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Abstract

Identifying causes solely from observations can be particularly challenging when i) potential factors
are difficult to manipulate independently and ii) observations are multi-dimensional. To address
this issue, we introduce “Back-to-Back” regression (B2B), a linear method designed to efficiently
measure, from a set of correlated factors, those that most plausibly account for multidimensional
observations. First, we prove the consistency of B2B, its links to other linear approaches, and
show how it provides a robust, unbiased and interpretable scalar estimate for each factor. Second,
we use a variety of simulated data to show that B2B outperforms least-squares regression and
cross-decomposition techniques (e.g. canonical correlation analysis and partial least squares) on
causal identification when the factors and the observations are partially collinear. Finally, we apply
B2B to magneto-encephalography of 102 subjects recorded during a reading task to test whether our
method appropriately disentangles the respective contribution of word length and word frequency -
two correlated factors known to cause early and late brain responses respectively. The results show
that these two factors are better disentangled with B2B than with other standard techniques.

Keywords: Cross-Decomposition, Feature Discovery, Magnetoencephalography, Decoding,
Encoding, Reading, N400

1. Introduction1

Natural sciences are tasked to find, from a set of hypothetical factors, the minimal subset that2

suffices to reliably predict novel observations. This endeavor is impeded by two major challenges.3

First, causal and non-causal factors may be numerous and partially correlated. In neuroscience,4

for example, it can be challenging to identify whether word frequency modulates brain activity5

during reading. Indeed, the frequency of words in natural language covaries with other factors such6

as their length (short words are more frequent than long words) and their categories (determinants7

are more frequent than adverbs) [18, 24]. Instead of selecting a set of words that controls for all8

of these factors simultaneously, it is thus common to use a forward ”encoding model”, i.e. to fit9

a linear regression to predict observations (e.g. brain activity) from a minimal combination of10
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competing factors (e.g. word length, word frequency), and analytically investigate, the estimated11

contribution of each factor from the model’s coefficients [5, 21, 32, 16, 13].12

The second challenge to measuring causal influence is that observations can be multidimensional.13

The relationship between causes and effects is thus often considered in a backward manner, by14

training models to maximally predict causes from multidimensional observations. For example,15

brain activity is often recorded with hundreds or thousands of simultaneous measurements via16

functional Magnetic Resonance Imaging, magneto-encephalography (MEG) or multiple electro-17

physiological probes [5, 30]. As simultaneous measurements may be affected by common noise18

sources, it is common to use backward modeling, by, for example, fitting a support vector machine19

across multiple sensors to decode the category of a stimulus [22, 3, 17].20

Both forward and backward modeling have competing benefits and drawbacks. Specifically,21

forward modeling disentangles the independent contribution of correlated factors, but does not22

combine multidimensional observations. By contrast, backward modeling combines multiple23

observations, but does not disentangle factors that are linearly correlated [32, 9, 16]. To combine24

some of the benefits of forward and backward modeling, several authors have proposed to use25

cross-decomposition techniques such as Partial Least Squares (PLS) and Canonical Correlation26

Analysis (CCA) [4]. CCA and PLS aim to find, from two sets of data X and Y , the components H27

and G were XH and Y G are maximally correlated or maximally covarying respectively. Because28

CCA and PLS are based on a generalized eigen decomposition, their resulting coefficients are29

mixing the features of X and Y in a way that makes them notoriously difficult to interpret [19].30

Here, we introduce the ‘back-to-back regression’ (B2B), which not only combines the benefits of31

forward and backward modeling (Section 2), but also provides robust, interpretable, unidimensional32

and unbiased coefficients for each of tested factor.33

The present paper focuses on the restricted issue of disentangling the influence of linearly34

correlated predictors (X) onto noisy multivariate observations (Y ). The present approach thus35

differs from other causal discovery algorithms based on temporal-delays and/or nonlinear interac-36

tions in systems where the directionality of causation (from X to Y or vice versa) is unknown (e.g.37

[25, 8, 14, 28].38

After detailing B2B method and proving its convergence (Section 2.2), we show with synthetic39

data that it outperforms state-of-the-art forward, backward and cross-decomposition techniques40

in disentangling causal factors (Section 3.1). Finally, we apply B2B to a large neuroimaging41

dataset and reveal that distinct but linearly-correlated word features lead to distinguishable brain42

representations (Section 3.5).43

2. Back-to-Back regression44

We consider the measurement of multivariate signal Y ∈ Rn×dy (the dependent variables),
generated from a set of putative causes X ∈ Rn×dx (the independent variables), via some unknown
linear apparatus F ∈ Rdx×dy . Not all the variables in X exert a causal influence on Y . By
considering a square binary diagonal matrix of causal influences E ∈ Ddx×dx , we denote by XE
the causal factors of Y . In summary, the problem can be formalized as:

yi = (xiE + ni)F (1)

