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Summary

• Current legislation enforces the implementation of intensive surveillance
programs for quarantine plant pathogens. After an outbreak, surveys are
implemented to delimit the geographic extent of the pathogen and execute disease
control. The feasibility of control programs is highly dependent on budget
availability, thus it is necessary to target and optimize surveillance strategies.

• A sequential adaptive delimiting survey involving a three-phase and a two-phase
design with increasing spatial resolution was developed and implemented for the
Xylella fastidiosa outbreak in Alicante, Spain. Inspection and sampling intensities
were optimized using simulation-based methods and results were validated using
Bayesian spatial models.

• This strategy made it possible to sequence inspection and sampling considering
different spatial resolutions, and to adapt the inspection and sampling intensity
according to the information obtained in the previous, coarser, spatial resolution.

• The proposed strategy was able to delimit efficiently the extent of Xf improving
efficiency of the current in terms of survey efforts. From a methodological
perspective, our approach provides new insights of alternative delimiting designs
and new reference sampling intensity values.

Keywords: Adaptive sampling, almond leaf scorch, Bayesian spatial statistics, emerging diseases,

sequential sampling, simulation-based optimization methods, survey design, Xylella fastidiosa subsp.

multiplex.

1 Introduction

Regulation (EU) 2016/2031 (EU, 2016) and Implementing Regulation (EU)
2019/2072 (EU, 2019b) define the list of quarantine plant pests and pathogens for
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which the adoption of measures is necessary to prevent their introduction into and
spread within the European Union (EU). As indicated by these Regulations, Member
States should take all necessary phytosanitary measures to eradicate quarantine pests
and pathogens, when found to be present in their territories. In those cases where a
quarantine plant pest or pathogen cannot be longer eradicated, containment measures
may apply. Nevertheless, the efficacy of eradication or containment measures strongly
relies on a precise delimitation of the infested area. Accurate diagnostic protocols exist
for regulated plant pathogens and are routinely used by plant health authorities when
tracking quarantine outbreaks (Petter & Suffert, 2010). However, surveillance and
sampling methodologies are far from optimal representing a serious bottleneck for the
effective implementation of control measures.

Xylella fastidiosa (Xf ) is a xylem-inhabiting phytopathogenic bacterium (Wells
et al., 1987) which can cause different diseases in a wide range of cultivated, ornamental,
and forest plant species (EFSA, 2018a; Saponari et al., 2019). Due to its potential
economic, environmental and social impacts, Xf is included in the list of priority
quarantine pests and pathogens for the EU (EU, 2019a). Member States shall carry out
specific surveys including a sufficiently high number of visual examinations, sampling
and testing. However, Xf infections can manifest in different ways, from latent
asymptomatic forms to a quick plant dieback due to complex interactions among the
host, pathogen, and environment, which sometimes make visual detection difficult
(Purcell et al., 1999; Loconsole et al., 2016).

The bacterium is a genetically diverse species grouped into six subspecies, although
Xf subsp. fastidiosa, Xf subsp. pauca, Xf subsp. multiplex, and Xf subsp. sandyi are the
four most frequently reported (Schaad et al., 2004; Denancé et al., 2017). Nevertheless,
only the subspecies fastidiosa and multiplex are recognized by the Committee on the
Taxonomy of Plant Pathogenic Bacteria of the International Society of Plant Pathology
(ISPP) (Bull et al., 2012). Xf subsp. fastidiosa has been found in grapevines, citrus,
coffee, and almond; Xf subsp. pauca has been found in citrus and coffee; Xf subsp.
multiplex has been found in almond, peach, plum, oak, blueberry, pecan, etc.; and Xf
subsp. sandy has been found in oleander.

The species Xf develops in the vascular system of the plants and it is naturally
transmitted by xylem sap-feeding insects, which spread the pathogen to relatively short
distances (Almeida et al., 2014). Long-distance spread is usually associated with
human activities that involve moving infected plant hosts or vectors (Nunney et al.,
2014; Morente et al., 2018). Originally, the geographic distribution of the bacterium was
restricted to the Americas, where it was endemic (EFSA, 2019). However, its presence
was recently confirmed in Iran (Amanifar et al., 2014) and Taiwan (Su et al., 2016),
and since 2013 it is officially present in the European Union (EU), specifically in Italy
(2013), France (2015), Spain (2016), and Portugal (2018) (see EC, 2019, for further
details).

The current situation of Xf in Europe is raising major concerns that are giving rise to
a phytosanitary emergency. Two of the most relevant crops in the Mediterranean areas of

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.03.05.978668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978668
http://creativecommons.org/licenses/by-nc-nd/4.0/


the EU, olives and almonds, are severely affected by Xf diseases. Grapevines were also
found to be affected in the Balearic Islands, Spain, and other major crops such as citrus
are at risk. Furthermore, the insect vector Philaenus spumarius (meadow spittlebug)
is widespread in affected regions in Spain and Italy as well as other areas of the EU
territory (Saponari et al., 2014; Cornara et al., 2017; EFSA, 2018b).

After first being detected in the EU, additional emergency measures were enforced
for Xf to prevent further spread under Decision 2015/789/EU (EU, 2015b) (hereinafter
referred to as “the Decision”) and its subsequent amendments 2015/2417/EU,
2016/764/EU, 2017/764/EU, 2018/927/EU and 2018/1511/EU (EU, 2015a, 2016, 2017,
2018b,a). Among other actions, the Decision establishes the implementation of two
different surveillance actions, detection (Art. 3) and delimiting (Art. 6) surveys,
depending on the pathogen status in the area. Detection surveys are aimed at detecting
the pest and ensuring the status of “pest-free area”. After the first detection of Xf in an
area, delimiting surveys are then conducted to demarcate the boundaries and geographic
extent of the pathogen (Art. 4). Surveillance activities are pivotal to enhance Xf control
(i.e., eradication or containment) and to understand the epidemiology and dynamics of
the disease (EFSA, 2016). Consequently, the development of innovative and advanced
methods for delimiting or detection has been prioritized by the European authorities (see
EFSA, 2016, for further details).

