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Summary 

Long-read sequencing techniques, such as the Oxford Nanopore Technology, can 

generate reads that are tens of kilobases in length, and are therefore particularly 

relevant for microbiome studies. However, due to the higher per-base error rates than 

typical short-read sequencing, the application of long-read sequencing on microbiomes 

remains largely unexplored. Here we deeply sequenced two human microbiota mock 

community samples (HM-276D and HM-277D) from the Human Microbiome Project. We 

showed that assembly programs consistently achieved high accuracy (~99%) and 

completeness (~99%) for bacterial strains with adequate coverage. We also found that 

long-read sequencing provides accurate estimates of species-level abundance (R=0.94 

for 20 bacteria with abundance ranging from 0.005% to 64%). Our results demonstrate 

the feasibility to characterize complete microbial genomes and populations from error-

prone Nanopore sequencing data, but also highlight necessary bioinformatics 

improvements for future metagenomics tool development.  

 

Background 

The fundamental importance of microbiota as the microbial communities that reside in 

human body is increasingly recognized. Over the past decade, there have been 

tremendous amounts of evidence suggesting that microbiota plays a crucial role in 

human health through modulating the metabolic functions, as well as food energy 

harvest and storage. Microbiota, especially the gut microbiota, is associated with many 

chronic diseases such as obesity, diabetes, metabolic syndrome, inflammatory bowel 

disease (IBD), irritable bowel syndrome (IBS), liver disease, hepatocellular and 

colorectal carcinoma(Gill et al., 2006, Lewis et al., 2015, Chehoud et al., 2015, Hooper 

et al., 2003, Jones et al., 2015, Ley et al., 2006, Liang et al., 2015, Sartor, 2008, 

Schauber et al., 2003, Turnbaugh et al., 2009, Wang et al., 2016, Wen et al., 2008, Wu 

et al., 2011, Group et al., 2009). Therefore, accurate profiling of complete genomes and 
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population are crucial to understanding the impact of microbiota on human health. 

Currently, high-throughput sequencing technologies have been widely used in microbial 

community characterization. In particular, 16S ribosomal RNA (rRNA)(Janda and 

Abbott, 2007) and shotgun metagenome sequencing on Illumina platforms(Quince et 

al., 2017) are two dominant approaches for describing microbiomes. Overall, the high-

throughput nature of metagenomics sequencing allows us to interpret microbial 

community by using computational approaches such as operational taxonomic unit 

(OTU) identification(Hao and Chen, 2012), abundance quantification(Chen et al., 2017), 

read assembly(Ruan and Li, 2019, Bertrand et al., 2019, Koren et al., 2017, Kolmogorov 

et al., 2019, Li et al., 2015), binning and taxonomic profiling(Gregor et al., 2016, Huson 

et al., 2018, Huson et al., 2016, Francis et al., 2013, Hong et al., 2014, Byrd et al., 

2014). Specifically, 16S rRNA sequencing targets on very specific regions that are 

highly variable between species, which is much cost-efficient. This is very useful for us 

to examine and compare the microbiota across high number of samples in a large scale 

project. However, this technique can only identify bacteria but not viruses or fungi, and 

the low resolution limits its usage in microbiome study below the genus level. As 

opposed to only the 16S sequences, shotgun metagenome sequencing surveys the 

whole genomes of all organism in the community (Jovel et al., 2016, Laudadio et al., 

2018, Ranjan et al., 2016). It allows us to perform deep investigation of the microbial 

community as its ability to capture sequences from all organisms. 

Despite the theoretical advantage of shotgun metagenome sequencing, due to the short 

read length (150 to 300 nucleotides), metagenomes cannot be fully characterized by 

next-generation sequencing (NGS) data. In addition, the lack of contextual information 

has become a barrier for short read to span both intra- and intergenomic repeats, which 

is crucial for complete de novo genome assembly of all dominant species in a microbial 

community. As a consequence, short-read assemblies remain highly fragmented. In 

comparison, the use of long-read sequencing has the potential to facilitate the complete 

and contiguous metagenome assembly. Lee et al. (Lee et al., 2014) sequenced a 

reference mock community sample using PacBio long read and evaluated the 

metagenome assembly performance. Results showed that single-molecule real-time 
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(SMRT) long read data offered significantly improved assembly contiguity by spanning 

many of repetitive regions while single bacteria chromosome was assembled to more 

than 50 contigs based on short read data. In recent years, the Oxford Nanopore 

technologies (ONT) have offered advantages over traditional short-read NGS 

technologies in genome study. This single-molecule sequencing platform is able to 

generate average read length of >10kbp, spanning low complexity and repetitive 

genomic regions, which provides much more continuous assemblies. Subsequently, this 