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.976936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.976936
http://creativecommons.org/licenses/by/4.0/


= × + ×

Y ∈ Rn×dy X ∈ Rn×dx E ∈ Ddx×dx N ∈ Rn×dx F ∈ Rdx×dy

Observations Factors Cause
selection

Noise Cause-effect
mapping

X ∼ P (X)
N ∼ P (N)

Ê = diag((X>2 X2 + ΛX)−1X>2 Y2

1) X̂: regression from Y to X︷ ︸︸ ︷
(Y >1 Y1 + ΛY )−1Y >1 X1︸ ︷︷ ︸

2) regression from X to X̂

)

Figure 1: Back-to-back regression identifies the subset of factors Eii = 1 in X that influence some observations Y by
1) regressing from Y to X to obtain X̂ , and 2) returning the diagonal of the regression coefficients from X to X̂ .

where i is a given sample, and ni is a sample-specific noise drawn from a centered distribution.45

While the triplet of variables X and N are independent, we allow each of them to have any form of46

covariance. In practice, we observe n samples (X, Y ) from the model. This problem space, along47

with the sizes of all variables involved, is illustrated in Figure 1. Given the model in Equation eq. (1),48

the goal of Back-to-Back Regression (B2B) is to estimate the matrix of E, i.e. to identify the factors49

that most reliably account for the multivariate observations.50

2.1. Algorithm51

Back-to-Back Regression (B2B) consists of two steps. First, we estimate the linear regression52

coefficients Ĝ from Y to X , and construct the predictions X̂ = Y Ĝ. This backward regression53

recovers the correlations between Y and each factor of X . Second, we estimate the linear regression54

coefficients Ĥ from X to X̂ . The diagonal of the regression coefficients Ĥ , denoted by Ê =55

diag(Ĥ), is the desired estimate of the causal influence matrix E, as detailed in the Appendix A.1.56

If using l2-regularized least-squares [10, 26], B2B has a closed form solution:

Ĝ = (Y >Y + ΛY )−1Y >X, (2)

Ĥ = (X>X + ΛX)−1X>Y Ĝ, (3)

where ΛX and ΛY are two diagonal matrices of regularization parameters, useful to invert the57

covariance matrices of X and Y if these are ill-conditioned.58

Performing two regressions over the same data sample can result in overfitting, as spurious59

correlations in the data absorbed by the first regression will be leveraged by the second one. To60

avoid this issue, we split our sample (X, Y ) into two splits (X1, Y1) and (X2, Y2). Then, the first61

regression is performed using (X1, Y1), and the second regression is performed using (X2, Y2). To62

compensate for the reduction in sample size caused by the split, B2B is repeated over many random63

splits, and the final estimate Ê of the causal influence matrix is the average over the estimates64
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associated to each split [2]. To accelerate this ensembling procedure, we implemented an efficient65

leave-one-out cross-validation scheme as detailed in [26] as follows:66

Ŷ = (ΣXGY − diag(ΣXG)Y ) / diag(I − ΣXG) (element-wise division) (4)

where ΣX is the X kernel matrix and where G is computed with an eigen decomposition of X:

ΣX = QV QT

G = Q(V + λI)−1QT
(5)

where Q, V and λ are the eigen vectors, eigen values and regularization, respectively.67

We summarize the B2B procedure in Algorithm 1. The rest of this section provides a theoretical68

guarantee on the correctness of B2B.69

Algorithm 1: Back-to-back regression.
Input: input data X ∈ Rn×dx , output data Y ∈ Rn×dy , number of repetitions m ∈ N.
Output: estimate of causal influences Ê ∈ Ddx×dx .

1 Ê ← 0;
2 for i = 1, . . . ,m do
3 (X, Y )← ShuffleRows((X, Y ));
4 (X1, Y1), (X2, Y2)← SplitRowsInHalf((X, Y ));
5 Ĝ = LinearRegression(Y1, X1) ; . Ĝ = (Y >1 Y1 + ΛY )−1Y >1 X1

6 Ĥ = LinearRegression(X2, Y2Ĝ) ; . Ĥ = (X>2 X2 + ΛX)−1X>2 Y2Ĝ

7 Ê ← Ê + diag(Ĥ);
8 end
9 Ê ← Ê/m;

10 Ŵ ← LinearRegression(XÊ, Y );
11 return Ê, Ŵ

70

2.2. Theoretical guarantees71

Theorem 1 (B2B consistency - general case). Consider the B2B model from Equation Y = (XE +72