Considering the regulatory framework for Xf in the EU as a starting point, the
present work focuses on developing an alternative strategy for delimiting surveys in
the demarcated area of the province of Alicante, Spain, as a case study. The outbreak
in Alicante was first reported in June 2017 and since then delimiting survey activities
have been conducted, covering a demarcated area of about 140,000 ha. Almond (Prunus
dulcis) is the most affected plant species, although others such as Rosmarinus officinalis,
Polygala myrtifolia, Helichrysum italicum and various shrub plants have also been
detected, but representing a minor proportion. So far, only Xf subsp. multiplex has been
detected in the demarcated area (Giampetruzzi et al., 2018). With circa 2,000 orchards
and 51,000 trees already destroyed (GVA, 2019), this outbreak represent one of the
largest plant disease eradication campaigns ever attempted in Europe. Nevertheless, the
feasibility of this control program is seriously compromised by the low efficiency of the
current surveillance strategy for Xf enforced by Decision 2015/789/EU.

Delimiting surveys are fundamental to assess the feasibility of disease management
plans and target control tactics (Stanaway, 2011; Potts et al., 2013; Tobin et al., 2013;
Hauser et al., 2016). Implemented after an initial detection, delimitation implies
inspection (i.e., visual examination of plants) and sampling actions and its effectiveness
is highly dependent on budget availability, which ends up limiting resources for
monitoring and control. Thus, there is a need to design delimiting surveys which
minimize the costs of inspection while maintaining an acceptable level of risk of
overlooking a positive (Hauser et al., 2016).

During the last two decades innovative survey methods have been developed
taking into consideration optimization-based tools with the aim of improving their
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efficiency (Epanchin-Niell & Liebhold, 2015; Büyüktahtakın & Haight, 2018).
However, the number of studies published on this topic is scarce and they rarely consider
the particular case of delimiting strategies (Hauser et al., 2016; Moore & McCarthy,
2016; Yemshanov et al., 2017a,b).

As has been suggested by Pacifici et al. (2016), recent advances in surveillance
methodologies focus not only on improving the sampling design but also on developing
more sophisticated data analyses to overcome deficiencies in the survey design. In
relation to the sampling methodology, there are several strategies such as sequential
sampling (Chaudhuri & Stenger, 2005), stratified sampling (Edwards et al., 2005),
or adaptive sampling (Brown et al., 2013) which can increase the information
content and provide a more efficient estimation when disease distribution is spatially
correlated (Pacifici et al., 2016).

On the other hand, the use of complex statistical models can overcome deficiencies
in the survey design and data collection. For instance, spatial autocorrelation and
other factors associated with imperfect survey techniques such as observer error,
sampling gaps or missing data can now be included in the modeling process given
the developments in statistical and computing methods (Latimer et al., 2006; Banerjee
et al., 2014; Martı́nez-Minaya et al., 2018). Bayesian statistics allow all these data
particularities to be introduced into the model structure, and more especially Bayesian
hierarchical models have been proven to be a good option to deal with spatial correlation
and other dependence structures (Latimer et al., 2006; Banerjee et al., 2014).

In our study, an alternative delimiting survey strategy was developed for the
particular case of Xf in Alicante. This strategy was defined by a sequential adaptive
scheme which combines different spatial resolution grid sizes in different survey phases.
The sequential adaptive survey begins with a full inspection of all grid cells and a
simple random sampling. This is followed by a second phase of additional inspection
and sampling at a higher spatial resolution, but only in those cells that were found
to be infested in the first phase of the survey. This sequential adaptive strategy was
implemented considering a two-phase and a three-phase design. For each phase,
optimum inspection and sampling intensities were estimated using simulation-based
optimization methods to ensure the efficacy was comparable to that of the current
strategy (Decision 2015/789/EU).

An additional objective was also considered in our study, namely, to determine the
influence of the survey design on the estimates of the spatial distribution of Xf incidence
in the demarcated area in Alicante. Incidence (i.e., the proportion of plants positive
for Xf ) is a magnitude commonly used in plant pathology to characterize the disease
status or to evaluate the efficacy of a control program (Madden et al., 2007). A Bayesian
hierarchical spatial model was used here to infer this metric using data from the official
surveys and simulated data obtained considering the outputs of the sequential adaptive
strategy indicated above. A comparison among the inferential outputs obtained with the
different survey designs was carried out quantifying differences in the stability of the
estimates using several discrepancy measures.
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2 Material and methods

2.1 Database

In compliance with the current legal provisions, after the detection of Xf in 2017 the
competent plant health authority carried out delimiting surveys in the demarcated area in
Alicante. These surveys were aimed at updating the current extent and boundaries of the
infested area, assessing pathogen incidence, and implementing eradication measures as
enforced by Decision 2015/789/EU. In the present study, data from the 2018 delimiting
survey campaign (hereinafter referred to as the “2018 official survey”) were used, The
dataset used included a total of 8,142 samples from individual plants covering a total
of 83,300 ha.. Samples were analyzed for the presence of Xf in official laboratories
following the EPPO standard diagnostic protocol (EPPO, 2019). Additional information
related to sampling date, plant species, presence of symptoms (i.e., symptomatic vs.
asymptomatic), and GPS coordinates (in WGS84 reference system) were also collected.

Altogether 124 species were sampled in the 2018 official survey with Olea europaea,
Prunus dulcis, Ficus carica, Rosmarinus officinalis, and Vitis spp. accounting for
62.06% of the total sample size (Table 1). Plants expressing Xf -like symptoms were
preferentially sampled, representing 85% of the total. In the laboratory analysis, 3.37%
(227/6957) of the symptomatic samples were found to be positive for Xf, while only
0.84% (10/1185) were positive in the case of the asymptomatic samples. Altogether, 237
samples were positive for Xf with 221 of them belonging to Prunus dulcis, while the rest
corresponded to R. officinalis (1), R. alaternus (1), P. armeniaca (1), P. myrtifolia (5),
Phagnalon saxatile (3), Helycrhysum italicum (3), Calicotome spinosa (1), and Scabiosa
atropurpurea (1).

Table 1: Absolute frequency distribution of the presence of symptoms and positive detection of Xylella
fastidiosa in the dataset of the 2018 official survey in Alicante categorized by plant species.