approach has become an attractive option in metagenomics sequencing.  While the 

ONT have great potential, complete and contiguous de novo metagenome assembly is 

still constrained by the high error rate (~15%) of single-molecule long-read sequence 

data(Sczyrba et al., 2017). Therefore, a comprehensive evaluation of long-read 

bioinformatics tools in microbial profiling is needed(Mason et al., 2017). Nicholls et 

al.(Nicholls et al., 2019) presented Nanopore sequencing data sets of two mock 

communities with 10 microbial species from ZymoBIOMICS(McIntyre et al., 2019). They 

showed the utility of these data sets for future bioinformatics method development for 

long-read metagenomics. However, publicly available data sets based other sequencing 

technologies of these samples are limited as the samples are only commercially 

available and are not well studied so far by competing approaches. A study to evaluate 

the advantages of Nanopore sequencing in complete microbial genomes and a 

comparison over other sequencing technologies is still lacking so far. 

In this article, we generated two deeply sequenced Nanopore data sets from new 

reference samples that are more commonly studied, and performed comprehensive 

analysis to compare microbial community profiling performance with PacBio and 

Illumina technologies. We first generated 525× coverage data on HM-276D mock 

community sample from Human Microbiome Project, which is an evenly mixed DNA 

sample of 20 bacterial strains (each with 5% abundance). We performed de novo 

assembly analysis with 4 long-read assemblers at different depth of coverage. 20 

bacterial genomes were assembled with high accuracy and genome completeness. This 

sample also has been well studied by many groups. As mentioned above, Lee et al. 

(Lee et al., 2014) sequenced this mock community with PacBio to show the 
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improvement of long-read data in metagenome assembly analysis. Jones et al.(Jones et 

al., 2015) compared the influence of different NGS platforms on genomic and functional 

predictions using HM-276D sample. We downloaded these two data sets and compared 

the performance with Nanopore data. Our results show that Nanopore improved 

assembly contiguity compared to PacBio and Illumina across computational 

approaches. Next, we sequenced HM-277D Mock Community sample with 1068× 

coverage. HM-277D is unevenly mixed DNA sample of 20 bacterial strains. Kuleshove 

et al.(Kuleshov et al., 2016) sequenced this sample with Illumina TruSeq synthetic long 

read technique and showed the improvement in bacterial species identification, genome 

reconstruction compared to short sequences. Also, Leggett et al. (Leggett et al., 2018) 

demonstrated Nanopore metagenomics sequence can be reliably classified using this 

community. In addition to metagenome assembly, we evaluated taxonomy binning and 

profiling performance across technologies (Nanopore and PacBio) and samples (HM-

276D and HM-277D). High identification and classification accuracy were achieved 

above the species level. Overall, we demonstrate the technical feasibility to characterize 

complete microbial genomes and populations from error-prone Nanopore sequencing 

without any DNA amplification. We also discuss the limitations of current bioinformatics 

tools, when dealing with error-prone long-read metagenomics sequencing data.  All our 

data are made publicly available, to benefit computational tool development on long-

read based microbial genome assembly for metagenomics studies.  

Results 

Sequence data quality 

HM-276D DNA sample includes 20 evenly mixed bacteria strains with reference 

genome size 70 Mb in total with 39 chromosomes. 11,610,183 reads with 

35,578,375,166 bases (525× coverage depth) were generated on the Nanopore 

GridION platform, with a median length of 1,374 bp. The N50 length is 6,828 bp and 

median read quality is 9.39 in Phred scale. By using minimap2, 95% of reads were 

successfully aligned to reference genomes of 20 bacterial strains with 13.1% error rate. 

As shown in Figure 1A, read coverage across 20 bacterial strains has good agreement 
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with known abundances. Read depth is relatively homogenous across bacteria strains 

with 521.9X (sd = 524.7X) in average. Sequencing depth of each strain is at least 150 

reads and only 0.03% region is covered by less than 3 reads.   

HM-277D DNA sample includes 20 unevenly mixed bacteria strains. 18,254,839 reads 

data set with 72,312,638,112 bases (1068× coverage depth) were generated, leading to 

2,065 bp in median read length with 10.12 median read quality. The N50 length is 7,857 

bp. 99.2% of QC-passed reads were mapped to the reference genome and the error 

rate was 9.8%. As shown in Figure 1A, read distribution is more heterogeneous across 

strains due to unevenly mixed samples. The average coverage is 988.8 reads with 

standard deviation =1941.6 bp. This leads to 1.6% of region with less than 3 reads 

covered and 4 strains with sequencing depth less than 10 bp, which makes it more 

difficult for biological interpretation of this microbial community. 

