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Abstract 

 

Fluorescence reconstruction microscopy (FRM) describes a class of techniques where 
transmitted light images are passed into a convolutional neural network which then outputs 
predicted epifluorescence images. This approach enables many benefits including reduced 
phototoxicity, freeing up of fluorescence channels, simplified sample preparation, and the ability 
to re-process legacy data for new insights. However, current FRM benchmarks are abstractions 
that are difficult to relate to how valuable or trustworthy an FRM prediction is.  Here, we relate 
the conventional benchmarks and demonstrations to practical and familiar cell biology analyses 
to demonstrate that FRM should be judged in context. We further demonstrate that it performs 
remarkably well even with lower-magnification microscopy data, as are often collected in high 
content imaging. Specifically, we present promising results for nuclei, cell-cell junctions, and fine 
feature reconstruction; provide data-driven experimental design guidelines; and provide the 
code, sample data, and user manual to enable more widespread adoption of FRM.  
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Introduction 

 Deep learning holds enormous promise for biological microscopy data, and offers 1 

especially exciting opportunities for fluorescent feature reconstruction1–5. Here, fluorescence 2 

reconstruction microscopy (FRM) takes in a transmitted light image of a biological sample and 3 

outputs a series of reconstructed fluorescence images that predict what the sample would look 4 

like had it been labeled with a given series of dyes or fluorescently tagged proteins (Fig. 1A-C) 5 

2,6–10. FRM works by first training a convolutional neural network (e.g. U-Net) to relate a large set 6 

of transmitted light data to corresponding real fluorescence images (the ground truth) for given 7 

markers11–13. The network learns by comparing its fluorescence predictions to the ground truth 8 

fluorescence data and iterating until it reaches a cut off. Once trained, FRM can be performed 9 

on transmitted light data without requiring any additional fluorescence imaging. This is a 10 

powerful capability and allows FRM to: reduce phototoxicity; free up fluorescence channels for 11 

more complex markers; and enable re-processing of legacy transmitted light data to extract new 12 

information. In all cases, FRM data are directly compatible with any standard fluorescence 13 

analysis software or workflows (e.g. ImageJ plug-ins). Such capabilities are extremely useful, 14 

and FRM may eventually become a standard tool to augment quantitative biological imaging 15 

once practical concerns are addressed.   16 

 17 

However, a number of challenges limit FRM accessibility to the larger biological community. Key 18 

among these is the difficulty in relating the abstract accuracy metrics used to score FRM to the 19 

practical value of FRM data for actual, quotidian biological analyses such as cell counting or 20 

morphological characterization. To better appreciate this, consider first that the quality of FRM is 21 

typically assessed using a single numerical metric (P) such as the Mean-Squared-Error or 22 

Pearson’s Correlation Coefficient that typically range from (0,1) or (-1,1), and second that it is 23 

practically impossible to actually reach perfection (P = 1). P can be increased closer to 1 either 24 
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by training with more images, or by using higher resolution magnification (e.g. 40X-100X) to 25 

capture finer details. However, increasing P also carries an intrinsic cost in increased wet-lab 26 

and computing time. That improving P is expensive and that P cannot be perfect beg the 27 

questions of how good is good enough, and good enough for what (Fig. 1D)? For instance, P = 28 

0.7 lacks any practical context, and may be quite good enough for a given use case without 29 

requiring more work to raise the ‘accuracy’. This is why context is extremely important for FRM 30 

and why the work we present here focuses on evaluating practical uses of FRM with respect to 31 

given P values.  32 

 33 

Our goal here is to provide a standardized implementation of FRM and demonstrate its practical 34 

performance and limitations for every-day tasks such as nuclear localization and tracking, 35 

characterizing cell morphology, cell-cell junction detection and analysis, and re-analyzing legacy 36 

data and data collected on different systems (Fig. 1). To further emphasize the use of FRM for 37 

routine tasks, we will exclusively focus on those lower magnifications (4X-20X) commonly used 38 

in high content imaging and cellular screening in contrast to the focus on higher magnifications 39 

in prior studies 9,10. We hope that the included software we developed and the analyses and 40 

comparison data we present will help make FRM more approachable to the broader biological 41 

community.  To further facilitate this, we have made the entirety of our code and all collected 42 

data public as well as providing a full tutorial guide (see Methods and Supplementary Material).   43 
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 44 

