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Abstract 22 

Single-molecule long-read sequencing technologies, such as Nanopore and PacBio, may 23 

be particularly relevant for microbiome studies, since they can perform sequencing 24 

without PCR amplification or bacteria culture, and the much longer reads may facilitate 25 

assignments of operational taxonomic units (OTUs) from genus to species level. 26 

However, due to the relatively high per-base error rates (~15%), the application of long-27 

read sequencing on microbiomes remains largely unexplored, and there is a lack of 28 

benchmarking study on reference materials to assess their potential utility in microbiome 29 

studies. Here we deeply sequenced two human microbiota mock community samples 30 

from the Human Microbiome Project (525× coverage on HM-276D with 20 evenly mixed 31 

strains, 1068× coverage on HM-277D with 20 unevenly mixed strains). We showed that 32 

assembly programs consistently achieved high accuracy (~99%) and completeness 33 

(~99%) for bacterial strains with adequate coverage (~99% in 276D and ~72% in 277D). 34 

For HM-277D, we also found that long-read sequencing provides accurate estimates of 35 

species-level abundance (R=0.94, for 20 bacteria with abundance ranging from 0.005% 36 

to 64%). Taxonomic binning and profiling were more accurate at higher rank, while 37 

performance decreased at the species level. We further compared the results with data 38 

generated from the Illumina short-read sequencing and PacBio long-read sequencing. 39 

Our results demonstrate the feasibility to characterize complete microbial genomes and 40 

populations from error-prone Nanopore sequencing data, but also highlight necessary 41 

bioinformatics improvements for future metagenomics tool development. All the data sets 42 

on reference microbiomes are made publicly available to facilitate benchmarking studies 43 

on metagenomics and the development of novel software tools. 44 
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Background 45 

The fundamental importance of microbiota as the microbial communities that reside in 46 

human body is increasingly recognized. Over the past decade, there have been 47 

tremendous amounts of evidence suggesting that microbiota plays a crucial role in human 48 

health through modulating the metabolic functions, as well as food energy harvest and 49 

storage. Microbiota, especially the gut microbiota, is associated with many chronic 50 

diseases such as obesity, diabetes, metabolic syndrome, inflammatory bowel disease 51 

(IBD), irritable bowel syndrome (IBS), liver disease, hepatocellular and colorectal 52 

carcinoma[1-14]. Therefore, accurate profiling of complete genomes and population are 53 

crucial to understanding the impact of microbiota on human health. Currently, high-54 

throughput sequencing technologies have been widely used in microbial community 55 

characterization. In particular, 16S ribosomal RNA (rRNA)[15] and shotgun metagenome 56 

sequencing on Illumina platforms[16] are two dominant approaches for describing 57 

microbiomes. Overall, the high-throughput nature of metagenomics sequencing allows us 58 

to interpret microbial community by using computational approaches such as operational 59 

taxonomic unit (OTU) identification[17], abundance quantification[18], read assembly[19-60 

23], binning and taxonomic profiling[24-29]. Specifically, 16S rRNA sequencing targets 61 

on very specific regions that are highly variable between species, which is much cost-62 

efficient. This is very useful for us to examine and compare the microbiota across high 63 

number of samples in a large scale project. However, this technique can only identify 64 

bacteria but not viruses or fungi, and the low resolution limits its usage in microbiome 65 

study below the genus level. As opposed to only the 16S sequences, shotgun 66 

metagenome sequencing surveys the whole genomes of all organism in the community 67 
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[30-32]. It allows us to perform deep investigation of the microbial community as its ability 68 

to capture sequences from all organisms. 69 

Despite the theoretical advantage of shotgun metagenome sequencing, due to the short 70 

read length (150 to 300 nucleotides), metagenomes cannot be fully characterized by next-71 

generation sequencing (NGS) data. In addition, the lack of contextual information has 72 

become a barrier for short read to span both intra- and intergenomic repeats, which is 73 

crucial for complete de novo genome assembly of all dominant species in a microbial 74 

community. As a consequence, short-read assemblies remain highly fragmented. In 75 

comparison, the use of long-read sequencing has the potential to facilitate the complete 76 

and contiguous metagenome assembly. Lee et al. [33] sequenced a reference mock 77 

community sample using PacBio long read and evaluated the metagenome assembly 78 

performance. Results showed that single-molecule real-time (SMRT) long read data 79 

offered significantly improved assembly contiguity by spanning many of repetitive regions 80 

while single bacteria chromosome was assembled to more than 50 contigs based on short 81 

read data. In recent years, the Oxford Nanopore technologies (ONT) have offered 82 

advantages over traditional short-read NGS technologies in genome study. This single-83 

molecule sequencing platform is able to generate average read length of >10kbp, 84 

spanning low complexity and repetitive genomic regions, which provides much more 85 

continuous assemblies. Subsequently, this approach has become an attractive option in 86 

metagenomics sequencing.  While the ONT have great potential, complete and 87 

contiguous de novo metagenome assembly is still constrained by the high error rate 88 

(~15%) of single-molecule long-read sequence data[34]. Therefore, a comprehensive 89 

evaluation of long-read bioinformatics tools in microbial profiling is needed[35]. Nicholls 90 
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et al.[36] presented Nanopore sequencing data sets of two mock communities with 10 91 

microbial species from ZymoBIOMICS[37]. They showed the utility of these data sets for 92 

future bioinformatics method development for long-read metagenomics. However, 93 

publicly available data sets based other sequencing technologies of these samples are 94 

limited as the samples are only commercially available and are not well studied so far by 95 

competing approaches. A study to evaluate the advantages of Nanopore sequencing in 96 

complete microbial genomes and a comparison over other sequencing technologies is 97 

still lacking so far. 98 

In this article, we generated two deeply sequenced Nanopore data sets from new 99 

reference samples that are more commonly studied, and performed comprehensive 100 

analysis to compare microbial community profiling performance with PacBio and Illumina 101 

technologies. We first generated 525× coverage data on HM-276D mock community 102 

sample from Human Microbiome Project, which is an evenly mixed DNA sample of 20 103 

bacterial strains (each with 5% abundance). We performed de novo assembly analysis 104 

with 4 long-read assemblers at different depth of coverage. 20 bacterial genomes were 105 

assembled with high accuracy and genome completeness. This sample also has been 106 

well studied by many groups. As mentioned above, Lee et al. [33] sequenced this mock 107 

community with PacBio to show the improvement of long-read data in metagenome 108 

assembly analysis. Jones et al.[5] compared the influence of different NGS platforms on 109 

genomic and functional predictions using HM-276D sample. We downloaded these two 110 

data sets and compared the performance with Nanopore data. Our results show that 111 

Nanopore consistently improved assembly contiguity, and completeness compared to 112 

PacBio and Illumina across computational approaches. Next, we sequenced HM-277D 113 
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Mock Community sample with 1068× coverage. HM-277D is unevenly mixed DNA sample 114 

of 20 bacterial strains. Kuleshove et al.[38] sequenced this sample with Illumina TruSeq 115 

synthetic long read technique and showed the improvement in bacterial species 116 

identification, genome reconstruction compared to short sequences. Also, Leggett et al. 117 