Plant species Asymptomatic (Positive/Total) Symptomatic (Positive/Total) Positive/Total
Olea europea 0/260 0/1,804 0/2,064
Prunus dulcis 10/122 211/1507 221/1,629
Ficus carica 0/203 0/342 0/545
Rosmarinus officinalis 0/17 1/482 1/499
Vitis spp. 0/103 0/213 0/316
Other 0/480 15/2,609 15/3,089

10/1,185 227/6,957 237/8,142

2.2 Evaluation of delimiting strategies

Current delimiting strategy

In compliance with Art. 4 of the Decision, under an eradication situation, delimiting
surveys are aimed at establishing a “demarcated area” with an infested zone (i.e.,
infected zone, in the Decision) surrounded by a buffer zone. The infected zone must
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include all plants infected by Xf and all plants in the vicinity liable to be infected and/or
showing symptoms within a radius of 100 m. The buffer zone is delimited by considering
a 5 km radius around the infected zone. However, this distance may be reduced to no
less than 1 km under certain conditions or increased up to 10 km under a containment
situation (see EU, 2015b, for further details). Additionally, the buffer zone must be
intensively monitored and maintained under disease-free (i.e., pest-free, in the Decision)
conditions. This intensive monitoring is performed at different spatial resolutions: i) 100
x 100 m grid cells (0.01 km2) in the 1st km radius, and ii) on 1 x 1 km grid cells (1 km2)
in the rest of the buffer zone. Monitoring involves visual inspections of plants, which
should be sampled and tested for Xf preferably when observing symptoms.

In line with the legal provisions in force, in 2018 the delimiting surveys in Alicante
resulted in 71 infected zones and an aggregated buffer zone split into 656 cells of 1 km2

and 17,700 cells of 0.01 km2. The extent of the buffer zone covered a total of 833 cells
of 1 km2, with 177 of them being re-split into 0.01 km2 cells. The grid layout of the
demarcated area is shown in Fig. 1(a) and the distribution of samples can be seen in
Fig. 1(b).

(a) 0.01 km2 and 1 km2 grid distribution (b) Samples distribution

Fig. 1: Distribution of (a) 0.01 km2 and 1 km2 grid, and (b) samples giving positive and negative for Xylella
fastidiosa in the demarcated area in Alicante, Spain, in 2018.

In terms of the sampling description, Table 2 provides information about the
number of sampled cells, sampling intensity (number of samples/cell), and additional
information categorized by grid resolution. Note that a grid of 500 m x 500 m (0.25
km2) was also included in the description as being later considered in one sequential
adaptive design (see next section). Considering the 1 km2 grid, the percentage of cells
sampled reached 100% with an overall rate of positives for Xf of 8.53%, and median
and maximum sampling intensity values of 5 and 109 samples/cell, respectively. For the
0.25 km2 and 0.01 km2 grids, the percentage of sampled cells was 49.33% and 4.01%,
respectively. The overall percentage of positives for Xf was 2.67% for the 0.25 km2 grid
and 0.19% for the 0.01 km2 grid. The median sampling intensity was 1 sample/cell in
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both grid resolutions, with a maximum of 101 for the 0.25 km2 grid and 59 samples/cell
for the 0.01 km2 grid.

Table 2: Sampling description in the demarcated area in Alicante, Spain, for Xylella fastidiosa in 2018
categorized by different grid resolutions ( j = {1,0.25,0.01} km2). CCC j denotes the number of cells
covering the demarcated area depending on the grid resolution ( j); C j,s is the number of cells per
grid ( j) in which at least one sample was taken; and C j,+ is the number of cells per grid ( j) in which
at least one sample was detected as positive for X. fastidiosa. Sampling intensity (samples/cell) is
described by the median and the maximum values.

Grid resolution Number of cells Sampling intensity
(km2) CCC j CCC j,s CCC j,+ Median Maximum
jjj === 111 833 833 71 5 109

jjj === 000...222555 3,332 1,644 89 1 101
jjj === 000...000111 83,100 3,340 161 1 59

Sequential adaptive strategy

An alternative delimiting strategy was proposed under the premises of improving
the efficiency and maintaining the efficacy of the current strategy established by the
Decision. To improve the efficiency, inspection intensity (i.e., number of cells inspected
for each grid resolution) and sampling intensity (i.e., number of samples taken in each
cell) were optimized using a sequential adaptive scheme which combines 1 km2, 0.25
km2, and 0.01 km2 grid resolutions in different phases of the survey. Assuming an
initial survey resolution of 1 km2, the sequential approach allows the phases of the
survey to be scheduled in different time frames. Additionally, the adaptive approach
allows the inspection and sampling intensities to be tailored for each phase depending
on the results obtained in the previous phase at a coarser spatial resolution.

Our proposal considers inspection and sampling of all 1 km2 cells in the demarcated
area and inspection and sampling are performed at a finer spatial resolution only in
those cells in which Xf was detected. This adaptive sequence was implemented by a
three-phase and a two-phase design, which differed in the sequence of grid resolutions.
The three-phase design included increasing grid resolutions of 1 km2, 0.25 km2, and 0.01
km2, whereas the two-phase design only included 1 km2 and 0.01 km2. Fig. 2 illustrates
the phase sequences of the two designs with an example. This scheme was applied to the
2018 official survey database, which was considered the reference to optimize inspection
and sampling intensities.
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Phase 1

Phase 2

Phase 3
(a) Three-phase

Phase 1

Phase 2

Phase 3
(b) Two-phase

Fig. 2: Example of the sequential adaptive strategy for a) the three phase and b) the two phase designs
for 1 km2 (row 1), 0.25 km2 (row 2), and 0.01 km2 (row 3) grid resolutions. Red and green denote
positive and negative samples (dots) or cells (squares), respectively, for Xylella fastidiosa. Gray cells
represent those not inspected or sampled for a specific grid resolution. n j for j = {1,0.25,0.01}
denotes sampling intensity (samples/cell) for the different grids.
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Fig. 3: Optimization algorithm to estimate optimum sampling intensity n j for j = {1,0.25,0.01} in the
three-phase design and j = {1,0.01} for the two-phase design. R j and C j,+ denote the number of
replicates and the number of positive cells for Xylella fastidiosa in each j grid resolution.

Phase 1. For all 1 km2 cells:

Step 1. Initialize n1 as 1, where n1 denotes the optimum sampling intensity
for the 1 km2 grid resolution. This value is the threshold sampling intensity
value.

Step 1b. Increment n1 by 1.

Step 2. Run 100 replicates (R1 = 100) of a random sampling under the
restriction imposed by the value n1.

Step 3. Stopping rule: if 50% of the replicates (R1) have identified all the
positive cells for Xf in the 1 km2 grid resolution (C1,+), n1 is the optimum
sampling intensity. If not, go back to step 1b and continue the sequence.

Phase 2. Only for 1 km2 cells identified as positive for Xf in phase 1. (Phase 2 is not
considered in the two-phase design):
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Step 1. Initialize n0.25 as 1, where n0.25 denotes the optimum sampling
intensity for the 0.25 km2 grid resolution. This value is the threshold
sampling intensity value.

Step 1b. Increment n0.25 by 1.