De novo assembly of HM-276D mock community 

To assess the ability of Nanopore sequencing in profiling microbial community, we first 

conducted a de novo assembly of data set with 525× coverage from HM-276D mock 

community using 4 assemblers: wtdbg2(Ruan and Li, 2019), OPERA-MS(Bertrand et 

al., 2019), Canu(Koren et al., 2017) and meta-flye(Kolmogorov et al., 2019). OPERA-

MS and meta-flye are designed to be capable of handling metagenome data, while 

wtdbg2 and canu are broadly used for haploid or diploid genomes. Overall, the results 

show promise for the characterization of microbial genomes using long-read sequencing 

data. Canu produced the largest assembly of 69.5 Mb (99.3% of the benchmark data), 

including 83 contigs with contig N50 length of 3.91 Mb. meta-flye assembled 67.7Mb 

genome with 89 contigs. wtdbg2 generated similar results with 64.9 Mb genome size, 

61 contigs and 2.97 Mb N50 length. Assembly metrics of OPERA-MS (67.9 Mb genome 

size, 4734 contigs with contig N50 length of 2.94 Mb) are similar with Canu and wtdbg2 

whereas much more contigs were generated because OPERA-MS utilizes both long 

and short sequencing reads for assembly. In addition, for aligned blocks, meta-flye 

yielded the highest NA50 with 1.71Mb in length compared to other assemblers (wtdbg2: 

1.2Mb, OPERA-MS: 1.21Mb, Canu: 1.4Mb).  Furthermore, by mapping all contigs to the 
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reference genomes using MUMMer v3.23, we assessed the accuracy and genome 

completeness of contigs produced by 4 assemblers. As shown in Figure 2A, meta-flye 

achieved the highest genome fraction (99.99%) and 1-to-1 identity percentage 

(99.62%), followed by OPERA-MS (genome fraction: 99.98% and accuracy 99.92%), 

Canu (genome fraction 99.81% and accuracy 99.4%) and wtdbg2 (genome fraction 

96.02% and accuracy 98.60%). Moreover, we evaluated aligned blocks for each method 

based on NA50 length. As shown in Table S1, meta-flye achieved the highest NA50 

with 1.71Mb in length compared to other assemblers (wtdbg2: 1.2Mb, OPERA-MS: 

1.21Mb, Canu: 1.4Mb).  Overall, 4 tools generated results with similar good quality in 

term of contiguity, accuracy and completeness using long read data with evenly mixed 

samples at 525× coverage depth. 

Next, we subsampled 525× data set to 365× (70%), 160× (30%), 80× (15%), 40× (7.5%) 

and 20× (3.75%) to examine the effect of sequencing depths on de novo assembly 

(Figure 2A, Table S1). The assembly results of 4 tools ranges 95.95% to 99.96% in 

consensus accuracy and 91.26% to 99.99% in genome fraction. In specific, OPERA-MS 

outperforms others with the highest and most consistent metrics for completeness and 

accuracy across different sequencing depths because its metagenomics design 

substantially improves the robustness to low sequencing depth, where genome fractions 

are 99.68% in average (sd = 0.61%) and consensus identities are 99.92% in average 

(sd = 0.05%). Despite of reduced metrics as sequencing depth becoming lower, meta-

flye and Canu still recovered at least 96.8% genomes with 98.5% accuracy. Notably, 

wtdbg2 improved the assembly metrics with coverage depth reduced from 365× to 80×. 

In addition, we examined whether genomes of 20 bacterial strains can be better 

constructed with Nanopore sequencing technology compared to PacBio and Illumina. 

As shown in Figure 2B, assemblers using Nanopore sequenced data outperforms other 

two technologies. With the same assembler, on average, the number of contigs of 

Nanopore is ~30% lower than PacBio, genome fraction and genome size are 1.56% and 

3.1 Mb higher respectively. To understand the reason, we compared read length 

characteristics between these two data sets. For N50 length, ONT (7,350 bp) is 15% 

longer than PacBio (6,357 bp), and for N05 length, ONT (35.9 kbp) is even 159% longer 
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than PacBio (13.8 kbp). This indicates that read length is the main advantage for ONT. 

Therefore, as shown in Figure 2B, N50 length of ONT (13.3 Mbp) is 68% longer than 

PacBio (8.1Mbp). Assemblies using Illumina sequenced data have 99.9% in accuracy, 

but more contigs generated and lower genome size in total compared to Nanopore.  