[39] demonstrated Nanopore metagenomics sequence can be reliably classified using 118 

this community. In addition to metagenome assembly, we evaluated taxonomy binning 119 

and profiling performance across technologies (Nanopore and PacBio) and samples (HM-120 

276D and HM-277D). High identification and classification accuracy were achieved above 121 

the species level. Overall, we demonstrate the technical feasibility to characterize 122 

complete microbial genomes and populations from error-prone Nanopore sequencing 123 

without any DNA amplification. We also discuss the limitations of current bioinformatics 124 

tools, when dealing with error-prone long-read metagenomics sequencing data.  All our 125 

data are made publicly available, to benefit computational tool development on long-read 126 

based microbial genome assembly for metagenomics studies.  127 

Results 128 

Sequence data quality 129 

HM-276D DNA sample includes 20 evenly mixed bacteria strains with reference genome 130 

size 70 Mb in total with 39 chromosomes. 11,610,183 reads with 35,578,375,166 bases 131 

(525× coverage depth) were generated on the Nanopore GridION platform, with a median 132 

length of 1,374 bp. The N50 length is 6,828 bp and median read quality is 9.39 in Phred 133 

scale. By using minimap2, 95% of reads were successfully aligned to reference genomes 134 

of 20 bacterial strains with 13.1% error rate. As shown in Figure 1(a), read coverage 135 
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across 20 bacterial strains has good agreement with known abundances. Read depth is 136 

relatively homogenous across bacteria strains with 521.9X (sd = 524.7X) in average. 137 

Sequencing depth of each strain is at least 150 reads and only 0.03% region is covered 138 

by less than 3 reads.   139 

 140 

 141 

Table 1. Mapping statistics of HM-276D and HM-277D sequenced data set. 142 

Sequenced data were mapped against reference genomes of 20 known bacterial strains. 143 

Sequences indicates the number of QC passed reads. Number of mapped and unmapped 144 

reads were summarized. MQ0 represents number of mapped reads with MQ=0.Clipping 145 

was ignored when calculating total length, bases mapped. Bases mapped (cigar) provides 146 

Mapping statistics  HM-276D   HM-277D  

# of reads                     8,086,684                    18,254,839  

# of mapped reads                     7,640,934                    18,110,317  

reads unmapped                         445,750                          144,522  

reads MQ0                           60,972                          103,601  

non-primary alignments                         287,369                          732,671  

total length          33,563,573,383           72,312,638,112  

bases mapped          32,143,689,158           72,216,146,980  

bases mapped (cigar)          31,156,025,998           70,073,211,829  

mismatches             4,104,593,752              6,925,222,080  

average length                             4,150                              3,961  

maximum length                         472,762                          214,792  

average Phred quality per base                                   13                                    17  
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a more accurate number of mapped bases. Number of mismatches were obtained from 147 

NM field of BAM file. 148 

HM-277D DNA sample includes 20 unevenly mixed bacteria strains. 18,254,839 reads 149 

data set with 72,312,638,112 bases (1068× coverage depth) were generated, leading to 150 

2,065 bp in median read length with 10.12 median read quality. The N50 length is 7,857 151 

bp. 99.2% of QC-passed reads were mapped to the reference genome and the error rate 152 

was 9.8%. As shown in Figure1(b), read distribution is more heterogeneous across 153 

strains due to unevenly mixed samples. The average coverage is 988.8 reads with 154 

standard deviation =1941.6 bp. This leads to 1.6% of region with less than 3 reads 155 

covered and 4 strains with sequencing depth less than 10 bp, which makes it more difficult 156 

for biological interpretation of this microbial community. 157 

 158 
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Figure 1. Summary of Nanopore Sequencing data from HM-276D and HM-277D 159 

microbial communities. (a, b) Circos plots of read coverage across whole genome of 160 

20 bacterial strains from (a) HM-276D and (b) HM-277D. Each chromosome was divided 161 

to bins with 5,000 bp width. Average read coverage was calculated within each bin and 162 

converted to log scale to facilitate viewing and comparing between bacterial strains. AB, 163 

Acinetobacter baumannii; AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, 164 

Bacteroides vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus radiodurans; DF, 165 

Enterococcus faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus 166 

gasseri; LM, Listeria monocytogenes; NM, Neisseria meningitides; PAN, 167 

Propionibacterium acnes; PAG, Pseudomonas aeruginosa; RS, Rhodobacter 168 

sphaeroides; SAR, Staphylococcus aureus; SE, Staphylococcus epidermidis; SAL, 169 

Streptococcus agalactiae; SM, Streptococcus mutans; SP, Streptococcus pneumonia; (c) 170 

Read length distribution of HM-276D and HM-277D data sets. Blue dashed lines 171 

represent different quantiles. Red line represents the density of read length distribution. 172 

(d) Summary statistics of HM-276D and HM-277D data sets. Each value was calculated 173 

by using pycoQC [40] and LongreadQC 174 

De novo assembly of HM-276D mock community 175 

To assess the ability of Nanopore sequencing in profiling microbial community, we first 176 

conducted a de novo assembly of data set with 525× coverage from HM-276D mock 177 

community using 4 assemblers: wtdbg2[19], OPERA-MS[20], Canu[21] and meta-178 

flye[22]. Canu and meta-flye are designed to be capable of handling metagenome data, 179 

while wtdbg2 and canu are broadly used for haploid or diploid genomes. Overall, the 180 

results show promise for the characterization of microbial genomes using long-read 181 

sequencing data. Canu produced the largest assembly of 69.5 Mb (99.3% of the 182 

benchmark data), including 83 contigs with contig N50 length of 3.91 Mb. meta-flye 183 

assembled 67.7Mb genome with 89 contigs. wtdbg2 generated similar results with 64.9 184 
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Mb genome size, 61 contigs and 2.97 Mb N50 length. Assembly metrics of OPERA-MS 185 

(67.9 Mb genome size, 4734 contigs with contig N50 length of 2.94 Mb) are similar with 186 

Canu and wtdbg2 whereas much more contigs were generated because OPERA-MS 187 

utilizes both long and short sequencing reads for assembly. By mapping all contigs to the 188 

reference genomes using MUMMer v3.23, we assessed the accuracy and genome 189 

completeness of contigs produced by 4 assemblers. As shown in Figure 2(a), meta-flye 190 

achieved the highest genome fraction (99.99%) and 1-to-1 identity percentage (99.62%), 191 

followed by OPERA-MS (genome fraction: 99.98% and accuracy 99.92%), Canu 192 

(genome fraction 99.81% and accuracy 99.4%) and wtdbg2 (genome fraction 95.94% 193 

and accuracy 98.73%). Thus, 4 tools generated results with similar good quality in term 194 

of contiguity, accuracy and completeness using long read data with evenly mixed samples 195 

at 525× coverage depth. 196 
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 197 