 45 

 46 

 47 

Adapting U-Nets for Low Magnification, High-Content FRM 48 

While early FRM methods used computationally complex and expensive networks that relied on 49 

Z-stacks of images to capture 2D reconstruction9, more recently this has been adapted to 50 

reconstruct 3D image stacks using a modified U-Net architecture10. The U-Net itself is 51 

commonly used in machine learning approaches because it is a lightweight convolutional neural 52 

network (CNN) which readily captures information at multiple spatial scales within an image, 53 

thereby preserving reconstruction accuracy while reducing the required number of training 54 

samples and training time. U-Nets, and related deep learning approaches, have found broad 55 

application to live-cell imaging tasks such as cell phenotype classification, feature 56 

segmentation10,14–19, and histological stain analysis20–23.  57 

Figure 1. High-content, high-

throughput labeling of fluorescent 

features.  

(A) Sample large tissue of MDCK cells 

imaged via transmitted light (DIC). The 

scale bar represents 1 mm. A sub-

region of the large tissue is enlarged in 

B. (B) A representative image which is 

given as input to the U-Net processing 

framework. The scale bar represents 

50 μm. (C) The predicted fluorescent 

features (cell-cell junctions and nuclei) 

produced by the U-Net, corresponding 

to the same spatial region as in B. (D) 

Violin plot of accuracy score results 

from all experimental datasets. N > 

4400 for all datasets; see Table S1 for 

summary statistics.  However, such 

accuracy metrics are not necessarily 

indicative of useful feature 

reconstructions for many practical 

applications. 
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 58 

Our implementation here provides an archetypal U-Net and framework intended for the cell 59 

biology community. Briefly, our workflow is as follows. First, we collected multi-channel training 60 

images of cultured cells where each image comprised a transmitted light channel and 61 

associated fluorescence channels (labeled using genetically encoded reporters or chemical 62 

dyes; see Methods). These images were then broken into 256x256 pix2 sub-images in ImageJ 63 

and then input into the network. Such image chopping is necessary for the average user to 64 

account for the average RAM and graphics cards available on standard workstations. These 65 

data are then passed through the U-Net network to generate trained weights—the pattern 66 

recognition side of the network. Here, the transmitted light images serve as input to the network, 67 

which is then optimized to minimize the difference between intensity values of the output 68 

predicted images and the intensity values from the ground truth corresponding fluorescence 69 

images (e.g. Fig. 1). This process can be extended to full time-lapse video fluorescence 70 

reconstruction, making it well suited for high-content live imaging (see Movies S1-4). We have 71 

provided all of our code, all raw and processed data, and an extensive user manual 72 

(DataSpace, GitHub) to encourage exploration of FRM.  73 

 74 

As our conventional performance metric, we selected the Pearson’s Correlation Coefficient 75 

(PCC), which is commonly used in cell biology when comparing the co-localization of two or 76 

more proteins, and also used in computer vision to assess spatial-intensity when determining 77 

image similarity. However, we observed that naively applying the PCC across our whole dataset 78 

skewed the results due to the large number of images containing primarily background 79 

(common with high content imaging of oddly shaped or low density samples). This resulted in 80 

poor PCC scores as the network tried to reconstruct the pseudo-random background noise. To 81 

address this, we report a corrected accuracy score (P) representing the PCC of a large subset 82 

of images in a given dataset containing positive examples of the feature (nuclei, junctions, etc.) 83 
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based on an intensity threshold (Fig. S1, see Methods). This approach will improve network 84 

performance for datasets containing large amounts of background signal. 85 

To broadly explore the utility of FRM for high-content imaging applications, we captured 86 

transmitted light images using 4X, 10X, and 20X air objectives using either Phase Contrast or 87 