Step 2. Run 100 replicates (R0.25 = 100) of a random sampling under the
restriction imposed by the value n0.25.

Step 3. Stopping rule: if 50% of the replicates (R0.25) have identified all
the positive cells for Xf in the 0.25 km2 grid resolution (C0.25,+), n0.25 is
the optimum sampling intensity. If not, go back to step 1b and continue the
sequence.

Phase 3. Only for 0.25 km2 cells identified as positive for Xf in phase 2 (three-phase design)
or 1 km2 cells identified as positive in phase 1 (two-phase design):

Step 1. Initialize n0.01 as 1, where n0.01 denotes the optimum sampling
intensity for the 0.01 km2 grid resolution. This value is the threshold
sampling intensity value.

Step 1b. Increment n0.01 by 1.

Step 2. Run 100 replicates (R0.01 = 100) of a random sampling under the
restriction imposed by the value n0.01.

Step 3. Stopping rule: if 50% of the replicates (R0.01) have identified all
the positive cells for Xf in the 0.01 km2 grid resolution (C0.01,+), n0.01 is
the optimum sampling intensity. If not, go back to step 1b and continue the
sequence.

According to the survey scheme illustrated in Fig. 2 and the outputs of the
optimization algorithm (n1, n0.25, n0.01), the survey efforts (i.e., the total number of
samples) for the three-phase and two-phase designs were calculated as:

N(three−phase) = [n1×C1]+ [n0.25×C1,+×4]+ [n0.01×C0.25,+×25],

= [n1×C1]+ [n0.25×C0.25]+ [n0.01×C0.01].

N(two−phase) = [n1×C1]+ [n0.01×C1,+×100],

= [n1×C1]+ [n0.01×C0.01].

where C1, C0.25, C0.01 are the total number of cells to be inspected in the 1 km2, 0.25
km2, and 0.01 km2 grid resolutions; C1,+ and C0.25,+ are the number of cells identified
as positive for Xf in the 1 km2 and 0.25 km2 grid resolutions; and n1, n0.25, n0.01 are
the optimum sampling intensities (samples/cell) calculated by the algorithm for the 1
km2, 0.25 km2, and 0.01 km2 grid resolutions. Note that the equivalence of grid cells at
increasing spatial resolutions for the three-phase design are 1 km2 −→ 0.25 km2 = 4
and 0.25 km2 −→ 0.01 km2 = 25. Likewise, the equivalence of grid cells for the
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two-phase design is 1 km2 −→ 0.01 km2 = 100.

Delimiting strategies were evaluated by comparing the three-phase and two-phase
sequential adaptive designs with the current strategy based on the estimation of
inspection and sampling intensities. Inspection and sampling intensity outputs were
combined to provide an overall evaluation of survey efforts.

2.3 Modeling the distribution of Xf incidence

Bayesian hierarchical spatial model

Based on previous work (Cendoya et al., unpublished), the spatial variation of Xf
incidence was modeled here by means of a Bayesian hierarchical spatial model. This
methodology allows the introduction of more stochasticity in the model by means
of spatial structured effects (Latimer et al., 2006) and other non observed sources
of variability as random effects, thereby improving the accuracy of the estimates,
uncertainty quantification, and predictive power. The inference process was addressed
under the integrated nested Laplace approximation (INLA) proposed by Rue et al. (2009)
and implemented through the R-INLA package (see Martı́nez-Minaya et al., 2018, for
further details on methodological assumptions to apply the INLA approach).

This analysis was performed using the data of the 2018 official survey, georeferenced
to the regular lattice of 1 km2 cells used for the surveillance of the demarcated
area. Given the nature of the database, an extension of a generalized linear model
(GLM) (Nelder & Wedderburn, 1972) was proposed to define a generic model as follows:

Yi ∼ Binomial(mi,πi) i = 1, . . . ,n

logit(πi) = XXX iβββ + vi +ui,
(1)

in which the number of samples positive for Xf in each grid cell (Yi) was considered as
the response variable and as following a Binomial distribution, Yi ∼ Binomial(mi;πi),
with πi and mi denoting the probability of a sample being positive for Xf and the total
number of samples in cell i, respectively. The linear predictor was defined by a vector of
covariates and its corresponding vector of coefficients, XXX i and βββ , and by a spatial and an
independent random effect associated to each cell i, vi, and ui, respectively. This generic
model is usually known as the Besag, York and Mollié model (Besag et al., 1991) and
it makes it possible to take into account similarities among neighboring cells and also to
quantify intra-cell ability to be positive for Xf (unstructured random effects).

In particular, random effects were defined as a Gaussian distribution with mean 0
and precision τu,

ui ∼ N(0,τu) i = 1, . . . ,n, (2)

while spatial dependence was modeled considering an intrinsic conditional
autoregressive structure (ICAR) (Besag, 1974). That is, each grid cell follows a
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conditional Gaussian distribution with mean equal to the average of the neighboring
cells (structured random effects) and a precision proportional to the number of them:

vi|v j ∼ N

(
1
ki

∑
i∼ j

v j,τvki

)
i 6= j, (3)

where j ∼ i denotes i and j neighboring cells, τv is the precision of the spatial
random effect, and ki is the number of neighbors of the corresponding cell i. The
neighborhood criterion was established at a maximum distance of 2.5 km among all
the cells to ensure that all of them had at least one neighbor. Note that this spatial
structure definition accomplishes Markovian properties and it can be considered a latent
Gaussian Markov random field (GMRF) (Rue et al., 2009, 2017), thus making the INLA
implementation feasible. Prior to including the spatial effect in the model, Moran’s I
test was used to check for the existence of spatial autocorrelation in the Xf incidence
distribution (Dormann et al., 2007).

Spatially gridded climatic data (30” arc min resolution) from the demarcated area in
Alicante were acquired from the WorldClim v.2 database (Fick & Hijmans, 2017), which
contains mean monthly temperature and precipitation values for the period 1970-2000.
Three bioclimatic covariates were included as fixed effects in the generic model: annual
mean temperature (°C) (coded as bio1), temperature annual range (°C) (coded as
bio7), and precipitation of the wettest month (mm) (coded as bio13). The coordinate
system WGS84 was used in all spatially gridded datasets with raster package for R
software (Hijmans, 2019).