Figure 2. Assembly results for HM-276D and HM-277D data sets. (a) Assembly 198 

statistics (N50 length, accuracy and genome fraction) of each assembler at different 199 

coverage depths based on HM-276D data set. Colors indicate results from different 200 

assemblers (See Supplementary material for details in parameter settings). (b) 201 

Assembly statistics (number of contigs, genome fraction and genome size) of each 202 

assembler based on HM-276D sample sequenced by different technologies (Nanopore, 203 

PacBio, Illumina). To make fair comparison, each data set was down-sampled to 160× 204 

depth of coverage. (c) Strain-specific assembly performance of each assembler based 205 

on HM-277D data set. Assembly statistics (accuracy and genome fraction) distributions 206 

were presented using boxplots with jitter. Radius of each dot indicates the known relative 207 

abundance of each bacteria strain from the mock community.   208 
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Next, we subsampled 525× data set to 365× (70%), 160× (30%), 80× (15%), 40× (7.5%) 209 

and 20× (3.75%) to examine the effect of sequencing depths on de novo assembly. The 210 

assembly results of 4 tools ranges 95.95% to 99.96% in consensus accuracy and 91.26% 211 

to 99.99% in genome fraction. In specific, OPERA-MS outperforms others with the highest 212 

and most consistent metrics for completeness and accuracy across different sequencing 213 

depths because its metagenomics design substantially improves the robustness to low 214 

sequencing depth, where genome fractions are 99.68% in average (sd = 0.61%) and 215 

consensus identities are 99.92% in average (sd = 0.05%). Despite of reduced metrics as 216 

sequencing depth becoming lower, meta-flye and Canu still recovered at least 96.8% 217 

genomes with 98.5% accuracy. Notably, wtdbg2 improved the assembly metrics with 218 

coverage depth reduced from 520× to 80×. In addition, we examined whether genomes 219 

of 20 bacterial strains can be better constructed with Nanopore sequencing technology 220 

compared to PacBio and Illumina. As shown in Figure 2(b), assemblers using Nanopore 221 

sequenced data outperforms other two technologies. With the same assembler, on 222 

average, the number of contigs of Nanopore is ~30% lower than PacBio, genome fraction 223 

and genome size are 1.56% and 3.1 Mb higher respectively. Assemblies using Illumina 224 

sequenced data are 99.9% in accuracy, but with more contigs generated and lower 225 

genome size in total compared to Nanopore.  226 

De novo assembly of HM-277D mock community 227 

To evaluate the metagenome reconstruction in a more realistic setting, we carried out 228 

another de novo assembly of 1068× data set from HM-277D Mock Community, with 229 

unevenly mixed DNA samples of the 20 bacteria strains. Assembly accuracy still remains 230 
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high, ranging from 97.78% to 99.75% across tools. However, not surprisingly, genome 231 

fractions and genome sizes of all methods are substantially lower than even community. 232 

This is because 13 bacterial strains have extremely low abundances (<1%) in this 233 

unevenly mixed samples, leading to reduced genome coverage fractions (Canu: 71.68%, 234 

OPERA-MS: 71.25%, meta-flye: 91.57%, wtdbg2: 59.7%) and genome sizes (Canu: 235 

50.21 Mb, OPERA-MS: 47.99 Mb, meta-flye: 64.12 Mb, wtdbg2: 41.85 Mb). To assess 236 

how strain abundance affects assemblies, we calculated strain-specific genome fraction 237 

for each tool in Figure 2(a). Across bacterial strains, meta-flye recovered the highest 238 

percentage of genome (median 100%), followed by OPERA-MS (median: 98.75%) and 239 

Canu (median 94.78%), while assemblies of wtdbg2 covered only 31.22% (median). For 240 

bacteria with relative abundance higher than 0.2%, least 99.99% of reference genome 241 

can be covered by assembly contigs (meta-flye), with identity consensus reaching to 242 

99.93%. These results suggest that bacterial strain with nontrivial abundance can be 243 

accurately assembled with Nanopore sequenced data. Overall, we observed that meta-244 

flye returned assemblies for 20 bacterial strains with the best performance in 245 

completeness and accuracy. Metric for each strain is correlated with abundance of the 246 

corresponding bacteria. Some strains were proved hard to assemble for all assemblers 247 

due to extremely low relative abundance. For example, 13.6% of region of Enterococcus 248 

faecalis (0.011% relative abundance) were covered by 0 or 1 read and 56.1% covered by 249 

less than 3 reads, leading to 4.47% genome fraction for meta-flye. Moreover, there were 250 

2 contigs belong to two different bacteria species, Bacteroides vulgatus (0.19% relative 251 

abundance) and Streptococcus pneumoniae  (0.05% relative abundance), indicating the 252 

difficulty in differentiating one bacteria from another with low relative abundance. 253 
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 254 

Figure 3. Taxonomic binning results for HM-276D and HM-277D data sets. (a,b) 255 

Megan taxonomic tree assignment obtained from HM-276D (a) and HM-277D (b) 256 

Nanopore sequenced data sets. Both data sets were downsampled to 160× depth of 257 

coverage. Each read was aligned against NCBI-nr protein reference data base, then 258 

binned and visualized using Megan-LR. Megan taxonomic tree showing bacteria taxa 259 

identified and their corresponding abundances across taxonomic rank. The radius of 260 

circle represents the number of reads assigned for each taxa. Bacterial strains highlighted 261 

in red represent true organisms in the mock community. (c-e)  Taxonomic binning and 262 

identification performance metrics across ranks based on different data sets (indicated by 263 

colors). Average (c) precision and (e) sensitivity and their 95% CIs were calculated based 264 

on metrics from different taxon at each rank. (e) Taxonomic detection accuracy metrics, 265 

true positive rate (solid) and false positive rate (dashed), were calculated based on 266 
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identified taxon (reads > 10) at each rank. To make fair comparison, each data set was 267 

downsampled to 160× depth of coverage. 268 

 269 

Taxon binning and identification 270 

Metagenome assemblers construct contigs with variable length to recover original 271 

genome of each bacteria from microbial community. Subsequently, another major 272 

challenge in studying the identity and diversity of this community member is to classify 273 

sequenced reads or contigs correctly according to their taxonomic origins. Here we 274 

investigated the taxonomic binning performance based on 3 scenarios of long-read 275 

sequencing data, HM-276D (Nanopore, PacBio) and HM-277D (Nanopore) at 160× depth 276 

of coverage, using a state-of-art taxonomic binner Megan-LR. First, all long reads were 277 

aligned to NCBI-nr database. Then, we used Megan-LR with interval-union LCA algorithm 278 

to assign ~2 million aligned reads (~4.6 Mb bases) to taxonomic nodes (Figure 3(a,b)). 279 