N)F , N centered and full rank noise. Let Img(M) refers to the image of the matrix M . If F and73

X are full-rank on the Img(E), then, the solution of B2B, Ĥ , will minimize minH ‖X −XH‖2 +74

‖NH‖2and satisfy EĤ = Ĥ75

Proof. See Appendix Appendix A.1.76

Since EĤ = Ĥ , we have

Ĥ = arg min
H
‖X −XEH‖2 + ‖NEH‖2 = (EX>XE + EN>NE)†EXX>. (6)

Assuming, without loss of generality, that the active features in E are the k ∈ Z : k ∈ [0, dx]77

first features, and rewriting X = (X1, X2) and N = (N1, N2) (X1 and N1 containing the k first78

features), we have:79

X>X =

(
ΣX1X1 ΣX1X2

ΣX1X2 ΣX2X2

)
, N>N =

(
ΣN1N1 ΣN1N2

ΣN1N2 ΣN2N2

)
, (7)
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where ΣAB is the covariance of A and B, and:

Ĥ =

(
(ΣX1X1 + ΣN1N1)

−1ΣX1X1 (ΣX1X1 + ΣN1N1)
−1ΣX1X2

0 0

)
(8)

diagk(Ĥ) = diag((ΣX1X1 + ΣN1N1)
−1ΣX1X1) = diag((I + Σ−1X1X1

ΣN1N1)
−1) (9)

In the absence of noise, we have ΣN1N1 = 0, and so diagk(Ĥ) = I , and

diag(Ĥ) = diag(E)

Therefore, we recover E from Ĥ .80

In the presence of noise, the causal factors of E correspond to the positive elements of diag(Ĥ).81

The methods to recover them are presented in the Appendix Appendix A.4.82

3. Experiments83

We perform two sets of experiments to evaluate B2B: one on controlled synthetic data, and a84

second one on a real, large-scale magneto-encephalography (MEG) dataset. We use scikit-learn’s85

PLS and RidgeCV [23] as well as Pyrcca’s regularized canonical component analysis (RegCCA,86

[1]) objects to compare B2B against the standard baselines.87

3.1. Synthetic data88

We evaluate the performance of B2B throughout a series of experiments on controlled synthetic89

data. The purpose of these experiments is to evaluate the ability of B2B in terms of prediction of90

independent and identically distributed data, as well as a method to recover causal factors.91

The data generating process for each experiment constructs n = 1000 training examples92

according to the model Y = (hXE +N)F , where h is a scalar that modulates the signal-to-noise93

ratio. Here, F ∈ Rdx×dy contains entries drawn from N (0, σ2) where σ2 is inversely proportional94

to dx, X ∈ Rn×dx contains rows drawn from N (0,ΣX), N ∈ Rn×dx contains rows drawn from95

N (0,ΣN), E ∈ Rdx×dx is a binary diagonal matrix containing nc ones, ΣX = AA> where96

A ∈ Rdx×dx contains entries drawn from N (0, σ2), ΣN = BB> where B ∈ Rdx×dx contains97

entries drawn from N (0, σ2), and the factor h ∈ R+.98

To simulate a wide range of experimental conditions, we sample 10 values in log-space for99

dx, dy ∈ [10, 100], nc ∈ [3, 63], h ∈ [0.001, 10]. We discard the cases where nc > dx, limit dx, dy100

to 100 to keep the running time under 2 hours for each condition, and average over 5 random seeds.101

We compare the performance of B2B against four competing methods, all implemented in102

scikit-learn [23] and pyrcca [1]:103

3.2. Baseline models104

Forward regression consists of an l2-regularized ”ridge” regression from the putative causes X
to the observations Y :

Hfwd = (XTX + λI)−1XTY (10)

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.976936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.976936
http://creativecommons.org/licenses/by/4.0/


Backward regression consists of an l2-regularized ”ridge” regression from Y to X:

Gbwd = (Y TY + λI)−1Y TX (11)

CCA finds Gcca ∈ Rdz ,dy and Hcca ∈ Rdz ,dx s.t. X and Y are maximally correlated in a latent
Z space:

Gcca, Hcca = argmax
G,H

corr(XHT , Y GT ) (12)

PLS finds Gpls ∈ Rdz ,dy and Hpls ∈ Rdz ,dx s.t. X and Y are maximally covarying in a latent Z
space:

Gpls, Hpls = argmax
G,H

cov(XHT , Y GT ) (13)

We employ five-fold cross-validation to select the optimal number of components for CCA and105