Differential Interference Contrast (DIC), and collected data across 3 different cell types—renal 88 

epithelial cells (MDCK), primary mouse skin keratinocytes (KC), and human umbilical vein 89 

endothelial cells (HUVEC). Variable training set sizes were tested to also explore the effect of 90 

data set size on ‘accuracy’—a key practical aspect of designing an FRM study. The biomarkers 91 

we trained against comprised a nuclear dye (Hoechst 33342), an F-actin dye (SiR-Actin) and 92 

genetically encoded fluorescence reporters for E-cadherin and VE-cadherin. Traditional 93 

Accuracy Scores for each of these are summarized in Fig. 1D and Table S1, and we will next 94 

present case studies from each of these data sets before concluding with a discussion of how 95 

‘accuracy’ relates to visual quality to help researchers design experiments for FRM. While we 96 

necessarily show representative data here, we provide the statistical distribution for all accuracy 97 

scores, and encourage exploration of our provided datasets. 98 

 99 

 100 

Results. 101 

Demonstration of FRM for low-magnification nuclear fluorescence reconstruction and 102 

analysis 103 

   104 

 One of the most common computational image processing needs for screening and low-105 

magnification image is nuclei detection or segmentation, which enables cell counting, time-lapse 106 

tracking, and statistical analyses of ensemble distribution and geometry. While a variety of 107 

traditional image processing approaches exist to extract nuclei from phase or DIC images, such 108 
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techniques require extensive fine tuning, ultimately only work for certain cell types, and often fail 109 

to work at all with DIC images. The most reliable and standardized technique by far is using a 110 

vital dye (e.g. Hoechst 33342 or DRAQ) to stain the nuclei. However, Hoechst requires cytotoxic 111 

UV illumination while DRAQ (far-red fluorescence characteristics) has been linked to cell cycle 112 

alterations due to its chemistry 24–26. Both dyes also exhibit loss of signal over extended time-113 

lapse imaging. Alternately, genetic reporters such as H2B nuclear labels can be engineered into 114 

cells (e.g. transfection, viral addition, etc.), but this adds more overhead, incurs phototoxicity, 115 

and still requires a dedicated fluorescence channel for a relatively simple structure (the nucleus) 116 

in lieu of a more complex or useful label. Hence, there is a clear practical benefit to fluorescence 117 

reconstruction of cell nuclei, especially in time-lapse imaging where freeing up a channel and 118 

reducing phototoxicity are each quite valuable.  Further, fluorescent reconstruction of nuclei 119 

supports any software or analysis pipeline that might normally be employed with fluorescent 120 

nuclei data, meaning that workflows need not be altered to leverage FRM data here.  121 

 122 

To validate low-magnification, high-accuracy nuclear FRM, we collected data in both MDCK 123 

renal epithelia cells (5X phase contrast, Figs. 2A-D) and primary skin keratinocytes (10X phase 124 

contrast, Figs. 2E-H) while using Hoechst to label nuclei and generate our ground truth training 125 

data. Representative images are presented as a sequence of phase contrast, nuclear ground 126 

truth (green), network predictions (red), and a merged overlay (yellow for a perfect merge).  127 

The Accuracy Score (P) is included for context, while the statistical distributions of P for each 128 

cell type are presented in Fig. 2I demonstrating the actual network performance. The 129 

performance with the keratinocyte data is particularly striking given how irregular and poorly 130 

resolved the cells appear in phase contrast (confounding traditional segmentation). 131 