Overall, 4.22 Mb (0.087%) from Nanopore data of HM-276D sample were mis-assigned, 280 

while 4.37 Mb (0.075%) and 4.66 Mb (0.141%) for Nanopore data of HM-277D and 281 

PacBio data of HM-276D respectively. Specifically, we evaluated the recovery of taxon 282 

bins at different ranks. We considered two metrics to quantify the read assignment 283 

accuracy, average precision and sensitivity of 20 bacteria strains. For each taxonomic 284 

bin, we obtained precision by calculating the percentage of reads correctly classified out 285 

of all binned reads. Sensitivity is the percentage of correctly assigned reads out of all 286 

reads originally from the bin. As shown in Figure 3(c), HM-276D (Nanopore) has the 287 

highest precision, which are all above 60% from phylum to genus. HM-277D (Nanopore) 288 
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followed, with all above 50%, while HM-276D (PacBio) has the lowest average precision 289 

due to predicted small false positive bins at the species level. Sensitivity has similar 290 

pattern (Figure 3(d)). HM-276D (Nanopore) still appears to the best data set for read 291 

classification than other two and the difference in accuracy between these 3 scenarios is 292 

similar across ranks. Nanopore is ~8% higher than PacBio and HM-276D is 10% higher 293 

than HM-277D. To evaluate the stability of read assignment accuracy, we calculated 95% 294 

confidence interval of precision and sensitivity for each scenarios at each rank. Not 295 

surprisingly, confidence bands are narrower at higher rank, indicating that more taxon 296 

recovery accuracy can be reached. Owing to unevenly mixed bacteria strains, sensitivity 297 

is much more variable for HM-277D than other HM-276D. Overall, these results 298 

demonstrated the advantage of long-read data in accurate taxon recovery above the 299 

family level, while binning accuracy and stability were relatively at the species level.     300 

In addition to assigning sequence fragments (reads or contigs) to taxon bins, we 301 

recognized the importance of accurate determination of taxonomic identity presence or 302 

absence from microbial community. Therefore, we continued to investigate the 303 

performance of taxonomic identity prediction between data from HM-276D (Nanopore, 304 

PacBio) and HM-277D (Nanopore). For taxon prediction, we defined that the species is 305 

significantly present in the community when at least 10 reads were assigned to it, while 306 

identity with less 10 supporting reads was marked as absence. We considered two other 307 

metrics to quantify the detection accuracy, true positive rate (TPR) and false discover rate 308 

(FDR), where TPR is the percentage of correctly predicted taxonomic identities out of 309 

known existing taxon and FDR is the percentage of incorrectly predicted taxonomic 310 

identities out of all predicted taxon. TPR and FDR were calculated at different ranks in 311 
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Figure 3(e). TPR were consistent across 3 data sets from phylum to order level (90%-312 

77%). Below the order level, PacBio (HM-276D) and Nanopore (HM-277D) are 22% lower 313 

compared to Nanopore (HM-276D) (92%-87%). From phylum to family level, FDRs were 314 

controlled under 15% for all 3 data sets.  However, at the genus level, more than 20% of 315 

detections are false for PacBio (HM-276D) and Nanopore (HM-277D) while 6% for 316 

Nanopore (HM-276). All 3 scenarios have inflated FDR (>20%) at the species level. 317 

Across data sets, there was drastic increase in FDR between phylum to family level and 318 

below family level, 10%±3% and 21%±5%. Similar to binning results, Nanopore data of 319 

HM-276D still consistently performed better than other two data sets across ranks. 320 

However, accurately predicting taxonomic profiles at the species level still remains 321 

challenging due to many false predicted taxonomic identities with 10 to 100 reads 322 

assigned incorrectly. 323 

Strain profiling 324 

Despite the challenges in assembly and binning of HM-277D microbial community even 325 

at the species level, especially for low abundance bacteria (relative abundance < 1%), 326 

the golden standard profile of this mock community still allows us to evaluate other unique 327 

advantages of this deeply sequenced data set at strain level. First, we examined the ability 328 

in identifying these 13 extremely rare strains based on annotated target genes. To explore 329 

the sensitivity of strain detection using this data set, we mapped raw sequenced reads to 330 

reference genomes of the 20 bacterial strains with Minimap2. Then, for each strain-331 

specific gene, the average coverage were estimated by summing up read depth across 332 

all exonic region, normalized for gene length. In addition, exon coverage fractions were 333 
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calculated. We required a gene with average coverage greater than 1 and exon coverage 334 

fraction greater 50% simultaneously in order to be declared as a detected gene. The 335 

results are shown in Figure 4(a). Detection rates and average coverage among all genes 336 

largely keep high in abundant strains (>1%), ranging from 96.4 bp to 4207.6 bp, as well 337 

as most of rare strains (<1%). Most of bacterial strains except for Bacteroides vulgatus 338 

(69.1%) and Streptococcus pneumoniae (81.7%) have achieved at least 97% gene 339 

detection rate.  340 

Next, we recognized that 16S rRNA genes are most commonly used as gene marker for 341 

bacteria identification, we further selected them out for each strain based RefSeq 342 

annotation. As shown in Figure 4(a), though Bacteroides vulgatus and Streptococcus 343 

pneumoniae still have about 50% of 16S rRNA genes undetected by raw sequenced 344 

reads, 18 strains have 100% detection rates and exon coverage fraction with 434.77 bp 345 

coverage in average, which demonstrates the feasibility of identifying rare strain (<1%) in 346 

microbial community with long-read sequencing data. Additionally, read coverage of 347 

protein coding genes for 20 bacterial strains was summarized, which shows similar 348 

results. 14 strains have average coverage above 100 bp and gene detection rates for 18 349 

strains have reached to 99%, indicating the presence of bacterial strains in the sample.   350 

To understand the composition, diversity and spatial dynamics of microbial communities, 351 

we continued to evaluate the bacterial abundance estimation accuracy based on 352 

Nanopore data. We determined two abundance metrics to measure the accuracy, 353 

Pearson correlation and L1 norm. These two metrics assess how well Nanopore 354 

sequenced reads can reconstruct the bacterial abundances in comparison to the gold 355 
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standard. Relative abundance was obtained by normalizing total read coverage with 356 

chromosome length for each taxon at different ranks. As shown in Figure 4(b), 357 

abundance estimates at the species level agrees well with the known relative abundances 358 

from the mock community. However, abundance estimation at higher ranks appears to 359 

be more challenging, as correlation coefficient ranges from 0.87 to 0.85 and L1 norm is 360 

above 0.3 from class to family level, while two metrics improved with Pearson correlation 361 

> 0.9 and L1 < 0.29 when rank is below the family level. Poor abundance estimation at 362 

class or family level may due to the presence of extremely rare bacterial strains in the 363 

HM-277D sample, as read coverages were simply summed up between species 364 

belonging to the same family or class without accounting for abundance heterogeneity. 365 
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 366 