PLS. Regressions were `2-regularized with a λ regularization parameters fitted with the efficient106

leave-one-out procedure implemented in scikit-learn RidgeCV [23].107

3.3. Evaluating Causal Discovery from models’ coefficients108

B2B leads to unbiased (i.e. zeros-centered) scalar coefficients for non-causal features. In109

contrast, the Forward, Backward, CCA and PLS models lead to a loading vector Hi per feature110

i (or one vector Gi for the backward model). To transform such vector into an estimated causal111

contribution Ê, we take the sum of square coefficients: Êi =
∑

j H
j
i

2
112

To estimate whether models accurately identify causal factors, we compute the area-under-the-113

curve (AUC) across factors AUC(E, Ê). The AUC allows evaluating the capacity of models at114

detecting the causal importance of factors when ground truth labels are available, as is the case in115

this setup.116

We report AUC results in Figures 2 (top) and B.5 (left, in Appendix), and compare favorably to117

all baselines.118

3.4. Evaluating Causal Discovery with held-out prediction reliability119

In most cases, E is not known and AUC can thus not be estimated. To address this issue, we120

assess the ability of each model to reliably predict independent and identically distributed data from121

Y , given all of the X features versus all-but-ones feature X−i (i.e. ’knock-out X’). This procedure122

results in two correlation metrics Rfull and Rknockout, whose difference ∆Ri = Rfull −Rknockout123

indicates how much each Xi improves the prediction of Y . In our figures, ∆R is the average of124

∆Ri. A higher score means that for prediction, the model relies on individual features rather than125

combinations of features.126

We show in Appendix Appendix A.3 pseudo-code to assess feature importance for our algorithm127

as well as baselines. For the Backward Model, feature importance cannot be assessed as the X128

collinearity is never taken into account.129

We show in Figures 2 (bottom) and B.5 (right, in Appendix) that our method outperforms130

baselines.131

Next, we apply our method to brain imaging data from the anonymized multimodal neuroimag-132

ing “Mother Of all Unification Studies” (MOUS) dataset [27]. The dataset contains magneto-133

encephalography (MEG) recordings of 102 healthy native-Dutch adults who participated in a134
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10 3 10 1 101

snr

0.6
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C
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Forward
PLS

RegCCA
B2B

10 3 10 1 101

snr

0.0

0.2

0.4

R

101
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dx
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dy

Forward
PLS

RegCCA
B2B

Figure 2: Synthetic experiments. Average AUC (top) and Feature Importance ∆R (bottom) when varying experimental
conditions individually. Higher is better. B2B compares favorably in all cases.

reading task. Twelve subjects were excluded from the analysis because of corrupted file headers.135

Subjects were exposed to a rapid serial visual presentation of Dutch words. The word lists consisted136

of 120 sentences, and scrambled lists of the same words. Each word was presented on the computer137

screen for 351ms on average (min: 300ms, max: 1400ms). Successive words were separated by138

a blank screen for 300ms, and successive sentences were separated by an empty screen for a few139

(3-4) seconds.140

3.4.1. MEG preprocessing141

The raw MEG data was bandpass-filtered between 0.1 and 40Hz using MNE-Python default142

parameters [6, 7]. Specifically, we used a zero-phase finite impulse response filter (FIR) with143

a Hamming window and with transition bands of 0.1Hz and 10Hz for the low and high cut-off144

frequencies. The raw data was then segmented 100ms before word onset and 1s after word onset145

(t = 0ms corresponds to word onset). Finally, each resulting segment was baseline-corrected146

between -100ms and 0ms, and decimated by 5 and thus led a sampling frequency of 240Hz. The147

average responses across words is displayed in Figure 3. For each subject and each time sample148

relative to word onset, we build an observation matrix Y ∈ Rn×dy of n ≈ 2,700 words by dy = 301149

MEG channels (273 magnetometers and 28 compensation channels). Each of the columns of Y is150

normalized to have zero mean and unit variance.151

3.4.2. Feature definition152

We aim to identify the word features that cause a variation in brain responses. We consider four153

distinct but linearly-correlated features. First, ’Word Length’ refers to the total number of letters.154

Word Length is expected to specifically cause a variation in the early evoked MEG responses155
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0 ms 75 ms 125 ms 350 ms

100 0 100 200 300 400 500 600
Time from word onset (ms)

100

50

0

50

100

fT blank

Nave=90

Figure 3: A hundred subjects read approxi-
mately 2,700 words while their brain activity
was recorded with MEG. Top. Average brain
response to words (word onset at t=0 ms), as
viewed from above the head (red= higher gra-
dient of magnetic flux). Bottom. Each line
represents a magnetometer, color-coded by its
spatial position. Posterior responses, typical of
primary visual cortex activity, peak around 100
ms after word onset and are followed by an ante-
rior propagation of activity typical of semantic
processing in the associative cortices.