 132 

The network performs visually well in both cases, with P ~ 0.9, but to represent what that means 133 

in practice, we quantified disparities in the predictions with respect to nuclear size for geometric 134 
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accuracy (Fig. 2J) and centroid error to reflect positional accuracy (Fig. 2K). In both nuclear 135 

area cases, the U-Net slightly overpredicts area, likely due to slight noise in the predictions 136 

blurring the predicted nuclei and effectively increasing area. However, the distributions from the 137 

violin plots are quite similar in structure, and the predictions are well within the usable range for 138 

practical cell counting and segmentation. With respect to nuclear centroid localization, mean 139 

errors span 2 microns (5X MDCK) to 1 micron (10X KCs). The improvement from 5X to 10X can 140 

likely be attributed to the resolution increase in the magnification, but in both cases the errors 141 

are quite small and more than sufficient for standard cell counting, nuclei tracking, and neighbor 142 

distribution analyses. Whether a higher P would be beneficial would depend on the specific 143 

analysis in question—here, the accuracy is more than sufficient.  144 

 145 

As a final demonstration of the utility of low-magnification reconstruction and nuclear tracking, 146 

we input legacy data from a 24 hr time-lapse experiment of the growth dynamics of large 147 

epithelia (2.5 mm2 , 5X) and the network output a reconstructed movie of nuclear dynamics 148 

(Figs. 2L-M, and Movie S1) compatible with standard nuclear tracking algorithms (e.g. 149 

Trackmate in FIJI). Images were captured every 10 minutes, and previous efforts to perform this 150 

experiment using fluorescent imaging of Hoechst resulted in large-scale cell death, hence FRM 151 

proved highly effective both as an alternative nuclear labeling approach for large-scale, long-152 

term imaging, and as a means to reprocess pre-existing, legacy datasets.  153 

 154 

 155 

 156 

 157 
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Figure 2: Low-magnification nuclei reconstruction. 

(A) Representative transmitted-light image of MDCK cells at 5x magnification, with corresponding: (B) ground-

truth nuclei, stained with Hoecscht 33342 and imaged with blue fluorescent light; (C) nuclear prediction 

produced by the network; and (D) the overlay of (B) and (C) displayed in red and green, respectively. The raw 

accuracy score between (B) and (C) is given at right. The scale bar is 100 μm.  

(E) Representative transmitted-light image of keratinocyte cells at 10x magnification, with corresponding (F, G, 

H) ground truth nuclei image, predicted nuclei, and overlay, respectively. The accuracy score is given at right. 

The scale bar is 50 μm. 

(I) Comparison of the accuracy score distributions across the 5X MDCK and 10X Keratinocyte datasets, N > 

4400 test images for each dataset (see Table S1). (J,K) A comparison of nuclear area estimations and centroid-

centroid displacement estimations, respectively, for the two low-magnification datasets considered here. The n 

is approximately 3500 for both plots. See Methods. (L-M) Sequence of phase images (L-L”) from a time-lapse at 

0, 12, and 24 hours of growth, with corresponding nuclear predictions (M-M”) respectively. Input data consists of 

MDCK WT cells imaged at 5x magnification and montaged; the U-Net was applied in a sliding-window fashion to 

predict small patches of the image in parallel. The scale bar is 1 mm. 
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Reconstructing cell-cell junctions for segmentation and morphology applications 171 

Cell-cell junctions and cellular boundaries in cellular ensembles have implications spanning the 172 

epithelial-mesenchyme-transition (EMT), tissue mechanics, and tissue maturation27–29 and are 173 

of broad interest from cellular biophysics to high content screening. However, there are no vital 174 

dyes for junctional proteins (e.g. E-cadherin), necessitating either antibodies or genetic 175 

reporters. In the absence of a specific marker, cell boundaries are relatively difficult to 176 

accurately segment, especially from DIC images (Fig. 3A), and proxy techniques such as 177 

Voronoi tessellation from nuclei data often fail to capture cell shape and organic features such 178 

as curved boundaries. Instead, junctions and boundary data most commonly come from 179 

biomarkers such as E-cadherin, so we trained our U-Net using MDCK cells stably expressing E-180 

cadherin:RFP (Ecad:dsRed) and imaging with a 20X/0.75NA objective—a well-balanced 181 

objective favored for high-content imaging and immersion-free time-lapse imaging.  182 