Figure 4. Taxonomic profiling results for HM-277D data sets. (a) Gene identification 367 

performance of 20 bacterial strains. 3 gene sets (RefSeq, 16S rRNA, protein coding) were 368 

evaluated. Colors indicate different metrics (exonic coverage and detection rate). Exonic 369 

coverage (orange) is the percentage of exonic region covered by at least 1 read out of all 370 

exons. Detection rate (blue) is the percentage of genes with coverage depth > 1 and 371 

exonic coverage > 50% out of all genes. Gold standard abundance of each strain was 372 

indicated in black. (b) Bacteria abundance estimation. Scatter plots abundance estimates 373 

versus gold standard abundances from HM-277D mock community across taxonomic 374 

ranks. Abundances were converted to log scale to facilitate viewing. Pearson correlation 375 

and L1 norm were utilized to quantify the performance. Estimates consistently share a 376 
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good agreement with gold standard across ranks with correlation > 0.85 and L1 norm < 377 

0.32. Abbreviations for bacterial name above the species level are listed below. Phylum 378 

level: Actinobacteria, Bacteroidetes (Bac), Deinococcus-Thermus (Dei), Firmicutes (Fir), 379 

Proteobacteria (Pro); Class level: Actinobacteria (Act), Alphaproteobacteria (Alp), Bacilli 380 

(Bac), Bacteroidia (Bact), Betaproteobacteria (Bet), Clostridiales (Clo), Deinococcus 381 

(Dei), Epsilonproteobacteria (Eps), Gammaproteobacteria (Gam); Order level: 382 

Actinomycetales (Act), Bacillales (Bac), Bacteroidales (Bact), Campylobacterales (Cam), 383 

Clostridiales (Clo), Deinococcales (Dei), Enterobacteriales (Ent), Lactobacillales (Lac), 384 

Neisseriaceae (Nei), Propionibacteriaceae (Pro), Pseudomonadales (Pse), 385 

Rhodobacterales (Rho); Family level: Actinomycetaceae (Act), Bacillaceae (Bac), 386 

Bacteroidaceae (Bact), Clostridiaceae (Clo), Deinococcaceae (Dei), Enterobacteriaceae 387 

(Ent), Enterococcaceae (Ent), Helicobacteraceae (Hel), Lactobacillaceae (Lac), 388 

Listeriaceae (Lis), Moraxellaceae (Mor), Neisseriaceae (Nei), Propionibacteriaceae (Pro), 389 

Pseudomonadaceae (Pse), Rhodobacteraceae (Rho), Staphylococcaceae (Sta); Genus 390 

level: Acinetobacter (Act), Actinomyces (Act), Bacillus (Bac), Bacteroides (Bact), 391 

Clostridium (Clo), Deinococcus (Dei), Enterococcus (Ent), Escherichia (Esc), 392 

Helicobacter (Hel), Lactobacillus (Lac), Listeria (Lis), Neisseria (Nei), Propionibacterium 393 

(Pro), Pseudomonas (Pse), Rhodobacter (Rho), Staphylococcus (Sta), Streptococcus 394 

(Str). 395 

 396 

Discussion 397 

Complete genome assembly and population profiling are critical for the interpretation of 398 

microbial community diversity. However, a benchmarking long-read data set with 399 

consistent evaluation metrics is still lacking, which has hindered our understanding of 400 

long-read sequence data in metagenome assembly. In this study, we deeply sequenced 401 

HM-276D and HM-277D samples to assess the performance of error-prone Nanopore 402 
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sequencing data and bioinformatics tools in characterizing microbial community. 403 

Assemblers consistently achieved high accuracy and completeness for nontrivial bacteria 404 

strains and genome binners performed well at above the genus level. Furthermore, by 405 

targeting on marker genes, we were able to identify rare strains with extremely low 406 

abundance in microbial community. Overall, our results have demonstrated that the 407 

technical feasibility to characterize complete microbial genomes and populations from 408 

Nanopore sequencing data with metagenomic software.  409 

We note that despite the feasibility to characterize complete microbial genomes from 410 

long-read sequencing data, there are still challenges to be resolved in our study. Even for 411 

evenly mixed samples, the best performing assembler meta-flye achieve 99.99% 412 

consensus accuracy. However, as the reference genomes contains 70 Mb, 0.04% error 413 

rate has led to 28 Kbp of mismatches. These erroneous bases could be due to 414 

sequencing errors in low quality read, a major drawback of long-read sequence data and 415 

base modification, which may complicate the genome assembly. To prevent these errors, 416 

a sequencer with unbiased and methylation-aware base caller is in need. (We also 417 

acknowledge that some of the mismatches may be due to natural differences between 418 

reference microbiome samples and the reference genomes that were used.) In addition, 419 

there is still room for further improvement in assembly completeness by using longer 420 

reads or better designed assemblers to account for long repeats in genomes. In our study, 421 

we assembled long-read sequenced data from 20 bacterial strains across species. 422 

However, the performance at strain-level still remains unknown as closely related 423 

genomes is always a major challenge for genome assembly. In the future, we anticipate 424 
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that more mock microbial community will be released with bacteria at strain level for 425 

benchmarking study. 426 

By evaluating the performance of bioinformatics tools across different technologies, we 427 

found that third generation sequencing generally facilitates the complete characterization 428 

of complex bacterial genomes by overcoming many limitations of second generation 429 

sequencing. The short read length has limited the ability of Illumina sequencing in 430 

genome interpretation. For example, the length of repetitive genomic region is larger than 431 

a single read. As a consequence, intra- and intergenomic diversities are unlikely to be 432 

captured by short sequencing data. This issue has been resolved by long-read 433 

sequencing technologies (ONT and PacBio), which is able to span low complexity and 434 

repetitive regions by providing sequence reads with at least 10 kb in length. While 435 

generating data with much higher error rate than PacBio, ONT has become a promising 436 

platform in many applications, especially for studies requiring large amounts of data. This 437 

is because ONT provides longer reads (up to 900 kb in length) with higher throughput 438 

compared to PacBio (10-15 kb in length). Moreover, ONT is currently more affordable 439 

with lower per-base cost of data generation, which is a key factor in long-read sequencing 440 

studies. Overall, the application of these two major long-read sequencing platforms in 441 

metagenomics analysis of complex communities is still restricted by higher error rate. This 442 

problem could be addressed with improvement of consensus sequences. Recently, newly 443 

released R10 chip from ONT has longer base-contacting constriction in the pore, which 444 

improves the homopolymer resolution as compared to R9. This can lead to metagenome 445 

assembly with higher accuracy and completeness, as well as more accurate OTU 446 

identification. Future metagenomics studies are expected to be changed dramatically by 447 
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this approach. For example, strain UA159 and NN2025 under species Streptococcus 448 

mutans only share 8% common regions, which can be uniquely assigned. We then found 449 

that 20% of ONT reads can cover the unique region of these two strains respectively, 450 

which is infeasible for short reads. Therefore, with better quality of long-read data, this 451 

approach may allow us to identify bacteria of interest directly at strain level instead of 452 

performing binning analysis in the future. 453 

 