(i.e. from 100 ms after stimulus onset) elicited by the retinotopically-tuned visual cortices (e.g.156

[24].). Second, ’Word Frequency’ indexes how frequently each word appears in Dutch and was157

derived with the the Zipf logarithmic scale of [31] provided by the WordFreq package [29]. Word158

Frequency is expected to specifically cause a variation in the late evoked MEG responses (i.e. from159

400 ms), because it variably engages semantic processes in the temporal cortices [18]. Third, ’Word160

Function’ indicates whether each word is a content word (i.e. a noun, a verb, an adjective or an161

adverb) or a function word (i.e. a preposition, a conjunction, a determinant, a pronoun or a numeral),162

and was derived from Spacy’s part of speech tagger [11]. To our knowledge, this feature has not163

been thoroughly investigated with MEG. Its causal contribution to reading processes in the brain164

thus remains unclear. Finally, to verify that B2B and other methods would not inadequately identify165

non-causal features, we added a dummy feature, constructed from a noisy combination of Word166

Length and Word Frequency: dummy = z(length) + z(frequency) + N , where z normalizes167

features and N is a random vector sampling Gaussian distribution (all terms thus have a zero-mean168

and a unit-variance). This procedure yields an X ∈ Rn×dx matrix of n ≈ 2,700 words by dx = 4169

features for each subject. Each of the columns of X is normalized to have a mean and a standard170

deviation of 0 and 1 respectively.171

3.4.3. Models and statistics172

We compare B2B to four standard methods: Forward regression, Backward regression, CCA and173

PLS, as implemented in scikit-learn [23] and [1], and optimized with nested cross-validation over174

twenty l2 regularization parameters logarithmically spaced between 10−4 and 104 (for regression175

and CCA methods) or 1 to 4 canonical components (for PLS).176

We used the feature importance described in Algorithm 2 to assess the extent to which each177

feature Xi specifically improves the prediction of held-out Y data, using a five-fold cross-validation178

(with shuffled trials to homogeneize the distributions between the training and testing splits).179

Each model was implemented for each subject and each time sample independently. Pairwise180

comparison between models were performed using a two-sided Wilcoxon test across subjects181

(n=90) using the average ∆R across time. Corresponding effect sizes are shown in Figure 4, and182

p-values are reported below.183
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3.4.4. Results184

0 500 1000
0.00

0.15

R

Word Length

0.00

R

*

0 500 1000

0.00

0.06

R

Word Frequency

0.00

R

*

0 500 1000

0.00

0.06

R

Word Function

0.00

R

*

0 500 1000
Time (ms)

0.00

0.06

R

Dummy Variable

Model

0.00

R

Forward PLS RegCCA B2B

Figure 4: Multiple models (color-coded) are compared on their ability
to reliably predict single-trial MEG signals evoked by words. Left.
Average improvement of correlation coefficient ∆R for each of the four
features (rows). Error bars indicate standard error of the mean (SEM)
across subjects. Right. Average ∆R across time for each subject (dots).
Top horizontal lines indicate when B2B significantly outperforms other
methods (red) and vice versa.

We compared the ability of For-185

ward regression, Backward regres-186

sion, CCA, PLS and B2B to es-187

timate the causal contribution of188

four distinct but linearly-correlated189

features on brain evoked responses190

to words.191

As expected, the Backward192

model reveals a similar decod-193

ing time course for Word Length194

and Word Frequency, even though195

these features are known to specif-196

ically influence early and late197

MEG responses respectively [18].198

In addition, the same decoding199

time course was observed for the200

dummy variable. These results il-201

lustrate that backward modeling202

cannot be used to estimate the203

causal contribution of correlated204

features.205

We thus focus on the four re-206

maining methods (i.e. Forward207

Regression, PLS, CCA, and B2B)208

and estimate their ∆R (i.e. the im-209

provement of Y prediction induced210

by the introduction of a given fea-211

ture into the model,as described212

in Algorithm 2). Contrary to the213

Backward Model, none of the mod-214

els predicted the Dummy Variable215

to improve the Y prediction: all216

∆R < 0 (all p > .089).217

Figure 4 shows, for each218

model, the effects obtained across219

time (left) and subjects (right).220

Word Length and Word Fre-221

quency improved the prediction222

performance of all methods: ∆R >223

0 for all models (all p < 0.0001).224

As expected, the time course asso-225

ciated with Word Length and Word226
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Frequency rose from ≈ 100 ms and from ≈ 400 ms respectively. Furthermore, Word Function227

improved the prediction performance of all models (all p < 0.0002) except for PLS (p = 0.7989).228