The U-Net was able to reconstruct E-cadherin junctions with high visual accuracy, as shown in 183 

the sequence from Figs. 3A-D. While P = 0.74, the reconstruction is quite spatially accurate, 184 

which is unexpected given how difficult it is for humans to detect cell-cell junctions by eye in a 185 

DIC image. To better highlight the accuracy and utility of junctional FRM, we explored how the 186 

network reconstructed a subtle 3D feature of epithelial junctions where a slanted junction is 187 

formed between two cells by one cell pushing slightly under another (the region enclosed in the 188 

dashed oval in Figs. 3B-D). Such slanted junctions may indicate a degree of fluidity or direction 189 

of migration and are also impossible to discern by eye. We quantified the accuracy of the FRM 190 

image by taking a line section perpendicular to this slanted junction (Figs. 3D,E) and comparing 191 

the profiles of the ground truth and the FRM image.  In this line section, intensity values up to 192 

and including the peak value are similar, and intensity values exhibit a graded decay within the 193 

slanted junction, indicating that the FRM network is able to capture subtle 3D information from 194 

the 2D input image. To emphasize the 3D nature of this feature, a representative Z-section from 195 
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an E-cadherin junction imaged by scanning confocal is shown in Figs. 3F,G. FRM can again be 196 

used for high-fidelity reconstruction during a timelapse, allowing both nuclei and junctions to be 197 

predicted throughout long acquisitions (see Movie S2). Overall, our network captures junctional 198 

intensity and geometry, both of which are invisible to the eye in the DIC input image. 199 

 200 

 201 

 202 

 203 

 204 

 205 

Fine structure reconstruction 206 

In practice, high content imaging is inherently a trade-off between throughput and resolution. 207 

The more detail we can extract from lower magnification images, the more efficient the imaging 208 

and analysis. Here, we demonstrate the practical performance of FRM and a 20X/0.8NA 209 

objective to reconstruct fluorescence signatures for several useful sub-cellular markers using 210 

HUVEC cells that stably expressed VE-Cadherin:YFP (mCitrine) and were labeled with Hoechst 211 

33342 (live nuclear dye) and SiR Actin (infrared live actin dye). Processed timelapse data (see 212 

Figure 3: Cell-cell junction reconstruction from DIC data and capturing otherwise invisible morphology 

(A-D) Images of MDCK WT cells at 20x magnification were processed using a neural network trained to reconstruct 

cell-cell E-cadherin junctions. Representative ground truth features are shown alongside, and merged with, network 

predictions. The scale bar is 30 μm. (E) Ensemble statistics for E-cadherin reconstruction; N = 4539 test images, see 

Table S1. (F) Line sections from identical spatial regions in (B) and (C) highlight the accuracy of predicted 

fluorescence intensity across the cell-cell junctions. From 2D transmitted light input (A), 3D structures may be 

approximated. (G, H) Representative cell-cell junction and corresponding confocal section, highlighting the 

relationship between 2D junction signal and 3D features. ‘*’ in (G) is 7 µm above the basal plane. 
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Movie S3) highlights the variation of these fluorescent features given the same input (DIC) 213 

image shown in Fig. 4A. 214 

 As a baseline, we characterized prediction accuracy for cell nuclei as the nucleus itself is 215 

relatively low resolution, but detection of sub-nuclear features requires higher accuracy. The 216 

Fig. 4B column demonstrates FRM performance for 20X nuclei including a line section through 217 

both the bulk structure and sub-nuclear granules. Visually, the FRM image is quite accurate, 218 

and P = 0.91 in this case. The line section easily captures the bulk form of the nucleus, but does 219 

not quite capture the texture inside the nucleus, although it does capture the rough form.  220 

Next, we trained the network on identifying Actin after first staining HUVECs using the SiR-Actin 221 

live imaging dye. Here, the column in Fig. 4C shows significantly reduced performance as the 222 

fine F-actin filaments visible in the ground truth fail to be reconstructed in the predictions (P = 223 