De novo assembly of HM-277D mock community 

To evaluate the metagenome reconstruction in a more realistic setting, we carried out 

another de novo assembly of 1068× data set from HM-277D Mock Community, with 

unevenly mixed DNA samples of the 20 bacteria strains (Figure S6). Assembly 

accuracy still remains high, ranging from 97.78% to 99.75% across tools. However, not 

surprisingly, genome fractions and genome sizes of all methods are substantially lower 

than even community. This is because 13 bacterial strains have extremely low 

abundances (<1%) in this unevenly mixed samples, leading to reduced genome 

coverage fractions (Canu: 71.68%, OPERA-MS: 71.25%, meta-flye: 91.57%, wtdbg2: 

82.95%) and genome sizes (Canu: 50.21 Mb, OPERA-MS: 47.99 Mb, meta-flye: 64.12 

Mb, wtdbg2: 61.75 Mb). To assess how strain abundance affects assemblies, we 

calculated strain-specific genome fraction for each tool. Across bacterial strains, meta-

flye recovered the highest percentage of genome (median 100%), followed by OPERA-

MS (median: 98.75%), Canu (median 94.78%) and wtdbg2 (median: 91.66%) (Figure 

2C). For bacteria with relative abundance higher than 0.2%, least 99.99% of reference 

genome can be covered by assembly contigs (meta-flye), with identity consensus 

reaching to 99.93%. These results suggest that bacterial strain with nontrivial 

abundance can be accurately assembled with Nanopore sequenced data. Overall, we 

observed that meta-flye returned assemblies for 20 bacterial strains with the best 

performance in completeness and accuracy. Metric for each strain is correlated with 

abundance of the corresponding bacteria. Some strains were proved hard to assemble 

for all assemblers due to extremely low relative abundance. For example, 13.6% of 

region of Enterococcus faecalis (0.011% relative abundance) were covered by 0 or 1 

read and 56.1% covered by less than 3 reads, leading to 4.47% genome fraction for 

meta-flye. Moreover, there were 2 contigs belong to two different bacteria species, 

Bacteroides vulgatus (0.19% relative abundance) and Streptococcus pneumoniae  
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(0.05% relative abundance), indicating the difficulty in differentiating one bacteria from 

another with low relative abundance. 

Taxon binning and identification 

Metagenome assemblers construct contigs with variable length to recover original 

genome of each bacteria from microbial community. Subsequently, another major 

challenge in studying the identity and diversity of this community member is to classify 

sequenced reads or contigs correctly according to their taxonomic origins. Here we 

investigated the taxonomic binning performance based on 3 scenarios of long-read 

sequencing data, HM-276D (Nanopore, PacBio) and HM-277D (Nanopore) at 160× 

depth of coverage, using a state-of-art taxonomic binner Megan-LR. First, all long reads 

were aligned to NCBI-nr database. Then, we used Megan-LR with interval-union LCA 

algorithm to assign ~2 million aligned reads (~4.6 Mb bases) to taxonomic nodes 

(Figure 3A,B, Figure S7-S10)). Overall, 4.22 Mb (0.087%) from Nanopore data of HM-

276D sample were mis-assigned, while 4.37 Mb (0.075%) and 4.66 Mb (0.141%) for 

Nanopore data of HM-277D and PacBio data of HM-276D respectively. Specifically, we 

evaluated the recovery of taxon bins at different ranks. We considered two metrics to 

quantify the read assignment accuracy, average precision and sensitivity of 20 bacteria 

strains. For each taxonomic bin, we obtained precision by calculating the percentage of 

reads correctly classified out of all binned reads. Sensitivity is the percentage of 

correctly assigned reads out of all reads originally from the bin. As shown in Figure 3C, 

HM-276D (Nanopore) has the highest precision, which are all above 60% from phylum 

to genus. HM-277D (Nanopore) followed, with all above 50%, while HM-276D (PacBio) 

has the lowest average precision due to predicted small false positive bins at the 

species level. Sensitivity has similar pattern (Figure 3D). HM-276D (Nanopore) still 

appears to the best data set for read classification than other two and the difference in 

accuracy between these 3 scenarios is similar across ranks. Nanopore is ~8% higher 

than PacBio and HM-276D is 10% higher than HM-277D. To evaluate the stability of 

read assignment accuracy, we calculated 95% confidence interval of precision and 

sensitivity for each scenarios at each rank. Not surprisingly, confidence bands are 

narrower at higher rank, indicating that more taxon recovery accuracy can be reached. 
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Owing to unevenly mixed bacteria strains, sensitivity is much more variable for HM-

277D than other HM-276D. Overall, these results demonstrated the advantage of long-

read data in accurate taxon recovery above the family level, while binning accuracy and 

stability were relatively at the species level.     

