheral cells. We obtain a distribution of n communication scores, n being the 

number of central cell replicates in one biological condition. For both cases, we then perform a 

Wilcoxon statistical test to compare the communication scores distributions. The p-values are 

adjusted with p.adjust() function from the R package « stats » (version 3.6.1) using the Benjamini & 

Hochberg49 method in R. This returns the p-value matrix of statistical tests, that can be visualized in 

a heatmap representation with the pvalue.plot() function from « icellnet » R package. 

Statistical analysis of gene expression data 

Expression data were normalized with Plier. Transcriptomics analysis was performed in Matlab. For 

independent filtering, we used the function geneverfilter, which calculates the variance of each probe 
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across the samples and identifies the ones with low variance. Probes with variance less than the 40th 

percentile were filtered out. Differential analysis was performed using an ANOVA test (function 

anova1) at 4 hours and 8 hours. p-values were adjusted for multiple testing using the Benjamini-

Hochberg correction using the function mafdr. Adjusted p-values <5% were considered significant 

(see Suppl. Table 4F). 

Purification of naive CD4+ T lymphocytes. 

CD4+T lymphocytes were purified from PBMCs by immunomagnetic depletion with the human 

CD4+T cell Isolation KitII (MiltenyiBiotec), followed by staining with allophyco-cyanin-anti CD4 

(VIT4 ; MiltenyiBiotec), phycoerythrin-anti-CD45RA (BD), fluorescein-isothiocyanate-anti-

CD45RO (BD Bioscience) and phycoerythrin-7-anti-CD25 (BD bioscience). Naive CD4+T cells 

sorting of CD4+CD45RA+CD45RO-CD25- and memory CD4+ T cells sorted as CD4+CD45RA-

CD45RO+CD25- had a purity of over 99% with a FACSAria (BD Bioscience). 

DC- T cells Coculture assays.  

To analyze T cell polarization, 24 hours activated DC and T cells were incubated in 96 well plates at 

a DC/T ratio 1:5 in Xvivo15 medium (Lonza). After 6 days, T cells were resuspended in fresh 

Xvivo15 medium at a concentration of 1 million cells per mL and restimulated with anti-CD3/CD28 

beads (life Technologies) at a ratio bead/cell 1:1. Supernatants of T cells were collected after 24 hours 

of restimulation. The following cytokines were measured in naive culture supernatants by Cytometric 

Bead Array (CBA) (BD Bioscience) according to the manufacturer’s instructions: IL-2, IL-3, IL-4, 

IL-9, IL-10, IL-17A, IL-17F and IFN-g. Additional cytokines were measured in memory T cells 

supernatant: IL-5, IL-13, TNF and GM-CSF. Cytokine-producing cells were analyzed by intracellular 

staining after addition of brefeldinA (10ug/mL) during the last 3 hours of the 5 hours restimulation 

in PMA and ionomycine (100ng/mL and 500ng/ml respectively). Cells were stained for 30 minutes 

with the yellow live dead kit (Invitrogen). Finally, cells were fixed and permeabilized using the 
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Staining Buffer Set (eBioscience) and stained with anti-IL9, anti-IFNg, and anti-IL17A (ebioscience), 

and analyzed by flow cytometry (BD Fortessa).  

Measurement of surface molecules expression by plasmacytoid dendritic cells 

In order to enrich plasmacytoid dendritic cells (pDCs), cells expressing CD3, CD9, CD14, CD16, 

CD19, CD34, CD56, CD66b and glycophorin A were depleted from PBMCs using magnetic sorting 

(Human Pan-DC Pre-Enrichment Kit, StemCell Technologies). pDCs were then sorted on a FACS 

Vantage instrument (BD Biosciences). pDCs were cultured for 24 hours at 37°C and 5% CO2 with 

medium RPMI 1640 Medium, GlutaMAX (Life Technologies) with 10% FCS, GM-CSF (10 ng/mL) 

used as a positive control or DC supernatants. Cells were stained for 15 minutes at 4°C using a FITC-

anti-CD86 (BD), an APC-anti-ICOSL (R&D Systems) and Alexa-Fluor-700-anti-HLA-DR 

(Biolegend) or with the corresponding isotypes. Cells were analyzed on an LSR II instrument (BD 

Biosciences). 