0.67) with the exception of some of the cortical filaments at the very edge of the cells (see the 224 

line profile). We hypothesize this is primarily due to fundamental limitations of DIC imaging and 225 

the lack of contrast for intracellular F-actin, but it may also be due to the network overprioritizing 226 

cortical filaments and the diffuse cytoplasmic signal. However, in practice we found that these 227 

FRM data were useful for general cell body detection and potential segmentation analyses due 228 

to the relatively homogeneous reconstructed fluorescence in the cytoplasmic space.  229 

Finally, we trained the network with VE-Cadherin:YFP data in an attempt to reconstruct not only 230 

cellular borders, but also the well-characterized, nano-scale membrane fingers that develop in 231 

endothelial cell-cell junctions and indicate the direction of front-rear polarity in each cell 30. In 232 

contrast to the actin performance, FRM proved far more capable here and readily detected both 233 

general VE-Cadherin boundaries (Fig. 4D column) and the membrane fingers (Fig. 4E column),  234 

although P = 0.77 still seems quite low and likely relates to the network attempting to 235 

reconstruct the more variable granules in the center of the cell, which are irrelevant for 236 
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junctional analyses. While VE-Cadherin protrusions and boundaries are sometimes detectable 237 

by eye in DIC (as in Fig. 4A), they are still quite subtle in the best case, and developing a 238 

traditional computer vision process to detect and extract them has not been demonstrated, 239 

thereby again highlighting the practical value of FRM to reconstruct not only fluorescence, but 240 

also key morphological markers that are much easier to analyze in the FRM image than in the 241 

DIC image. The statistical accuracy distributions are shown in Fig. 4F, where the spread of the 242 

data in F-actin indicates the lack of reliability, while the tighter distributions for nuclei and VE-243 

cadherin indicate more useful reconstructions. Again, the value of FRM depends on the specific 244 

question and context, and the decision of whether it is ‘good enough’ at detecting fine structures 245 

rests with the end user. For reference, short movies of several markers are presented in Movies 246 

S3-5. Additionally, training the network with large and varied datasets enable it to begin to 247 

predict statistically rarer events, such as mitotic divisions, as shown in Movie S6.  248 

 249 

 250 
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Figure 4: Coarse-to-fine feature reconstruction. 

(A) A representative transmitted-light image of HUVEC cells at 20x magnification with its corresponding structures of 

varying scale (B-D). The scale bar represents 30 μm. (B-D) the relatively large nuclei, the finer VE-Cadherin 

structures, and thin F-Actin filaments which are not readily resolved by the network. Ground truth fluorescent features 

are displayed alongside, and merged with, network predictions. (E) displays zoomed-in portions of images shown in 

(D). Line sections from (B”, C”, and D”) are displayed graphically in (B’’’, C’’’, D’’’), to enable intensity comparisons 

across the ground truth and predicted features.  (F) summarizes the distribution statistics, clearly showing the 

uncertainty in F-actin, with tighter reconstruction for nuclei and VE-cadherin. N = 5500+ test images for these 

datasets.  
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Comparing FRM visual performance to P scores, training set size, and network 252 

A key feature of FRM is that its performance can often be increased by collecting more training 253 

data, which in turn ought to improve P. However, P will never be perfect, nor is P necessarily 254 

the best metric to go by when determining if an FRM image is ‘good enough’, as clearly the 255 

context matters and the key question is ‘good enough for what?’ Hence, we sought to provide 256 

several examples of how the size of the training set affects both P and the actual visual 257 

accuracy or quality of the resulting FRM predictions.   258 

To do this, we first swept through different sizes of training sets for many of the biomarkers 259 

presented earlier (see Methods). Briefly, we selected random subsets of very large datasets and 260 

trained the U-Net from scratch with these subsets. This process was repeated for different 261 

fractions of the complete dataset to capture the FRM performance versus training set size. The 262 

relation between P and training set size is shown in Fig. 5A to give a sense of how the 263 

quantitative accuracy progresses and eventually plateaus. In contrast, we also provide FRM 264 

results from the fractional training sets for the 20X HUVEC and MDCK data (Figs. 5B,C; 265 

respectively). Here, the input and ground truth data are presented alongside representative 266 