In addition to assigning sequence fragments (reads or contigs) to taxon bins, we 

recognized the importance of accurate determination of taxonomic identity presence or 

absence from microbial community. Therefore, we continued to investigate the 

performance of taxonomic identity prediction between data from HM-276D (Nanopore, 

PacBio) and HM-277D (Nanopore). For taxon prediction, we defined that the species is 

significantly present in the community when at least 10 reads were assigned to it, while 

identity with less 10 supporting reads was marked as absence. We considered two 

other metrics to quantify the detection accuracy, true positive rate (TPR) and false 

discover rate (FDR), where TPR is the percentage of correctly predicted taxonomic 

identities out of known existing taxon and FDR is the percentage of incorrectly predicted 

taxonomic identities out of all predicted taxon. TPR and FDR were calculated at 

different ranks in Figure 3E. TPR were consistent across 3 data sets from phylum to 

order level (90%-77%). Below the order level, PacBio (HM-276D) and Nanopore (HM-

277D) are 22% lower compared to Nanopore (HM-276D) (92%-87%). From phylum to 

family level, FDRs were controlled under 15% for all 3 data sets.  However, at the genus 

level, more than 20% of detections are false for PacBio (HM-276D) and Nanopore (HM-

277D) while 6% for Nanopore (HM-276). All 3 scenarios have inflated FDR (>20%) at 

the species level. Across data sets, there was drastic increase in FDR between phylum 

to family level and below family level, 10%±3% and 21%±5%. Similar to binning results, 

Nanopore data of HM-276D still consistently performed better than other two data sets 

across ranks. However, accurately predicting taxonomic profiles at the species level still 

remains challenging due to many false predicted taxonomic identities with 10 to 100 

reads assigned incorrectly. 

Strain profiling 
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Despite the challenges in assembly and binning of HM-277D microbial community even 

at the species level, especially for low abundance bacteria (relative abundance < 1%), 

the golden standard profile of this mock community still allows us to evaluate other 

unique advantages of this deeply sequenced data set at strain level. First, we examined 

the ability in identifying these 13 extremely rare strains based on annotated target 

genes. To explore the sensitivity of strain detection using this data set, we mapped raw 

sequenced reads to reference genomes of the 20 bacterial strains with Minimap2. Then, 

for each strain-specific gene, the average coverage were estimated by summing up 

read depth across all exonic region, normalized for gene length. In addition, exon 

coverage fractions were calculated. We required a gene with average coverage greater 

than 1 and exon coverage fraction greater 50% simultaneously in order to be declared 

as a detected gene. The results are shown in Figure 4A and Figure S11-S12. 

Detection rates and average coverage among all genes largely keep high in abundant 

strains (>1%), ranging from 96.4 bp to 4207.6 bp, as well as most of rare strains (<1%). 

Most of bacterial strains except for Bacteroides vulgatus (69.1%) and Streptococcus 

pneumoniae (81.7%) have achieved at least 97% gene detection rate.  

Next, we recognized that 16S rRNA genes are most commonly used as gene marker for 

bacteria identification, we further selected them out for each strain based RefSeq 

annotation. As shown in Figure 4A, though Bacteroides vulgatus and Streptococcus 

pneumoniae still have about 50% of 16S rRNA genes undetected by raw sequenced 

reads, 18 strains have 100% detection rates and exon coverage fraction with 434.77 bp 

coverage in average, which demonstrates the feasibility of identifying rare strain (<1%) 

in microbial community with long-read sequencing data. Additionally, read coverage of 

protein coding genes for 20 bacterial strains was summarized, which shows similar 

results. 14 strains have average coverage above 100 bp and gene detection rates for 

18 strains have reached to 99%, indicating the presence of bacterial strains in the 

sample.   

To understand the composition, diversity and spatial dynamics of microbial 

communities, we continued to evaluate the bacterial abundance estimation accuracy 

based on Nanopore data. We determined two abundance metrics to measure the 
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accuracy, Pearson correlation and L1 norm. These two metrics assess how well 

Nanopore sequenced reads can reconstruct the bacterial abundances in comparison to 

the gold standard. Relative abundance was obtained by normalizing total read coverage 

with chromosome length for each taxon at different ranks. As shown in Figure 4B, 

abundance estimates at the species level agrees well with the known relative 

abundances from the mock community. However, abundance estimation at higher ranks 

appears to be more challenging, as correlation coefficient ranges from 0.87 to 0.85 and 

L1 norm is above 0.3 from class to family level, while two metrics improved with 

Pearson correlation > 0.9 and L1 < 0.29 when rank is below the family level. Poor 

abundance estimation at class or family level may due to the presence of extremely rare 

bacterial strains in the HM-277D sample, as read coverages were simply summed up 

between species belonging to the same family or class without accounting for 

abundance heterogeneity. 

Discussion 

Complete genome assembly and population profiling are critical for the interpretation of 

microbial community diversity. However, a benchmarking long-read data set with 

consistent evaluation metrics is still lacking, which has hindered our understanding of 

long-read sequence data in metagenome assembly. In this study, we deeply sequenced 

HM-276D and HM-277D samples to assess the performance of error-prone Nanopore 

sequencing data and bioinformatics tools in characterizing microbial community. 