In addition to illustrating the advantages brought by long-read sequence data, we also 454 

assessed the performance of four de novo assembly algorithms and a long-read genome 455 

binner. The bioinformatics challenges to interpret rich information from complex microbial 456 

community include high error rates and low throughput for long-read sequencing, 457 

fragmented nature for short-read sequencing, and large CPU hours requirement. For 458 

evenly mixed (each with 5% abundance) HM-276D mock community, 4 tools consistently 459 

achieved high accuracy and completeness. No single assembler significantly outperforms 460 

others. By subsampling data to less coverage depths, not surprisingly, we found that the 461 

corresponding metrics for 4 tools decreased. In terms of speed, wtdbg2 is tens of times 462 

faster than other tools. For the unevenly mixed mock community HM-277D, assembly 463 

accuracy still remain high for all 4 tools (~97-98%). Genome fraction was reduced 464 

because 13 rare bacterial strains (<1%) were poorly assembled. Hybrid-assembler 465 

OPERA-MS, which combines the advantages from long and short-read technologies, 466 

shows more robust performance to bacterial strains with extremely low abundance than 467 

other tools. However, it produced much more contigs with less contiguity while meta-flye, 468 
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Canu and wtdbg2 returned single contig for 18, 15 and 17 strains respectively. 469 

Furthermore, taxonomic binning results show that Megan-LR performs well when 470 

genomes are not closely related. Taxon bins were reconstructed with acceptable 471 

accuracy down to the genus level while performance decreased at species and strain 472 

level.  473 

In summary, our results demonstrate the feasibility to characterize complete microbial 474 

genomes and populations from error-prone Nanopore sequencing data, but also highlight 475 

necessary bioinformatics improvements for future metagenomics tool development to 476 

handle specific challenges in error-prone long-read sequencing data. We believe that 477 

future metagenomics studies will benefit from this approach to assemble complete 478 

microbial genomes, while maintaining the theoretical ability to detect DNA methylations 479 

and base modifications, infer repetitive elements and structural variants, and achieve 480 

strain-level resolution within microbial communities. All the data sets on reference 481 

microbiomes are made publicly available to facilitate benchmarking studies on 482 

metagenomics and the development of novel software tools. 483 

Methods and materials 484 

Oxford nanopore sequencing of HM-276D and HM-277D 485 

DNA samples of HM-276D and HM-277D were ordered from BEI Resources. 486 

Concentration of DNA was assessed using the dsDNA HS assay on a Qubit  fluorometer 487 

(Thermo Fisher). 488 
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For library preparation, 1.0 µg DNA was used as the input DNA of each library. The library 489 

was prepared using the ligation sequencing protocol (SQK-LSK109) from ONT. 490 

Concretely, end repair, dA-tailing and DNA repair was performed using NEBNext Ultra II 491 

End Repair/dA-tailing Module (catalog No. E7546) and NEBNext FFPE Repair Mix 492 

(M6630). In all, 3.5 μl Ultra II End-prep reaction buffer, 3 μl Ultra II End-prep enzyme mix, 493 

3.5 μl NEBNext FFPE DNA Repair Buffer and 2 μl NEBNext FFPE DNA Repair Mix were 494 

added to the input DNA. The total volume was adjusted to 60 µl by adding nuclease-free 495 

water (NFW). The mixture was incubated at 20 °C for 5 min and 65 °C for 5 min. A 496 

1 × volume (60 µl) AMPure XP clean-up was performed and the DNA was eluted in 61 µl 497 

NFW. One microliter of the eluted dA-tailed DNA was quantified using the Qubit 498 

fluorometer. A total of 0.7 µg DNA should be retained if the process is successful. 499 

Adaptor ligation was performed using the following steps. Five microliter Adaptor Mix 500 

(ONT, SQK-LSK109 Kit), 25 μl Ligation Buffer (ONT, SQK-LSK109 Kit) and 10 μl 501 

NEBNext Quick T4 DNA Ligase (NEB, catalog No. E6056) were added to the 60 µl dA-502 

tailed DNA from the previous step. The mixture was incubated at room temperature for 503 

10 min. The adaptor-ligated DNA was cleaned up using 40 µl AMPure XP beads. The 504 

mixture of DNA and AMPure XP beads was incubated for 5 min at room temperature and 505 

the pellet was washed twice by 250 μl Long Fragment Buffer (ONT, SQK-LSK109). The 506 

purified-ligated DNA was resuspended in 15 µl Elution Buffer (ONT, SQK-LSK109). A 1-507 

µl aliquot was quantified by fluorometry (Qubit) to ensure ≥ 400 ng DNA was retained. 508 

The final library was prepared by mixing 37.5 μl Sequencing Buffer (ONT, SQK-LSK109), 509 

25.5 μl Loading Beads (ONT, SQK-LSK109), and 12 µl purified-ligated DNA. The library 510 

was loaded to R9.4 flow cells (FLO-MIN106, ONT) according to the manufacturer’s 511 
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guidelines. GridION sequencing was performed using default settings for the R9.4 flow 512 

cell and SQK-LSK109 library preparation kit. The sequencing was controlled and 513 

monitored using the MinKNOW software developed by ONT.  514 

 515 

Metagenome assembly  516 

Genome assemblies of the 20-mixed bacteria from HM-276D and MH-277D mock 517 

communities were conducted using 4 existing assemblers based on generated long-read 518 

sequencing reads. These 4 dedicated long-read assemblers we used are wtdbg2 (v2.4), 519 

OPERA-MS, Canu (v1.8) and meta-flye, where Canu and meta-flye are designed to be 520 

capable to handle metagenome while wdtbg2 and OPERA-MS are for broadly application. 521 

To evaluate the impact of coverage depth in genome assembly, in addition to 525× (HM-522 

276D) and 1068× (HM-277D), we subsampled 5 data sets with 365×, 160×, 80×, 40× and 523 

20× coverages for these two mock communities. In addition to long-read data, OPERA-524 

MS requires short reads to improve the assembly accuracy. Hence, we downloaded 525 

Illumina sequenced HM-276D[5]  and HM-277D data sets[38]. Similarly, these short-read 526 

data were also subsampled with depths 160×, 80×, 40× and 20×, which were provided to 527 

OPERA-MS in corresponding data set analysis. We also analyzed a PacBio data set[33] 528 

of HM-276D sample using wtdbg2, OPERA-MS, Canu and meta-flye to compare 529 

assembly performance across sequencing technologies. For comparison fairness, we 530 

applied consistent configuration settings for each tool across different coverage depths. 531 

In specific, we specified estimated genome size as 70M, where the parameters are “-x 532 

ont -g 70m –t 20” for wtdbg2, “genomeSize=70M useGrid=True” for Canu, and 533 
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“CONTIG_LEN_THR 500, CONTIG_EDGE_LEN 80, CONTIG_WINDOW_LEN 340, 534 

KMER_SIZE 60, LONG_READ_MAPPER minimap2” for OPERA-MS, “-t 40 -g 70m -o ./ 535 

--meta” for meta-flye. 40 contig output files were obtained (2 mock community samples, 536 