The model formulation was completed with the elicitation of a prior distribution for
the parameters and hyperparameters. Following the hierarchical structure, after defining
the model likelihood (see equation (1)), priors for the parameters are specified together
with the definition of random effects (see equation (2) and (3)), and lastly the prior
distribution of the hyperparameters (hyperpriors) are specified as follows:

Yi ∼ Binomial(mi,πi) i = 1, . . . ,n,

logit(πi) = XXX iβββ + vi +ui,

vi|v j ∼ N

(
1
ki

∑
i∼ j

v j,
1

τvki

)
i 6= j,

ui ∼ N(0,τu) i = 1, . . . ,n,

βββ j ∼ N(µ = 0,τ = 0.001) j = 0, . . . ,M,

log(τv )∼ logGamma(1,5 ·10−5),

log(τu) ∼ logGamma(1,5 ·10−5).

(4)

Note that a non-informative scenario was considered to set prior specification with
normal distributions centered at zero and a small precision for regression coefficients
and log-gamma priors (a default option of INLA) with a wide mean and variance for
precisions of the spatial and independent random effects.
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With the aim of selecting the more parsimonious model and with the best
explanatory and predictive abilities, all possible model component combinations, 2k

(with k denoting the number of components of the linear predictor including random
effects), were assessed in terms of goodness of fit, complexity, and predictive ability.
For this purpose, two selection model criteria were used: the Watanabe-Akaike
information criteria (WAIC) (Watanabe, 2010; Gelman et al., 2014), and the logarithmic
conditional predictive ordinate (LCPO). While WAIC evaluates goodness of fit and
model complexity, LCPO addresses predictive ability. The models with the lowest values
of WAIC and LCPO were chosen.

Effect of sampling intensity on Xf incidence estimates

To evaluate the influence of sampling intensity on the estimates of Xf, different data
subsets were built from the reference database of the 2018 official survey using the
regular lattice of 1 km2 cells. Four data subsets were obtained by limiting the maximum
sampling intensity to: i) the optimum sampling intensity calculated with the optimization
algorithm for the 1 km2 grid resolution (Section 2.2); ii) the third quartile of the sampling
intensity in the reference database; and iii) two arbitrary sampling intensities in between
those values (Section 3.2).

The data subset generation process consisted in running a simple random sampling
for each 1 km2 cell in which the sampling intensity was set according to the thresholds
indicated above. Each data subset was replicated 100 times (R = 100) to ensure the
inclusion of a wide range of sampling configurations. Subsequently, the data subsets
were used to run the Bayesian hierarchical spatial model obtained previously for the
reference dataset and selected based upon WAIC and LCPO criteria.

The 100 replicas (R = 100) were considered in each inferential process, so
100 independent posterior inferences were obtained and averaged to carry out
the contrast. The comparison was focused on assessing the stability of: i) the
marginal posterior distribution of the fixed parameters (regression coefficients) and
hyperparameters (spatial and independent effects standard deviation), ii) the marginal
posterior distribution of the incidence, iii) the standard deviation associated to the
posterior distribution of the incidence, and iv) the marginal posterior distribution of
the spatial and the independent effects. Note that spatial and independent random
effects were characterized by their corresponding standard deviation: σv = 1/

√
τv and

σu = 1/
√

τu.
The stability of the marginal posterior distributions of the fixed parameters and

hyperparameters was evaluated by means of the following discrepancy measures:

• Bias: Difference between the average of the posterior sample means of the replicas
and the posterior sample mean of the reference inference process, (∑R

r=1 β̄(r)/R)−
β , where R is the number of replicas (R = 100 in our study), β̄(r) is the mean of
the posterior marginal corresponding to the replica r, and β is the mean of the
posterior marginal corresponding to the reference model.
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• Standard error (SE): Square root of the average of the posterior variances of the
replicas,

√
∑

R
r=1 s2

(r)/R, where s2
(r) is the sample variance of the posterior sample

for replica r.

• Standard deviation (SD): Standard deviation of the set {β̄(1), . . . , β̄(R)} that
includes the mean of the posterior marginal of the regression coefficients (or
hyperparameters) of all replicas.

Note that {β̄(1), . . . , β̄(R)} represents the vector of means of the marginal posterior
distributions for each the regression parameter (denoted as β ) corresponding to the
replica r, r = 1, . . . ,100, of the inferential process. For assessing hyperparameter
discrepancy measures we proceeded analogously but focused on {σ̄v,(1), . . . , σ̄v,(R)} and
{σ̄u,(1), . . . , σ̄u,(R)}.

On the other hand, the stability of the derived quantities (posterior distribution of
the incidence and its corresponding standard deviation, spatial and independent effects)
was assessed by means of the bias, computed as the difference between the average of
the posterior sample means (for the derived quantities) of the replicas and the posterior
sample mean of the reference inference process. Note that the reference inference
process was defined by the model fitted for the reference dataset and selected based
upon WAIC and LCPO criteria.

3 Results

3.1 Evaluation of delimiting strategies

Inspection intensity

Table 3 contains the graphical and numerical description of the inspection intensity for
the two sequential adaptive designs (three-phase and two-phase) and the current strategy.
The inspection intensity of the current strategy in 1 km2 (656 cells) was lower than in
both sequential adaptive designs (833 cells), given that the first kilometer of the buffer
zone must be inspected directly at a resolution of 0.01 km2. In contrast, the inspection
intensity at a grid resolution of 0.01 km2 was lower for both alternative designs (2225
(three-phase) and 7100 (two-phase) cells). Specifically, the three-phase design had the
lowest inspection intensity value (2225 cells) due to the integration of the intermediate
grid resolution of 0.25 km2, which substantially reduced the inspection intensity.

Sampling intensity

Table 4 shows the optimum sampling intensities obtained for the three-phase and
two-phase sequential adaptive designs under the established condition of R j = 50% and
with other less restrictive conditions (R j = 25%, R j = 15% and R j = 5%). Note that,
given the sequential adaptive nature of the strategy, the condition R j established for a
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Table 3: Inspection intensity for the three-phase, two-phase, and current delimiting strategies in the
demarcated area for Xylella fastidiosa in Alicante, Spain. CCC j denotes the inspection intensity
as the number of cells to be inspected for each grid resolution j = {1,0.25,0.01} km2.

Delimiting strategy Grid resolution (km2) CCC j

Three-phase

jjj === 111 833

jjj === 000...222555 284

jjj === 000...000111 2225

Two-phase

jjj === 111 833

jjj === 000...222555 -

jjj === 000...000111 7100

Current

jjj === 111 656

jjj === 000...222555 -

jjj === 000...000111 17,700

particular phase ( j) affected the following one. C∗j,+ denotes the number of positive cells
for Xf that our algorithm identified for the specific optimum sampling intensity (Table 4)
summarized by the median value of the replicates.