Assemblers consistently achieved high accuracy and completeness for nontrivial 

bacteria strains and genome binners performed well at above the genus level. 

Furthermore, by targeting on marker genes, we were able to identify rare strains with 

extremely low abundance in microbial community. Overall, our results have 

demonstrated that the technical feasibility to characterize complete microbial genomes 

and populations from Nanopore sequencing data with metagenomic software.  

We note that despite the feasibility to characterize complete microbial genomes from 

long-read sequencing data, there are still challenges to be resolved in our study. Even 

for evenly mixed samples, the best performing assembler meta-flye achieve 99.99% 
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consensus accuracy. However, as the reference genomes contains 70 Mb, 0.04% error 

rate has led to 28 Kbp of mismatches. These erroneous bases could be due to 

sequencing errors in low quality read, a major drawback of long-read sequence data 

and base modification, which may complicate the genome assembly. To prevent these 

errors, a sequencer with unbiased and methylation-aware base caller is in need. (We 

also acknowledge that some of the mismatches may be due to natural differences 

between reference microbiome samples and the reference genomes that were used.) In 

addition, there is still room for further improvement in assembly completeness by using 

longer reads or better designed assemblers to account for long repeats in genomes. In 

our study, we assembled long-read sequenced data from 20 bacterial strains across 

species. However, the performance at strain-level still remains unknown as closely 

related genomes is always a major challenge for genome assembly. In the future, we 

anticipate that more mock microbial community will be released with bacteria at strain 

level for benchmarking study. 

By evaluating the performance of bioinformatics tools across different technologies, we 

found that third generation sequencing generally facilitates the complete 

characterization of complex bacterial genomes by overcoming many limitations of 

second generation sequencing. The short read length has limited the ability of Illumina 

sequencing in genome interpretation. For example, the length of repetitive genomic 

region is larger than a single read. As a consequence, intra- and intergenomic 

diversities are unlikely to be captured by short sequencing data. This issue has been 

resolved by long-read sequencing technologies (ONT and PacBio), which is able to 

span low complexity and repetitive regions by providing sequence reads with at least 10 

kb in length. While generating data with much higher error rate than PacBio, ONT has 

become a promising platform in many applications, especially for studies requiring large 

amounts of data. This is because ONT provides longer reads (up to 900 kb in length) 

with higher throughput compared to PacBio (10-15 kb in length). Moreover, ONT is 

currently more affordable with lower per-base cost of data generation, which is a key 

factor in long-read sequencing studies. Overall, the application of these two major long-

read sequencing platforms in metagenomics analysis of complex communities is still 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.03.05.978866doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978866


restricted by higher error rate. This problem could be addressed with improvement of 

consensus sequences. Recently, newly released R10 chip from ONT has longer base-

contacting constriction in the pore, which improves the homopolymer resolution as 

compared to R9 and improved per-base error rates. Similarly, the HiFi protocol from 

PacBio can provide Sanger-quality accuracy (>99%) with reduced read length, which 

are still much longer than short-read sequencing for assembly of complex genomes 

(Wenger et al., 2019).This can lead to metagenome assembly with higher accuracy and 

completeness, as well as more accurate OTU identification. Future metagenomics 

studies are expected to be changed dramatically by this approach. For example, strain 

UA159 and NN2025 under species Streptococcus mutans only share 8% common 

regions, which can be uniquely assigned. We then found that 20% of ONT reads can 

cover the unique region of these two strains respectively, which is infeasible for short 

reads. Therefore, with better quality of long-read data, this approach may allow us to 

identify bacteria of interest directly at strain level instead of performing binning analysis 

in the future. 

In addition to illustrating the advantages brought by long-read sequence data, we also 

assessed the performance of four de novo assembly algorithms and a long-read 

genome binner. The bioinformatics challenges to interpret rich information from complex 

microbial community include high error rates and low throughput for long-read 

sequencing, fragmented nature for short-read sequencing, and large CPU hours 

requirement. For evenly mixed (each with 5% abundance) HM-276D mock community, 

4 tools consistently achieved high accuracy and completeness. No single assembler 

significantly outperforms others. By subsampling data to less coverage depths, not 

surprisingly, we found that the corresponding metrics for 4 tools decreased. In terms of 

speed, wtdbg2 is tens of times faster than other tools. For the unevenly mixed mock 

community HM-277D, assembly accuracy still remain high for all 4 tools (~97-98%). 

Genome fraction was reduced because 13 rare bacterial strains (<1%) were poorly 

assembled. Hybrid-assembler OPERA-MS, which combines the advantages from long 

and short-read technologies, shows more robust performance to bacterial strains with 

extremely low abundance than other tools. However, it produced much more contigs 
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with less contiguity while meta-flye, Canu and wtdbg2 returned single contig for 18, 15 

and 17 strains respectively. Furthermore, taxonomic binning results show that Megan-

LR performs well when genomes are not closely related. Taxon bins were reconstructed 

with acceptable accuracy down to the genus level while performance decreased at 

species and strain level.  