FRM predictions from networks trained with different numbers of training images (noted below 267 

each image). As a single image from the camera (2048x2048 pixels) is first split into 256x256 268 

pixel sub-images for training, a fractional image (e.g. Fig. 5C, 1/16th column) implies that the 269 

network was trained on just a small crop from a single micrograph. Broadly speaking, and as 270 

expected, these data all indicate that FRM quality varies directly with the size of the training set, 271 

as expected.  272 

However, Fig. 5A demonstrates that the rate of change in quantitative quality (P) vs. training set 273 

size is neither linear nor is it uniform across different biomarkers. Further, the actual predicted 274 

images shown in Figs. 5B,C offer further nuance because they demonstrate that training the 275 
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network against even a single image would be sufficient to capture nuclei for the purposes of 276 

tracking or segmentation, while just 6 images would be sufficient to capture cell shape and 277 

junctional geometry in epithelia assuming the researcher were willing to perform some simple 278 

manipulations such as background subtraction. There is an obvious performance increase for 279 

both cadherins when the training set comprises several hundred images, but it is difficult to 280 

visually detect a difference between nuclei reconstructed from 6 or 400 images.   281 

An alternate way to improve FRM would be to alter the U-Net architecture. Here, we first 282 

compared the standard U-Net to a neural network architecture which was essentially two U-Nets 283 

stacked end-to-end with additional residual connections. Such an approach has been shown to 284 

improve network depth and performance in other applications31–33. Here, however, we observed 285 

no benefit to training a deeper network (see Fig. S2). Further, given the significant temporal and 286 

computational cost, we advise against its use for this kind of FRM. Alternately, we explored the 287 

role of the loss function, testing our Pearson’s-based loss function against the traditional Mean-288 

Squared-Error loss function and found no significant difference (Fig. S3; Methods). Hence, we 289 

conclude that our minimal U-Net implementation performs well as a foundation for a variety of 290 

daily analysis tasks without requiring significant fine tuning.   291 

 292 

 293 

 294 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.03.05.979419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.979419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

Figure 5: Impacts on prediction accuracy from smaller training sets. 

(A) Cropping a sample image into 64 sub-images. (B) A comparison of network prediction accuracy as a function of 

training set size. The U-Net is trained with the complete dataset as described in Table S1 for each experimental 

condition. Then, random images representing a fraction of the total training set is used to train a new U-Net from 

scratch. (C, D) display representative images for the HUVEC 20x dataset and the MDCK 20x dataset, respectively, 

with predictions shown for various training set sizes. This type of analysis may assist users in collecting enough data 

for their task-specific quality requirements. All scale bars represent 30 μm. 
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Discussion 311 

 312 

Limitations of existing accuracy metrics and the importance of context 313 

Our data—collected from actual, real-world analyses, highlight the limitations of using traditional 314 

accuracy metrics from computer vision for biological image analysis. Specifically, while there is 315 

a general relation between an improved P Accuracy Score and FRM quality, it is not linear nor 316 

intuitive how to determine what is ‘good enough’ given only a P value devoid of context for a 317 

specific analysis.  Further, and most critically, FRM does not reconstruct images according to 318 

human imperatives. The U-Net only optimizes via the specific loss function it has been given 319 