Overall, these results confirm that Word Length, Word Frequency and Word Function causally229

influence specific periods of brain responses to words.230

To assess which model would be most sensitive to these causal discoveries, we compared B2B231

to other models across subjects (Figure 4 right). For Word Length B2B outperforms all models232

(all p < 0.00001) but CCA (p = 0.0678). For Word Frequency, B2B outperforms all models233

(all p < 0.0006). For ”Word Function”, B2B outperforms all models (all p < 0.0015). Overall,234

these results show that B2B reliably outperforms standard methods, especially when the effects are235

difficult to detect.236

3.5. Magnetoencephalography data237

4. Related work238

Forward and cross-decomposition models have been used to identify the causal contribution239

of correlated factors onto multi-dimensional observations (e.g. [21]). These approaches typically240

lead to multiple coefficients for each features (i.e. one per dimension of Y or one per component241

respectively). Furthermore, these coefficients can be difficult to summarize into a single causal242

estimate. By contrast, B2B quickly (Fig. B.6) leads to a single unbiased scalar values Ê tending243

towards 1 and 0 for causal and non-causal features respectively.244

A variety of other statistical methods applied to neuroimaging data have been proposed to245

clarify what is being represented in brain responses - i.e. what feature causes specific brain activity.246

One of the popular linear method is Representational Similarity Analysis (RSA) [17], and consists247

in analyzing the similarity of brain responses associated with specific categorical conditions (e.g.248

distinct images), by (1) fitting one-against-all classifiers on each condition and (2) testing whether249

these classifiers can discriminate all other conditions. The resulting confusion matrix is then250

analyzed in an unsupervised manner to reveal which conditions lead to similar brain activity251

patterns. B2B differs from RSA in that (1) it uses regressions instead of classifications, and can252

thus generalize to new items and new contexts and (2) it is fully supervised.253

Finally, CCA has been used in neuroimaging for a variety of purposes such as denoising and254

subject alignment [12, 4]. While CCA relates to B2B, these two methods diverge in several ways.255

First, CCA and B2B have different objectives: CCA aims to find the potentially numerous and256

poorly interpretable components where X and Y are maximally correlated, whereas B2B aims to257

recover the causal factors from X to Y. Second, B2B is not symmetric between X and Y : it aims258

to identify specific causal features by first optimizing over the decoders G and then over H . By259

contrast, CCA is symmetric between X and Y , and aims to find G and H such that they project260

X and Y on maximally correlated dimensions. Third, CCA is based an eigen decomposition of261

XH and Y G - the corresponding canonical components are thus mixing the X features in way that262

limit interpretability and potentially dilute the impact of each feature onto multiple components. In263

contrast B2B assesses each feature Xj on a single Y component specifically selected to maximize264

signal-to-noise ratio of that feature j. Fourth, and unlike B2B, CCA does not separately optimize265

two distinct regularization parameters for G and H . Finally, CCA does not use different data splits266

to estimate G and H . Together, these differences may explain why B2B reliably outperform CCA267

on estimating causal influences (Figs. 2 and B.5).268
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5. Conclusion269

In this work, we proposed Back-to-Back (B2B) regression, a linear method to disentangle270

confounded factors from multidimensional observations. B2B repeatedly performs two successive271

multidimensional regressions on independent subsets of the data: the first regression is applied on272

the output domain (as in backward decoding), whereas the second regression is applied on the input273

domain (as in forward encoding). We provided a theoretical guarantee about the consistency of274

B2B, and compared it to several baselines in controlled synthetic experiments. We also applied B2B275

to a recent brain imaging dataset, analyzing the timing of brain responses and their connection to276

word features. We obtained results consistent with prior work in neuroscience literature, confirming277

the reliability of B2B for real data analysis.278
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[16] Jean-Rémi King, Laura Gwilliams, Chris Holdgraf, Jona Sassenhagen, Alexandre Barachant, Denis Engemann,315

Eric Larson, and Alexandre Gramfort. Encoding and decoding neuronal dynamics: Methodological framework to316

uncover the algorithms of cognition, 2018.317

[17] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-connecting the318

branches of systems neuroscience. Frontiers in systems neuroscience, 2:4, 2008.319

[18] Marta Kutas and Kara D Federmeier. Thirty years and counting: finding meaning in the n400 component of the320

event-related brain potential (erp). Annual review of psychology, 62:621–647, 2011.321

[19] Ludovic Lebart, Alain Morineau, and Marie Piron. Statistique exploratoire multidimensionnelle, volume 3.322

Dunod Paris, 1995.323

[20] J. A. Morgan and J. N. Sonquist. Problems in the analysis of survey data: and a proposal. J. Amer. Statist. Ass.,324