In summary, our results demonstrate the feasibility to characterize complete microbial 

genomes and populations from error-prone Nanopore sequencing data, but also 

highlight necessary bioinformatics improvements for future metagenomics tool 

development to handle specific challenges in error-prone long-read sequencing data. 

We believe that future metagenomics studies will benefit from this approach to 

assemble complete microbial genomes, while maintaining the theoretical ability to 

detect DNA methylations and base modifications, infer repetitive elements and 

structural variants, and achieve strain-level resolution within microbial communities. All 

the data sets on reference microbiomes are made publicly available to facilitate 

benchmarking studies on metagenomics and the development of novel software tools. 

Limitations of the Study 

In this study, we note that there is still room for further improvement in assembly 

completeness using long reads. Also, the performance of binning analysis using long-

read at strain-level still remains unknown.  

Resource Availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contact, Kai Wang (wangk@email.chop.edu) 

Materials Availability 

This study did not generate new unique reagents 
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Data and Code Availability 

The Oxford Nanopore sequencing data that support the findings of this study have been 

deposited in the BioProject database at http://www.ncbi.nlm.nih.gov/bioproject/630658 

(reference number: PRJNA630658)  

The PacBio data used in this study was generated from the PacBio RS II sequencer. 

The data was downloaded from the following URL: 

https://github.com/PacificBiosciences/DevNet/wiki/Human_Microbiome_Project_MockB

_Shotgun.  

The Illumina paired-end data for HM-276D was downloaded from NCBI SRA database 

with accession numbers SRR2726671 and SRR2726672. 

The Illumina TruSeq synthetic long-read data for HM-277D was downloaded from NCBI 

SRA database with accession number SRR2822457.  
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Main figure titles and legends 

Figure 1. Summary of Nanopore Sequencing data from HM-276D and HM-277D 

microbial communities. (A, B) Circos plots of read coverage across whole genome of 

20 bacterial strains from (A) HM-276D and (B) HM-277D. Each chromosome was 

divided to bins with 5,000 bp width. Average read coverage was calculated within each 

bin and converted to log scale to facilitate viewing and comparing between bacterial 

strains. AB, Acinetobacter baumannii; AO, Actinomyces odontolyticus; BC, Bacillus 

cereus; BV, Bacteroides vulgatus; CB, Clostridium beijerinckii; DR, Deinococcus 

radiodurans; DF, Enterococcus faecalis; EC, Escherichia coli; HP, Helicobacter pylori; 

LG, Lactobacillus gasseri; LM, Listeria monocytogenes; NM, Neisseria meningitides; 

PAN, Propionibacterium acnes; PAG, Pseudomonas aeruginosa; RS, Rhodobacter 

sphaeroides; SAR, Staphylococcus aureus; SE, Staphylococcus epidermidis; SAL, 

Streptococcus agalactiae; SM, Streptococcus mutans; SP, Streptococcus pneumonia; 

(C) Read length distribution of HM-276D and HM-277D data sets. Blue dashed lines 

represent different quantiles. Red line represents the density of read length distribution. 

(D) Summary statistics of HM-276D and HM-277D data sets. Each value was calculated 
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by using pycoQC (Leger and Leonardi, 2019) and LongreadQC. Real-time statistics are 

shown in Figure S1-S5. 

Figure 2. Assembly results for HM-276D and HM-277D data sets. (A) Assembly 

statistics (N50 length, accuracy and genome fraction) of each assembler at different 

coverage depths based on HM-276D data set. Colors indicate results from different 

assemblers (See Supplemental material for details in parameter settings). (B) 

Assembly statistics (N50 length, number of contigs, genome fraction and genome size) 

of each assembler based on HM-276D sample sequenced by different technologies 

(Nanopore, PacBio, Illumina). To make fair comparison, each data set was down-

sampled to 160× depth of coverage. (C) Strain-specific assembly performance of each 

assembler based on HM-277D data set. Assembly statistics (accuracy and genome 

fraction) distributions were presented using boxplots with jitter. Radius of each dot 

indicates the known relative abundance of each bacteria strain from the mock 

community.   