6 depths of coverage, 4 assembly tools) for further evaluation. 537 

 538 

Metagenome assembly evaluation 539 

Assembled genomes produced by each tool based on different samples and coverage 540 

depths were evaluated with metrics related to contiguity, genome completeness and 541 

accuracy. To assess the assembly contiguity, we first used our script to calculate the 542 

widely-used statistic N50, which is the shortest contig needed to cover at least 50% of the 543 

assembly. In addition, other related statistics, such as number of contigs, number of long 544 

contigs (>10kb), longest contigs and total assembly size, were collected from the FASTA 545 

output file of each assembler. Furthermore, we summarized NG50 for each method by 546 

replacing the assembly size with estimated genome size. This quantity represents the 547 

shortest contig needed to cover 50% of the genome. Based on these metrics, the 548 

contiguity of assemblies was comprehensively evaluated. Next, we downloaded the 549 

reference genome FASTA files of all 20 bacteria from NCBI database to measure the 550 

concordance between the references and assemblies. First, assemblies were mapped to 551 

the reference genomes using Mummer v3.23 with parameters “-maxmatch -c 100 -p 552 

nucmer”. Then, by comparing all contigs mapped onto the reference using dandiff, 553 

assembly accuracy was calculated using 1-to-1 alignment identity, which is the correctly 554 

matched base-pair percentage of contigs uniquely mapped to the reference genome (1-555 
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mismatch%). In addition, to assess the assembly completeness, we calculated the 556 

percentage of genome covered by the contigs. In real case, instead of evenly mixed in 557 

HM-276D mock community, bacterial strains are non-uniformly distributed, where some 558 

are likely to share extremely low abundance. Therefore, we evaluated the impact of the 559 

genomic DNA abundance on genome assembly. For the unevenly mixed HM-277D mock 560 

community samples, we calculated the abundance for each bacterial strain by normalizing 561 

the concentration with related reference genome size. The relationship between 562 

abundances and assessment metrics was displayed using scatter plots. For each plot, 563 

linearity was measured based on Spearman correlation using R v3.3.3. 564 

 565 

Taxonomic binning analysis  566 

Taxon bins of the 20-mixed bacteria from two mock communities were recovered using 567 

taxonomic binner Megan-LR[25]  with 3 long-read sequencing data sets: HM-276D 568 

(Nanopore, PacBio) and HM-277D (Nanopore) at 160× depth of coverage. We first 569 

aligned all reads against NCBI-nr protein reference database using LAST with parameters 570 

“-P 100 -F15”. Next, output MAF files were converted to DAA format in smaller size. Then, 571 

we meganized the DAA files using MEGAN[26], which allows us to interactively visualize 572 

and explore these taxonomic results. To evaluate the taxonomic binning performance, we 573 

first counted the number of reads and bases which were correctly assigned to each taxon 574 

from the mock microbial community. We determined the metrics (precision, sensitivity, 575 

true positive rate and false positive rate). Precision and sensitivity assess how accuracy 576 

each read is classified across different sequencing technologies. Precision is the 577 
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percentage of reads assigned correctly to the corresponding taxa out of all reads. 578 

Sensitivity is the percentage of correct reads out of reads assigned to the particular taxa. 579 

Next, we use true positive rate (TPR) and false discover rate (FDR) to assess the 580 

accuracy in taxonomic detection across sequencing technologies. TPR is the percentage 581 

of correctly detected taxon out of known taxon from the microbial community. FDR is the 582 

percentage of correctly detected taxon out of all detected taxon. All metrics are defined 583 

at each taxonomic rank. 584 
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Supplementary Tables 735 

 736 

Tools Depth N50 length Accuracy 
(%) 

Coverage 
fraction (%) 

NG50 
length 

# contigs # long 
contigs 

Longest 
contig 

Genome 
size 

Canu 20x 717267 98.5 96.8 616530 298 254 2612567 65503873 

40x 1987236 99.07 99.29 1975600 132 112 6286130 67676017 

80x 2886059 99.24 99.86 2731942 62 57 6316623 68735511 

160x 3901381 99.27 99.93 3901381 60 52 6299115 68879111 

365x 2983818 99.28 99.83 2983818 64 58 6292103 68964121 

480x 3911963 99.4 99.81 3911963 83 65 6359094 69425747 

OPERA-MS 20x 1122204 99.83 99.71 1122204 5117 201 6324007 67168904 

40x 2657727 99.96 99.99 2657727 1695 81 5220208 67629371 

80x 2835709 99.96 99.99 2732545 1921 74 4636570 67632885 

160x 2933262 99.95 98.45 2792941 2347 65 6255842 66580943 

365x 2938016 99.91 99.98 2938016 4734 64 6255878 67858470 

480x 2938019 99.92 99.98 2938019 4732 63 6255756 67892051 

wtdbg2 20x 519021 95.95 91.26 400703 443 363 3338270 61551400 

40x 2371130 97.94 98.4 2253156 175 124 6222827 66248572 

80x 3152360 98.73 98.34 2920496 122 80 6230107 66026593 

160x 2863759 98.7 98.08 2863759 91 69 6242719 66161138 

365x 2706888 98.66 97.33 2706888 90 73 6251621 65543654 

480x 2968720 98.73 95.94 2942294 61 53 8884115 64898035 

meta-flye 20x 1653589 98.96 98.76 1547909 223 206 5630982 66808399 

40x 2725547 99.43 99.97 2653197 64 52 6274273 67627825 

80x 2930772 99.52 99.99 2930772 59 43 6251934 67630110 

160x 3888260 99.54 99.97 3180529 61 39 6252579 67595608 

365x 3181836 99.62 99.98 2934283 88 44 6245780 67727067 

480x 3181822 99.62 99.99 2934277 89 43 6245565 67700317 

Supplementary Table 1. Comprehensive assembly statistics on HM-276D using 737 

Canu, OPERA-MS, wtdbg2 and meta-flye. 738 
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Species Abundance 

RefSeq gene 16S rRNA gene Protein coding gene 

average 
coverage
(#bases) 

Significantly 
detected gene 

average 
coverage
(#bases) 

Significantly 
detected gene 

average 
coverage
(#bases) 