As shown in Table 4, for the three-phase design optimum sampling intensity was
calculated in 51, 45 and 14 samples/cell for j = {1,0.25,0.01} km2 grid resolutions.
These optimum values ensured the detection of all the positive cells for Xf given that
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Table 4: Optimum sampling intensity (n j) calculated for each grid resolution j =
{1,0.25,0.01} in the three-phase and two-phase sequential adaptive designs applied
to the demarcated area for Xylella fastidiosa in Alicante, Spain. R j

a denotes the
condition established in the optimization algorithm for each grid resolution and
C∗j,+ is the number of positive cells for Xf identified by the algorithm under the
constraint imposed.

Grid resolution (km2) RRR1 RRR0.25 RRR0.01 CCC∗j,+ nnn j

Three-phase

jjj === 111

50 - - 71 51
25 - - 70 46
15 - - 69 40
5 - - 68 36

jjj === 000...222555 50

50 - 89 45
25 - 89 41
15 - 88 37
5 - 87 33

jjj === 000...000111 50 50

50 161 14
25 160 13
15 160 13
5 160 12

Two-phase

jjj === 111

50 - - 71 51
25 - - 70 46
15 - - 69 40
5 - - 68 36

jjj === 000...000111 50

- 50 161 15
- 25 160 13
- 15 159 12
- 5 159 12

a R j=50 ensures that 50% of the replicates generated had identified all the positive cells for
Xf for the j grid resolution.

C∗j,+ values matched C j,+ (Table 2). For 1 and 0.25 km2 grid resolutions, differences in
sampling intensity varied a maximum of 15 (51-36) and 12 (45-33) samples/cell among
the different conditions established by the algorithm, respectively, whereas differences
in C∗j,+ were no more than 3 (71-68) and 2 (89-87) positive cells each. This showed
that a relatively small number of cells were sampled more intensively than the others.
Sampling intensity decreased with higher grid resolution, although differences between
1 and 0.25 km2 grid resolutions were not greater than 6 samples/cell.

For the two-phase design, as shown in Table 4, the optimum sampling intensity
was calculated in 51 and 15 samples/cell for j = {1,0.01} km2 grid resolutions. All
these optimum values ensured the detection of all positive cells for Xf (C∗j,+ values that
matched C j,+ displayed in Table 2). For 0.01 km2 differences in sampling intensity
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values varied a maximum of 3 (15-12) samples/cell among the different conditions
established by the algorithm, and differences in C∗j,+ were no more than 2 (161-159)
positive cells. Sampling intensity decreased with higher grid resolution and the
difference between 1 and 0.01 km2 corresponded to a value of 36 (51-15) samples/cell
for the most restrictive condition.

Survey effort

An overall assessment of the survey effort of the proposed sequential adaptive designs
(three-phase and two-phase) and the current delimiting survey strategy is provided in
Table 5.

Table 5: Overall assessment of the three-phase and two-phase sequential adaptive designs and the current
delimiting survey strategy in the demarcated area for Xylella fastidiosa in Alicante, Spain. For each
grid resolution j with j = {1,0.25,0.01}, C j denotes the inspection intensity (number of cells to be
inspected), n j is the sampling intensity (number samples/cell), and N j = C j× n j is the sampling
effort as the total number of samples to be taken. ∑ j N j denotes total survey effort.

Grid resolution (km2) CCC j nnn j NNN j

Three-phase

jjj === 111 833 51 42,483
jjj === 000...222555 284 45 12,780
jjj === 000...000111 2,225 14 31,150

86,413

Two-phase
jjj === 111 833 51 42,483

jjj === 000...000111 7,100 15 106,500
148,983

Current
jjj === 111 656 51 33,456

jjj === 000...000111 17,700 15 265,500
298,956

Both sequential adaptive designs improved efficiency in terms of inspection and
sampling intensities for the 0.01 km2 grid resolution. This result strongly influenced
the overall number of samples to be taken (i.e., survey effort), which were estimated
as 86,413, 148,983 and 298,956 for the three-phase, two-phase and current delimiting
strategies, respectively.

Inspection and sampling intensities were lower for the three-phase design in
comparison to the two-phase (2225 vs. 7100 cells, and 31,150 vs. 106,500 samples)
due to the integration of an intermediate grid resolution (0.25 km2) which substantially
reduced the overall survey effort (86,413 vs. 148,983). On the other hand, the inspection
effort of the current strategy in the 1 km2 grid resolution was lower than that of the
sequential adaptive designs given that the 1 km radius of the buffer zone is surveyed
directly at a resolution of 0.01 km2. However, it was far greater in the 0.01 km2 grid
resolution, the overall survey effort increasing to 298,956 samples.
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3.2 Modeling the distribution of Xf incidence

Model selection

The following model was selected based on WAIC and LCPO criteria (see
Supplementary material Table S1 for WAIC and LCPO values) among all 64 possible
combinations for the 2018 official survey database:

Yi ∼ Binomial(mi,πi) i = 1, . . . ,n

logit(πi) = β0 + vi.
(5)

The model with the lowest WAIC value was the one which included the covariates
bio1, bio7, and the spatial effect (Supplementary material Table S1). The lowest LCPO
value corresponded to the model with bio7, bio13 and the spatial effect (Supplementary
material Table S1). Nevertheless, models ranked first based on WAIC and LCPO
presented similar scores (less than one unit of difference), so the most parsimonious
model including only the spatial effect was selected. Table 6 shows a numeric descriptive
of the marginal posterior parameters and hyperparameter distributions for the selected
model. The full model is also described to illustrate why climatic variables were not
finally included. Mean values of the posterior distributions of the climatic covariates
were very close to zero and their corresponding probabilities of being greater than
zero were around 0.50, thus having low explanatory capacity for the distribution of Xf
incidence.

Table 6: Marginal posterior distributions of parameters and hyperparameters for the model of Xylella
fastidiosa incidence distribution in the demarcated area in Alicante, Spain, with mean, standard
deviation (SD), median (QQQ0.5), and 95% credible interval (95% CI). The full model including
climatic covariates is also indicated.