Measurement of adhesion molecules expression at the Neutrophil surface 

Whole-blood samples were obtained from healthy donors from Hôpital Crozatier Établissement 

Français du Sang (EFS), Paris, France, in conformity with Institut Curie ethical guidelines. Blood 

samples were stimulated for an hour at 37°C with medium, LPS (100 ng/mL) used as a positive 

control or DC supernatants. Cells were stained at 4°C for 15 minutes with an APC-anti-Human-

CD62L (clone DREG-56, BD Pharmingen), a BV650-anti-Human-CD11b (BioLegend) and a PE-

anti-Human-CD15 (MiltenyiBiotec) or with the corresponding isotypes. Erythrocytes were lysed with 

1X BD Pharm Lyse Solution (BD Pharmingen). White cells were resuspended in PBS supplemented 

with 1% human serum and 2 mM EDTA and analyzed on an LSR Fortessa instrument (BD 

Biosciences). 

Real-time quantitative RT-PCR 
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The keratinocyte cell line HaCaT was cultured in DMEM (Gibco) supplemented with 10% FBS and 

1% penicillin/streptomycin. Cells were cultured with medium, LPS (100 ng/ml), or with DC 

supernatant diluted 1:10 for 4 hours. Total RNA was extracted by RNeasy Mini kit (Qiagen). RNA 

was then transcribed to cDNA using Superscript II reverse transcriptase based on the manufacture’s 

protocol (Invitrogen). The Taqman method was used for real-time PCR with primers from Life 

technologies. The expression of mRNA was normalized to the geometrical mean of 3 house-keeping 

genes: β-actin, GAPDH and RPL34. All HaCaT cells were negative for Mycoplasma contamination, 

standardized and regular tests were performed by PCR for mycoplasma detection.  

Statistical analysis of DC-T cell protein data  

All analyses were generated with R 3.1. For principal component analysis (PCA) of the T cell 

secretion profile, a data matrix was formed whose rows corresponded to conditions and columns to 

the different cytokines (each column was scaled using zscore). PCA was done using the function 

princomp. Where appropriate, a paired student t-test was performed. Significant differences were 

considered with p<0.05. The correlation heatmap based on Spearman was generated on the logged 

data. Correlations with p values<0.05 were considered as significant. 

Calculation of the activation score of target cells 

To compute a global activation score of keratinocytes, neutrophils and pDC, each activation marker 

output was first normalized in the range 0-1, 0 being to the untreated condition and 1 being to the 

maximum value observed in all the conditions. An average of the normalized outputs corresponding 

to the same cell type was then considered. All of the measured factors, with the exception of CD62L 

in neutrophils, were positively correlated with cell activation. In order to make CD62L consistent 

with the other factors, we considered the reciprocal of its value. The numerical results are in the 

Suppl. Table 5.  

Data availability 
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The gene expression profiles generated for this publication have been deposited in NCBI's Gene 

Expression Omnibus and are accessible through GEO Series accession number GSE89342 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89342). 

The CAFs dataset has been published by Costa et al. 201819, and is accessible through the accession 

number EGAS00001002508. 

Code availability  

ICELLNET package is available at https://github.com/soumelis-lab/ICELLNET 
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Figure legends 

Fig. 1: Structure of the ligand-receptor database. (A) Extract of the ligand-receptor database (B) 

Histogram of the number of communication interaction by families of molecules, (C) Histogram of 

the number of communication interaction by subfamilies of cytokines. 

 

Fig. 2: ICELLNET pipeline to study intercellular communication from cell transcriptional 

profiles. Pipeline used to create the intercellular communication score and network reconstruction.  

 

Fig. 3: Dissecting intercellular communication between Triple-Negative breast cancer 

infiltrating CAF subsets (A) Workflow of the analysis. (B) Connectivity maps describing outward 

communication from CAF-S1 (n=6) and CAF-S4 (n=3) subsets to primary cells. The CAF subsets 

are considered as central cells and colored in grey. Primary cells are considered as peripheral cells 

and are colored depending on the cell compartment (green: stroma, orange: innate, blue: adaptive, 

pink: epithelium). The width of the edges corresponds to a global score combining the intensity of all 

the individual ligand/receptor interactions. A scale ranging from 1 to 10, corresponding to minimum 

and maximum communication scores, is shown in the legend. A selection of normalized scores is 

written directly on the network. (C) Barplot of communication score with contribution by families of 

communication molecules between CAF subsets and a selection of peripheral cells. Significant 

differences are shown on the graph (*: p-value ≤ 0.1). (D) Balloon plot of individual interaction scores 

between CAF subsets and Tregs. Two biologically-interesting communication channels were 

highlighted by red boxes. (E) Barplot of communication score with contribution restricted to 

cytokines subfamilies between CAF subsets and a selection of peripheral cells. 
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Fig. 4: IL-10R blocking activates a cell-to-cell communication module in LPS-stimulated DCs. 