Significantly detected 
gene 

Acinetobacter 
baumannii 

0.18% 9.83 94 9.50 6 9.86 3,817 

Actinomyces 
odontolyticus 

0.01% 4.27 56 3.10 2 4.65 1,999 

Bacillus cereus 1.22% 100.51 138 94.04 12 102.33 5,675 

Bacteroides 
vulgatus 

0.02% 2.32 65 1.77 4 2.39 3,067 

Clostridium 
beijerinckii 

1.43% 96.40 143 78.49 14 97.42 5,149 

Deinococcus 
radiodurans 

0.03% 4.94 57 5.19 3 4.86 3,060 

Enterococcus 
faecalis 

0.01% 2.76 53 3.81 2 3.37 2,497 

Escherichia coli 15.75% 1,032.93 179 1,003.79 7 1,060.46 4,341 

Helicobacter pylori 0.07% 113.13 43 117.15 2 114.16 1,444 

Lactobacillus 
gasseri 

0.03% 27.95 96 24.06 6 28.97 1,783 

Listeria 
monocytogenes 

0.07% 10.74 184 8.92 6 11.42 2,864 

Neisseria 
meningitides 

0.07% 42.67 71 28.53 4 47.85 1,926 

Propionibacterium 
acnes 

0.11% 41.60 58 38.75 3 43.02 2,506 

Pseudomonas 
aeruginosa 

5.01% 141.55 105 160.86 4 137.90 5,572 

Rhodobacter 
sphaeroides 

64.44% 2,219.40 67 1,993.22 3 2,438.52 4,279 

Staphylococcus 
aureus 

0.83% 323.26 79 289.00 5 404.68 2,982 

Staphylococcus 
epidermidis 

6.52% 976.37 76 1,117.10 5 1,002.43 2,472 

Streptococcus 
agalactiae 

0.03% 72.99 101 70.16 7 75.54 2,127 

Streptococcus 
mutans 

4.15% 4,207.60 80 3,598.02 5 3,818.93 1,953 

Streptococcus 
pneumoniae 

0.01% 1.91 58 1.30 2 2.39 1,868 

Supplementary Table 2. Species-specific gene coverage summary of HM-277D 742 

data set. Gene coverage statistics were summarized for 3 different gene sets: all 743 

Refseq genes, 16S rRNA genes and protein coding genes. Average coverage = number 744 

of bases mapped to the exonic region / length of exonic region. Gene is noted as 745 

significantly detected when 50% exonic region is covered by at least 1 read and 746 

average coverage > 1. 747 
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Supplementary Figures 749 

 750 

Supplementary Figure 1. Read quality of Nanopore sequencing data. Read quality 751 

of sequenced data sets, HM-276D (a) and HM-277D (b), were summarized using 752 

PycoQC respectively. Dashed lines indicate different quantiles (10%, 25%, 50%, 75%, 753 

90%). 754 
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 761 

Supplementary Figure 2. Read output over experiment of Nanopore sequencing 762 

data. Number of output reads over experiment time for sequenced data sets, HM-276D 763 

(a) and HM-277D (b), were summarized using PycoQC. Blue line indicates output velocity 764 

at specific time. Shaded area represents cumulative read output over experiment time. 765 
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 772 

Supplementary Figure 3. Read length over experiment of Nanopore sequencing 773 

data. Read length in log scale over experiment time for sequenced data sets, HM-276D 774 

(a) and HM-277D (b), were summarized using PycoQC. 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.05.978866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978866


 784 

Supplementary Figure 4. Read quality over experiment of Nanopore sequencing 785 

data. Mean read quality over experiment time for sequenced data sets, HM-276D (a) 786 

and HM-277D (b), were summarized using PycoQC. 787 
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 788 

Supplementary Figure 5. Read quality score vs estimated read length. Nanopore 789 

read distribution of read length and quality score for sequenced data sets, HM-276D (a) 790 

and HM-277D (b), were summarized using PycoQC. Color indicates read density. 791 
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 797 

Supplementary Figure 6. Assembly performance on HM-277D data set. Assembly 798 

statistics (N50 length, accuracy and genome fraction) of each assembler at different 799 

coverage depths based on HM-277D data set. Colors indicate results from different 800 

assemblers (Canu, OPERA-MS, wtdbg2, meta-flye). Assembly accuracy remains high 801 

compared to HM-276D, ranging around ~99% across tools. N50 lengths and genome 802 

fractions of all methods are substantially lower than even community. 803 

 804 

 805 

 806 

 807 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.05.978866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978866


 808 

Supplementary Figure 7. Megan taxonomic tree assignment obtained from HM-276 809 

PacBio sequenced data set. HM-276D PacBio data set was subsampled to 160× depth 810 

of coverage. Each read was aligned against NCBI-nr protein reference data base, then 811 

binned and visualized using Megan-LR. Megan taxonomic tree showing bacteria taxa identified 812 
and their corresponding abundances across taxonomic rank. The radius of circle represents the 813 
number of reads assigned for each taxa.  814 
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 818 

Supplementary Figure 8. Megan taxonomic read distribution at different ranks 819 

obtained from HM-276 Nanopore sequenced data set. HM-276D Nanopore data set 820 

was subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr 821 

protein reference data base, then binned and visualized using Megan-LR.  822 
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 824 

Supplementary Figure 9. Megan taxonomic read distribution at different ranks 825 

obtained from HM-277 Nanopore sequenced data set. HM-277D Nanopore data set 826 

was subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr 827 

protein reference data base, then binned and visualized using Megan-LR.  828 
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 829 

Supplementary Figure 10. Megan taxonomic read distribution at different ranks 830 

obtained from HM-276 PacBio sequenced data set. HM-276D PacBio data set was 831 

subsampled to 160× depth of coverage. Each read was aligned against NCBI-nr protein 832 

reference data base, then binned and visualized using Megan-LR.  833 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.05.978866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978866


 834 

 835 

Supplementary Figure 11. Strain-specific read assignment performance 836 

comparison across sequencing technologies. Read assignment accuracy statistics 837 

for each bacterial strain were summarized based on datasets: HM-276D Nanopore (a), 838 

HM-276D PacBio (b) and HM-277D Nanopore (c) across ranks.  Colors indicates different 839 

metrics: sensitivity, precision and accuracy. Taxon were accurately recovered above the 840 

family level. HM-276D Nanopore outperformed other two data sets. AB, Acinetobacter 841 

baumannii; AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, Bacteroides 842 

vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus radiodurans; DF, Enterococcus 843 

faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus gasseri; LM, 844 

Listeria monocytogenes; NM, Neisseria meningitides; PAN, Propionibacterium acnes; 845 

PAG, Pseudomonas aeruginosa; RS, Rhodobacter sphaeroides; SAR, Staphylococcus 846 

aureus; SE, Staphylococcus epidermidis; SAL, Streptococcus agalactiae; SM, 847 

Streptococcus mutans; SP, Streptococcus pneumonia. 848 
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 852 

Supplementary Figure 12. Strain-specific base pair assignment performance 853 

comparison across sequencing technologies. Read base assignment accuracy 854 

statistics for each bacterial strain were summarized based on datasets: HM-276D 855 

Nanopore (a), HM-276D PacBio (b) and HM-277D Nanopore (c) across ranks.  Colors 856 

indicates different metrics: sensitivity, precision and accuracy. PacBio performed better 857 

than Nanopore data above the family level because of lower error rate. AB, Acinetobacter 858 

baumannii; AO, Actinomyces odontolyticus; BC, Bacillus cereus; BV, Bacteroides 859 

vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus radiodurans; DF, Enterococcus 860 

faecalis; EC, Escherichia coli; HP, Helicobacter pylori; LG, Lactobacillus gasseri; LM, 861 

Listeria monocytogenes; NM, Neisseria meningitides; PAN, Propionibacterium acnes; 862 

PAG, Pseudomonas aeruginosa; RS, Rhodobacter sphaeroides; SAR, Staphylococcus 863 

aureus; SE, Staphylococcus epidermidis; SAL, Streptococcus agalactiae; SM, 864 

Streptococcus mutans; SP, Streptococcus pneumonia. 865 
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