Mean SD QQQ0.5 95% CI PPP(((···)))>>> 000
β0 + v
β0 -5.829 0.325 -5.807 [-6.526,-5.253] 0
σv 1.762 0.202 1.748 [1.401,2.194] -
β0 +bio1+bio7+bio13+ v
β0 -7.273 13.897 -7.205 [-34.859,19.906] 0.298
bio1 0.060 0.312 0.055 [-0.540,0.687] 0.570
bio7 0.040 0.343 0.040 [-0.634,0.717] 0.545
bio13 -0.008 0.100 -0.005 [-0.214,0.181] 0.477
σv 1.798 0.208 1.791 [1.653,2.228] -

Fig. 4 shows the mean posterior distribution of the spatial effect, the mean posterior
distribution of the incidence (0-1), and its corresponding standard deviation for the
model of Xf incidence distribution in the demarcated area in Alicante, Spain. As
indicated before, the mean posterior distribution of the spatial effect was determined by
the spatial dependence structure defined by a neighborhood relation of a distance of 2.5
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km among cells. It ranged from -1.780 to 4.371, with positive values indicating higher Xf
incidence estimates. As can be observed, the central and eastern parts of the demarcated
area included the cells with the highest values for the spatial effect, corresponding to
those cells where a higher proportion of positives was detected.

(a) (b)

(c)

Fig. 4: Geographical representation of the model of Xylella fastidiosa incidence distribution in the
demarcated area in Alicante, Spain, with (a) the mean posterior distribution of the spatial effect,
and (b) the mean posterior distribution of the incidence (0-1), and (c) its corresponding standard
deviation.

Regarding Xf incidence estimates (Fig. 4(b) and 4(c)), mean posterior distribution
varied from 0.002 to 0.215 and its corresponding standard deviation ranged from 0.003
to 0.191. The cells with the highest incidence values were concentrated in the central
and eastern parts of the demarcated area, coinciding with those cells that presented the
highest value for the spatial effect and proportion of positives. On the other hand, in
the cells where Xf was not detected, mean incidence was estimated as zero or somewhat
close to it, because in some cases the presence of positive neighboring cells contributed
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with the spatial dependence structure. The standard deviation showed higher values in
those cells where the incidence estimate was more influenced by the spatial effect, that
is, the cells that present higher values in Fig. 4(c), as well as in those having the highest
incidence values.

Effect of sampling intensity on Xf incidence estimates

The effect of the sampling intensity on Xf incidence estimates (equation 5) was assessed
by generating different data subsets from the reference database by limiting the sampling
intensity with certain threshold values. These threshold values were established at 9
(DS9), 23 (DS23), 37 (DS37), and 51 (DS51) samples/cell. Note that 51 samples/cell
corresponded to the optimum sampling intensity estimated for the 1 km2 grid resolution
by the optimization algorithm (Section 2.2). The value of 9 samples/cell was consistent
with the third quartile value of the sampling intensity of the reference database. The
values of 23 and 37 samples/cell were chosen arbitrarily in the range of possible values
between 9 and 51.

The different data subsets implied a reduction in the number of samples compared to
the reference dataset. Furthermore, subsetting also implied a change in the distribution
of both positive and negative samples and overall incidence, as shown in Supplementary
material Table S2. Supplementary material Fig. S1 and S2 display the changes in the
distribution of the sampling intensity (samples/cell), number of positive samples per cell,
bacterium presence cells, and incidence per cell. Note that the quantities obtained with
the different data subsets were summarized by the replicate showing the median behavior
in relation to the total number of positive samples.

Table 7 shows the discrepancy measures used to assess the stability of the marginal
posterior distributions of the model parameters and hyperparameters, including bias,
standard error (SE), and standard deviation (SD), with their corresponding values
associated to the different data subsets.

Table 7: Discrepancy measures bias, standard deviation (SD), and standard error (SE) for assessing
parameters/hyperparameters marginal posterior stability with the data subsets (9, 23, 37 or 51
samples/cell) compared to the reference dataset of the demarcated area for Xylella fastidiosa in
Alicante, Spain.

Data subsets Parameter/Hyperparameter Bias SE SD

DDDSSS9
β0 -0.364 0.476 0.318
σv -0.009 0.281 0.181

DDDSSS23
β0 -0.128 0.360 0.185
σv -0.039 0.220 0.112

DDDSSS37
β0 0.008 0.324 0.008
σv -0.055 0.204 0.062

DDDSSS51
β0 0.017 0.319 0.056
σv -0.033 0.201 0.044

20

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.03.05.978668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978668
http://creativecommons.org/licenses/by-nc-nd/4.0/


In relation to β0 marginal posterior stability, bias (absolute values) showed the
highest values in the data subsets with more restrictive sampling intensities. On the
other hand, DS37 and DS51 presented a similar behavior since both sampling intensities
generated similar data subsets (Supplementary material Table S2). The SD and SE
mimicked bias behavior. Regarding the stability of the hyperparameter posterior (σv), the
bias did not show a clear trend and all data subsets had similar values with a difference
between the maximum (DS37) and minimum (DS9) of 0.046. The SE and SD also
exhibited the highest trend associated with the data subsets that were more restrictive
with sampling intensity.

Changes in the posterior distribution of Xf incidence and the spatial effect were
assessed graphically (Fig. 5) by comparing the inference outcomes related to the replicas
(averaged) in relation to the reference outputs (Fig. 4). In general, bias was greater in
the data subsets that were more restrictive with sampling intensity although its range of
values varied for each quantity evaluated. In general cells in the central and eastern parts
of the demarcated area, with the highest sampling intensities (Supplementary material
Fig. S1), exhibited higher bias related to the posterior distribution of the incidence (mean
and SD).

With the data subsets DS9 and DS23, the stability of the spatial effect was negatively
affected beyond the cells in the central and eastern parts of the demarcated area.
Likewise, the data subsets DS37 and DS51 exhibited the most robust inferences with
bias values close to zero and two clear groups of cells. One group was in the central and
eastern parts of the demarcated area where the spatial effect was slightly underestimated.
This group corresponded to cells with the highest sampling intensities and cells positive
for Xf. The other group of cells in the north-west presented a slight overestimation of the
spatial effect.
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(a) Posterior mean of incidence (b) SD of posterior incidence (c) Posterior mean of spatial effect

Fig. 5: Bias for the posterior mean and standard deviation (SD) of incidence and posterior mean of the
spatial effect for the data subsets DS9 (row 1), DS23 (row 2), DS37 (row 3), DS51 (row 4) relative
to the model fitted to the reference dataset of the demarcated area for Xylella fastidiosa in Alicante,
Spain.

4 Discussion

Planning delimiting surveys implies reaching a compromise between the available
resources and the extent of the area. After detecting an outbreak, the actual distribution
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of the disease is often unknown by plant health authorities, which further reduces the
efficacy of control efforts, such as eradication or containment. Our generic delimiting
survey strategy deals with these challenges and demonstrates that sequencing and
adapting inspection and sampling to different spatial resolutions allows to be more
accurate in delimitation infected zones given the typical aggregated spatial behavior of
most plant diseases.