(A) Depicted are the 4 experimental conditions for which transcriptomics was generated (n = 6). (B) 

Connectivity maps describing outward communication from DCs to putative target cells in the 

conditions: Med, LPS, LPS+aTNFR and LPS+aIL-10R.  Twelve primary cell types are considered 

as peripheral cells and are colored depending on the cell compartment (green: stroma, orange: innate, 

blue: adaptive, pink: epithelium). The width of the edges corresponds to a global score combining the 

intensity of all the individual ligand/receptor interactions, normalized to the medium condition. A 

scale ranging from 1 to 10, corresponding to minimum and maximum communication scores, is 

shown in the legend.  (C) Gene corresponding to ligands (black) and receptors (white) counted in 

each loop signature and plotted according to regulation directionality: upregulated (Up) or 

downregulated (Down). Genes with separability score ³ 4 were included in each condition’s 

signature. (D) Protein levels of IL-6, OSM, IL-23 and IL-12p70 (means ± SEM), demonstrating 

increased secretion in LPS+aIL-10R DC supernatant.  

 

Fig. 5: IL-10 but not TNF loop dictates T helper polarization by LPS-DC. (A-B) Supernatants of 

CD4+ naive (A) and memory (B) T cells, co-cultured with the indicated DCs, were analyzed for the 

presence of T helper cytokines by CBA: IL-2, IL-3, IL-4, IL-9, IL-10, IL-17A, IL-17F and IFN-g (A) 

and all the above in addition to IL-5, IL-13 TNF and GM-CSF (B). Results are shown in a two-

dimensional principal component analysis (PCA). Dots represent mean of 9 (A) or 6 (B) independent 

co-culture experiments. (C) Histogram representation (means ± SEM, n = 16) of 4 cytokines present 

in the supernatant of naive (white bars, left axis) or memory (black bars, right axis) supernatant. (D) 

CD4+ naive T cells were analyzed for IL-17A, IL-9 and IFNg production using intracellular staining 

FACS. Percentage of positive producers is given. Shown is one representative out of 3 independent 

experiments.  
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Fig. 6: IL-10 loop controls DC communication with keratinocytes, neutrophils and pDCs. (A) 

RT-PCR analysis of the expression of TNF and IL-1b mRNA in HaCat cells incubated with medium, 

LPS or with supernatant (diluted 1:10) of the indicated DCs for 4 hours. Blocking antibodies for the 

cytokines IL-19, IL-36g, OSM and TNF were added to LPS+aIL-10R-DC supernatant for 1 hour 

incubation before culturing with HaCat cells. Data represent mean ± SEM, n=4, * p<0.05. (B-C) 

Expression of maturation markers CD86, HLA-DR and ICOSL (B) or DC11b and CD62L (C) 

analyzed by flow cytometry with surface staining on pDCs (n=18) cultured with supernatant (diluted 

1:10) of the indicated DC for 24 hours (b) and neutrophils (n=9) cultured with supernatant (diluted 

1:100) of the indicated DC for 1h. Blocking antibodies for the cytokines GCSF, GM-CSF, TNF and 

IL-12 (for pDC) or IL-6 (neutrophils) were added to LPS+aIL-10R-DC supernatant for 1 hour 

incubation before culture. Each biological replicate comprised independent DC donor paired to 

independent pDCs / neutrophils donor. Data represent mean ± SEM, * p<0.05; ** p<0.01; *** 

p<0.001 (paired t-test). (D) For each target cell, we reduced the different activation markers to a 

single parameter normalized between 0 (Ø) and 1 (max) in the rectangles. The value 0 corresponds 

to the activation level induced by supernatants from untreated DC, while 1 corresponds to the 

maximum activation level from all the observed conditions. These experimentally validated 

activation scores were in qualitative agreement with the model predictive intensity scores of 

communication between DC and the target cells, represented by the width of the edges.  
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