(58):415–434, 1963.325

[21] Thomas Naselaris, Kendrick N Kay, Shinji Nishimoto, and Jack L Gallant. Encoding and decoding in fmri.326

Neuroimage, 56(2):400–410, 2011.327

[22] Kenneth A Norman, Sean M Polyn, Greg J Detre, and James V Haxby. Beyond mind-reading: multi-voxel pattern328

analysis of fmri data. Trends in cognitive sciences, 10(9):424–430, 2006.329
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Appendix A. Appendix355

Appendix A.1. Proof of consistency theorem356

Proof of the theorem in 2.2:357

Theorem 2 (B2B consistency - general case). Consider the B2B model from equation 1

Y = (XE +N)F

with N centered and full rank noise.358

If F and X are full-rank on Img(E), then, the solution of B2B, Ĥ minimizes359

min
H
‖X −XH‖2 + ‖NH‖2

and satisfies360

EĤ = Ĥ

Proof. Let Ĝ and Ĥ be the solutions of the first and second regressions of B2B.361

Since Ĝ is the least square estimator of X from Y

Ĝ = arg min
G

E[‖Y G−X‖2]

Replacing Y by its model definition Y = (XE +N)F , we have

Ĝ = arg min
G

E[‖X − (XE +N)FG‖2] = arg min
G

E[‖X −XEFG+NFG‖2]

Since N is centered and independent of X , we have

Ĝ = arg min
G
‖X −XEFG‖2 + ‖NFG‖2 (A.1)

In the same way, for Ĥ , we have

Ĥ = arg min
H

E[‖XH − Y Ĝ‖2] = arg min
H

E[‖XH − (XE +N)FĜ‖2]

= arg min
H

E[‖X(H − EFĜ)‖2] + E[‖NFĜ‖2]

= arg min
H

E[‖X(H − EFĜ)‖2]

a positive quantity which reaches a minimum (zero) for

Ĥ = EFĜ (A.2)

Let us now prove that EFĜ = FĜ.362

Let F † be the pseudo inverse of F , and Z = F †EFĜ, we have FZ = FF †EFĜ363

Since F is full rank on Img(E), we have FF †E = E, and FZ = EFĜ364
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As E is a binary diagonal matrix, it is an orthogonal projection and therefore a contraction, thus

‖NEFĜ‖2 ≤ ‖NFĜ‖2

and

‖X −XEFZ‖2 + ‖NFZ‖2 = ‖X −XEFĜ‖2 + ‖NEFĜ‖2 ≤ ‖X −XEFĜ‖2 + ‖NFĜ‖2

But since Ĝ = arg minG ‖X −XEFG‖2 + ‖NFG‖2, we also have∥∥∥X −XEFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 ≤ ‖X −XEFZ‖2 + ‖NFZ‖2

Summarizing the above,∥∥∥X −XEFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 ≤ ‖X −XEFĜ‖2 + ‖NEFĜ‖2 ≤ ‖X −XEFĜ‖2 + ‖NFĜ‖2

∥∥∥X −XEFĜ∥∥∥2 +
∥∥∥NFĜ∥∥∥2 = ‖X −XEFĜ‖2 + ‖NEFĜ‖2∥∥∥NFĜ∥∥∥2 = ‖NEFĜ‖2

N being full rank, this yields EFĜ = FĜ.365

Replacing into (A.1), and setting H = EFG, we have

Ĝ = arg min
G
‖X −XEFG‖2 + ‖NFG‖2

= arg min
G
‖X −XEFG‖2 + ‖NEFG‖2

Ĥ = arg min
H
‖X −XH‖2 + ‖NH‖2

Finally, EĤ = EEFĜ = EFĜ = Ĥ , since E, a binary diagonal matrix, is involutive. This366

completes the proof.367
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Appendix A.2. Modeling measurement noise368

Equation 1 does not explicitly contain a measurement noise term. Yet, in most experimental
cases, the problem is best described as:

Y = (XE +N)F +M (A.3)

with M ∈ Rn×dy .369

This equation is actually equivalent to Equation 1 given our hypotheses. Indeed, we can rewrite
M = MF−1F over Img(F ), which leads to:

Y = (XE +N)F +M = (XE +N +MF−1)F = (XE +N ′)F

Consequently, assuming that F is full rank on Img(XE), B2B yields the same solutions to370

equations 1 and A.3.371

Appendix A.3. Feature importance372

For B2B, feature importance is assessed as follows:373

Algorithm 2: B2B feature importance.
Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx .

1 H,G = B2B(Xtrain, Ytrain);
2 Rfull = corr(XtestH, YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Rk = corr(XtestKH,YtestGi);
7 ∆Ri = Rfull −Rk;
8 end
9 return ∆R

374

For the Forward Model, the feature importance is assessed as follows:375

Algorithm 3: Forward feature importance.
Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dy .

1 H = LinearRegression(Xtrain, Ytrain) Rfull = corr(XtestK,Ytest);
2 for i = 1, . . . , dx do
3 K = Id;
4 K[i]← 0;
5 Rk = corr(XtestKH,Ytest);
6 ∆Ri = Rfull −Rk;
7 end
8 return ∆R

376
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For the CCA and PLS models, the feature importance is assessed as follows:377

Algorithm 4: CCA and PLS feature importance.
Input: Xtrain ∈ Rn×dx , Xtest ∈ Rn′×dx , Ytrain ∈ Rn×dy , Ytest ∈ Rn′×dy ,
Output: estimate of prediction improvement ∆R ∈ Ddx,dz .

1 H,G = CCA(Xtrain, Ytrain);
2 Rfull = corr(XtestH, YtestG);
3 for i = 1, . . . , dx do
4 K = Id;
5 K[i]← 0;
6 Rk = corr(XtestKH,YtestG);
7 ∆Ri = Rfull −Rk;
8 end
9 return ∆R

378

For the Backward Model, feature importance cannot be assessed because there is no prediction.379

Appendix A.4. Recovering E380

In case of noise, B2B yields non binary Ê. Three thresholding rules can be used to binarize its381

values thus explicitly recover ”causal” features.382

First, given known signal-to-noise ratio, the threshold above which a feature should considered383

to be ”causal” can be derived analytically. Indeed, Equation 9 implies that the k first diagonal384

elements of Ĥ are bounded:385

0 ≤ σXk

σXk
+ σN1

≤ diagk(Ĥ) ≤ σX1

σX1 + σNk

where σX1 , σXk
, σN1 and σNk

denote the largest and smallest eigenvalues of ΣX1X1 and ΣN1N1 .386

The average value µ of non-zero coefficients of diag(Ĥ) is the trace of Ĥ divided by k, and can
be computed as

µ =
V ar(X)

V ar(X) + V ar(N)
(A.4)

The decision threshold between ”causal” and ”non-causal” elements is thus a fraction µ, whose387

proportion arbitrarily depends on the necessity to favor type I and type II errors. In practice, we388

cannot use this procedure for our MEG study, because signal-to-noise ratio is unknown.389

Second, diag(Ĥ) can be binarized with the Sonquist-Morgan criterion [20], a non-parametric
clustering procedure separating small and large values in a given set. This procedure maximizes the
ratio of inter-group variance while minimizing the intra-group variance, over all possible splits of
the diagonal into p largest values and dx − p smallest values. Let m0 and m1 be the average values
of the two clusters, p and dx − p their size, and v the total variance of the sample, Sonquist-Morgan
criterion maximizes [15]:

p(dx − p)
dx

(m1 −m0)
2

v
(A.5)

This procedure assumes that there exists at least one causal and at least one non-causal feature.390

Third, second-order statistics across multiple datasets can be used to identify the elements of391
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Figure B.5: Synthetic experiments. Distribution (over conditions) of AUC (top) and Feature Importance ∆R (bottom)
metrics between our method (y-axis) and the baselines (x-axis). Each dot is a distinct synthetic experiment. Dots below
the diagonal indicates that B2B outperform the tested model.

diag(Ĥ) that are significantly different from 0. This procedure is detailed in the method section of392

our MEG experiment.393

Overall, these three procedures thus vary in their additional assumptions: i.e. (1) a known394

signal-to-noise ratio, (2) the existence of both causal and non-causal factors or (3) independent395

repetitions of the experiment.396

Appendix B. Additional Figures397

Appendix B.1. Robustness to increasing number of factors398

To test whether each of the methods robustly scales to an increasingly large number of potential399

causes X , we enhanced the four ad-hoc features (word length, word frequency, word function,400

dummy variable) with another ten features. These additional features corresponds to the first401

dimensions of word embedding as provided by Spacy [11]. The results shown in Figure B.7, show402

that the feature importance of ad-hoc features as derived by B2B remain unchanged and are actually403

improved.404
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Figure B.6: Wall-clock run-time for our method B2B and for the baselines. Each dot is a distinct synthetic experiment.
B2B runs much faster than cross-decomposition baselines.
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Figure B.7: Comparison of ∆R when the models are tested on four variables (top) and when the models are tested on
an these four variables as well as another 10 word-embedding features (bottom). These results illustrate that, unlike
Regularized CCA, B2B remains robust even when the number of tested factors increases.
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