Figure 3. Taxonomic binning results for HM-276D and HM-277D data sets. (A,B) 

Megan taxonomic tree assignment obtained from HM-276D (A) and HM-277D (B) 

Nanopore sequenced data sets. Both data sets were downsampled to 160× depth of 

coverage. Each read was aligned against NCBI-nr protein reference data base, then 

binned and visualized using Megan-LR. Megan taxonomic tree showing bacteria taxa 

identified and their corresponding abundances across taxonomic rank. The radius of 

circle represents the number of reads assigned for each taxa. Bacterial strains 

highlighted in red represent true organisms in the mock community. (C-E)  Taxonomic 

binning and identification performance metrics across ranks based on different data sets 

(indicated by colors). Average precision (C), average sensitivity (D) and their 95% CIs 

were calculated based on metrics from different taxon at each rank. (E) Taxonomic 

detection accuracy metrics, true positive rate (solid) and false positive rate (dashed), 

were calculated based on identified taxon (reads > 10) at each rank. To make fair 

comparison, each data set was downsampled to 160× depth of coverage. 
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Figure 4. Taxonomic profiling results for HM-277D data sets. (A) Gene identification 

performance of 20 bacterial strains. 3 gene sets (RefSeq, 16S rRNA, protein coding) 

were evaluated. Colors indicate different metrics (exonic coverage and detection rate). 

Exonic coverage (orange) is the percentage of exonic region covered by at least 1 read 

out of all exons. Detection rate (blue) is the percentage of genes with coverage depth > 

1 and exonic coverage > 50% out of all genes. Gold standard abundance of each strain 

was indicated in black. (B) Bacteria abundance estimation. Scatter plots abundance 

estimates versus gold standard abundances from HM-277D mock community across 

taxonomic ranks. Abundances were converted to log scale to facilitate viewing. Pearson 

correlation and L1 norm were utilized to quantify the performance. Estimates 

consistently share a good agreement with gold standard across ranks with correlation > 

0.85 and L1 norm < 0.32. Abbreviations for bacterial name above the species level are 

listed below. Phylum level: Actinobacteria, Bacteroidetes (Bac), Deinococcus-Thermus 

(Dei), Firmicutes (Fir), Proteobacteria (Pro); Class level: Actinobacteria (Act), 

Alphaproteobacteria (Alp), Bacilli (Bac), Bacteroidia (Bact), Betaproteobacteria (Bet), 

Clostridiales (Clo), Deinococcus (Dei), Epsilonproteobacteria (Eps), 

Gammaproteobacteria (Gam); Order level: Actinomycetales (Act), Bacillales (Bac), 

Bacteroidales (Bact), Campylobacterales (Cam), Clostridiales (Clo), Deinococcales 

(Dei), Enterobacteriales (Ent), Lactobacillales (Lac), Neisseriaceae (Nei), 

Propionibacteriaceae (Pro), Pseudomonadales (Pse), Rhodobacterales (Rho); Family 

level: Actinomycetaceae (Act), Bacillaceae (Bac), Bacteroidaceae (Bact), Clostridiaceae 

(Clo), Deinococcaceae (Dei), Enterobacteriaceae (Ent), Enterococcaceae (Ent), 

Helicobacteraceae (Hel), Lactobacillaceae (Lac), Listeriaceae (Lis), Moraxellaceae 

(Mor), Neisseriaceae (Nei), Propionibacteriaceae (Pro), Pseudomonadaceae (Pse), 

Rhodobacteraceae (Rho), Staphylococcaceae (Sta); Genus level: Acinetobacter (Act), 

Actinomyces (Act), Bacillus (Bac), Bacteroides (Bact), Clostridium (Clo), Deinococcus 

(Dei), Enterococcus (Ent), Escherichia (Esc), Helicobacter (Hel), Lactobacillus (Lac), 

Listeria (Lis), Neisseria (Nei), Propionibacterium (Pro), Pseudomonas (Pse), 

Rhodobacter (Rho), Staphylococcus (Sta), Streptococcus (Str). 
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Mapping statistics  HM-276D   HM-277D  

# of reads 8,086,684 18,254,839 

# of mapped reads 7,640,934 18,110,317 

reads unmapped 445,750 144,522 

reads MQ0 60,972 103,601 

non-primary alignments 287,369 732,671 

total length 33,563,573,383 72,312,638,112 

bases mapped 32,143,689,158 72,216,146,980 

bases mapped (cigar) 31,156,025,998 70,073,211,829 

mismatches 4,104,593,752 6,925,222,080 

average length 4,150 3,961 

maximum length 472,762 214,792 

average Phred quality per 

base 
13 17 

Table 1. Mapping statistics of HM-276D and HM-277D sequenced data set. 

Sequenced data were mapped against reference genomes of 20 known bacterial 

strains. Sequences indicates the number of QC passed reads. Number of mapped and 

unmapped reads were summarized. MQ0 represents number of mapped reads with 

MQ=0.Clipping was ignored when calculating total length, bases mapped. Bases 

mapped (cigar) provides a more accurate number of mapped bases. Number of 

mismatches were obtained from NM field of BAM file. 
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