We developed a generic sequential adaptive strategy operationally deployed to
delimit the geographical distribution of Xf in Alicante. The performance of two
survey designs was evaluated and both improved the efficiency while maintaining the
efficacy in relation to the current one. Our strategy involves sequencing inspection and
sampling in time considering increasing spatial resolutions to define the grid resolution.
Additionally, inspection and sampling intensities in finer spatial resolutions are deployed
based on the information obtained at previous coarser resolutions. One important aspect
of our work is that sampling intensity was defined by means of an optimization-based
principle which maximizes Xf detection for each spatial resolution.

Our sequential adaptive strategy reduces inspection intensity while achieving the
same spatial resolution indicated by the current legislation, owing to the phase-approach
used to define grid cells at an increasing spatial resolutions. The current delimiting
survey strategy implies carrying out parallel inspections in two predefined surveillance
areas: the first 1st km radius of the buffer zone using a grid resolution of 0.01 km2

cells and the outer buffer zone up to a radius of 5 km using a grid resolution of 1 km2.
Conversely, our strategy defines an increasing spatial resolution in the whole demarcated
area, from 1 km2 up to 0.01 km2, based on the information obtained in the previous
inspection/sampling phase. That is, it allows delimitation of the spatial extent of the
pathogen at coarser spatial resolutions while demarcating areas for implementing control
measures at finer resolutions.

The sequential adaptive strategy resulted in a substantial reduction of the inspection
intensities compared to the current one. This was particularly noted at the finest spatial
resolution (0.01 km2), in which 2,225 and 7,100 cells were estimated to be inspected
for the three-phase/two-phase designs, respectively, compared to the 17,700 cells of
the current strategy. Overall, our sequential adaptive strategy will assist plant health
authorities with a more efficient allocation of resources for disease control. Managers
could deploy disease control tactics (plant removal, vector control, etc.) in a more
targeted way. Likewise, the reduction in the survey effort would help to reduce delays in
surveying, laboratory testing, and implementation of control measures while being more
logistically feasible.

Our approach also allows the optimum sample size to be calculated for each survey
resolution. The Decision prioritizes sampling plants with Xf -like symptoms, but no
information is provided related to sample size calculation for delimiting surveys in the
buffer zone. Thresholds of sampling intensity were estimated by a generic optimization
algorithm which was sequentially adapted to each spatial resolution and with a stopping
rule set to maximize the detection of infested cells. The algorithm uses random sampling

23

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 6, 2020. ; https://doi.org/10.1101/2020.03.05.978668doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978668
http://creativecommons.org/licenses/by-nc-nd/4.0/


because symptoms associated with Xf are not specific and can be confused with other
biotic or abiotic disorders. Moreover, the incubation period (i.e., from infection to
symptom expression) of Xf may be rather long and some plant species may not show
symptoms even when infected by the pathogen (Purcell et al., 1999; Loconsole et al.,
2016).

Optimum sampling intensity was estimated at 51, 45, 14 samples/cell for 1, 0.25
and 0.01 km2 cells. These results provide new insights to the ongoing work aimed
to develop risk-based survey approaches for quarantine pest and pathogens (EU,
2019b) in which statistically based sample size calculations are being implemented
(see EFSA, 2019, for further details). Once the delimitation of an outbreak has been
accomplished, further surveys can provide additional information on the feasibility of
management plans, disease dynamics in the infested area and the efficacy of targeted
control tactics. Consequently, the optimum sampling intensity calculated for a resolution
of 1 km2 was then validated by assessing its performance to estimate Xf incidence by
means of a Bayesian hierarchical spatial model. The dual focus on applying advanced
survey designs and modeling techniques was considered to maximize the quality of the
information collected and the rigor of inference, as suggested by Johnson et al. (2013);
Pacifici et al. (2016).

INLA has been proven to be a computationally efficient methodology to implement
complex Bayesian hierarchical models which consider dependent structures among the
data. Our model introduces spatial autocorrelation and also uses absence observations
to estimate Xf distribution, thereby overcoming the deficiencies of other species
distribution models (SDMs) used in that context which consider just presence-only data
or generate pseudo-absence data and do not consider spatial dependence (Bosso et al.,
2016; Gutiérrez-Hernández & Garcı́a, 2019). Additionally, our modeling proposal also
highlights the importance of adding model complexity to account for deficiencies in data
collection. The integration of the spatial dependence structure was essential to mitigate
the influence of heterogeneity in sampling intensities and also to explain the variability
found in the distribution of Xf. Moreover, modeling outputs also evidenced the marginal
influence of climatic covariates in that regard in the study area. Both aspects could be
considered in future surveillance actions.

The evidence of the strong influence of the spatial effect means that the areas close to
positive findings of Xf are more likely to be infested, illustrating the aggregated behavior
of this pathogen. Nevertheless, here the spatial structure was included assuming a
predefined distance of 2.5 km among cells. To define spatial correlation more accurately
it could be interesting to consider additional information such as vector dispersal
distances, although this information is still imprecise for the European outbreaks (EFSA,
2019). In contrast to other works (Godefroid et al., 2019), the scant relevance of
climatic covariates found in our study prevents to establish a direct relationship with the
distribution of Xf in the study area. Nevertheless, Xf subsp. multiplex is more widely
distributed in the EU territory than Xf subsp. fastidiosa and Xf subsp. pauca, and it is
known to have suitable climatic conditions in the vast majority of the territory (EFSA,
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2019). As it may be the general situation in outbreak areas, the limited extent of the
study area might also have played an important role in this respect.

In sum, our sequential adaptive survey strategy was able to efficiently delimit the
extent of Xf and to estimate its incidence in the demarcated area in Alicante. This survey
strategy can provide plant health authorities information about the local spatial variation
of Xf. Given its sequential and adaptive nature, this strategy may assist to optimize
survey resources and implement disease control and regulatory actions in a more targeted
way. A more targeted allocation of management efforts could increase the efficiency
and efficacy of control programs, such as eradication and containment, thus reducing
treatment costs and minimizing side effects. Our strategy was designed to put more
sampling effort in areas likely to be infested, but also allowing to adapt inspection and
sampling intensity. Optimum values of sampling intensity could be used as a benchmark
to be explored in other Xf outbreaks and compared with other inspection/sampling size
calculation methods. Our work evidences the need to design feasible survey strategies
which benefit from previous information and optimize the survey resources available.
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