(e.g. Mean-Squared-Error or the Pearson’s coefficient). What the computer considers ‘good’ 320 

need not match our own assessments of value and quality.   321 

 322 

As a practical example, compare the FRM performance for E-cadherin (P = 0.73; Fig. 3) and F-323 

actin (P = 0.67; Fig. 5). While the accuracy metrics differ by < 10%, the FRM of F-actin only 324 

detected peripheral actin cables, otherwise blurring all internal features into a homogeneous 325 

signal. Nonetheless, even this plainly ‘inaccurate’ signal could prove useful for cytoplasmic 326 

reconstruction and tracking. In stark contrast, the E-cadherin data was much more visually 327 

accurate and also captured key quantitative features of the ground truth such as junctional 328 

localization and intensity, and even the subtle intensity gradients representing 3D morphology 329 

despite having only a slight improvement in P-values. Yet despite that, a score of 0.73 is far 330 

enough from ‘1’ that it is ambiguous in absence of a specific analysis, which is why FRM must 331 

be evaluated in the context of a given question or analysis.  332 

 333 

Practical considerations for training on new, low-magnification data 334 

We specifically targeted the lower-magnification end of the imaging spectrum to explore how 335 

well FRM performed at magnifications more commonly used for high content imaging 336 
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applications such as timelapse studies of very large cellular colonies or massive screens using 337 

multiwell plates. Our data indicate that such magnifications can be effectively combined with 338 

FRM for applications spanning nuclear tracking, cell-cell junction analysis, and certain fine-339 

structure reconstruction even at just 20X.  340 

 341 

A particular concern for the average user of a complex machine learning process is the size of 342 

the dataset required as this can impose potentially strenuous experimental demands. However, 343 

our characterization of FRM performance vs. data set size again shows the importance of 344 

context as relatively few images are needed to get quite accurate nuclei reconstruction, while a 345 

greater number of images are needed for junction reconstruction (Fig. 6). However, we also 346 

note that our largest training set size comprised at most 500 camera images at 20X 347 

(approximately one six-well plate)—something easily obtained with a standard automated 348 

microscope, and still compatible with manual capture. Further, a very common approach in 349 

machine learning is to ‘augment’ an image dataset by performing reflections and rotations on 350 

images such that the network perceives each augmented image as a different datapoint, 351 

thereby virtually increasing the size of the dataset. We did not perform such augmentation here 352 

for the sake of simplicity and transparency, which suggests that significantly smaller datasets, if 353 

augmented, could still produce good results.  354 

 355 

FRM versus machine-learning segmentation approaches 356 

FRM is a quickly developing technology that exists alongside another popular approach where 357 

machine learning is used for feature segmentation14,19,34. In the latter case, the network is 358 

trained to specifically detect ‘features’ (e.g. nuclei) as binary objects, whereas FRM instead 359 

reconstructs the effective fluorescent image of what a fluorescent label against that structure 360 

might show. Both are useful techniques, and the best approach depends on the application. 361 

However, there are several unique advantages to FRM. First, reconstructing an effective 362 
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fluorescent image from auto-annotated data (e.g. chemical dyes, antibodies, fluorescent 363 

proteins) obviates the need for any manual annotation or pre-processing—often quite time 364 

consuming and subjective. This means that an FRM image can be directly incorporated into any 365 

existing analysis pipeline intended for fluorescent images, including traditional threshold-based 366 

segmentation approaches. Further, more of the original data is preserved in an FRM image, 367 

allowing the capture of things such as fluorescence intensity gradients (e.g. Fig. 3), and features 368 

that might be lost during traditional binary segmentation.  369 

 370 

Concluding remarks 371 

Here, we characterize the value of fluorescence reconstruction microscopy (FRM) for everyday 372 

analysis tasks facing researchers working with cell biology. We specifically highlight the need for 373 

individual researchers to explore and evaluate FRM in the context of specific research questions 374 

rather than accuracy metrics. We also highlight the surprisingly good performance of FRM even 375 

with lower magnification imaging or relatively fine structures such as VE-cadherin fingers. 376 

Finally, we have made all of our tools and all training datasets publicly available to improve 377 

accessibility and provide a starting point for researchers new to FRM to easily explore it for 378 

themselves and to eventually build on and improve.  379 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.03.05.979419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.979419
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods. 380 

Tissue culture  381 

MDCK-II (G-type) cells stably expressing E-cadherin:dsRed were cultured in low glucose 382 
DMEM. The MDCK-II culture media was supplemented with 10% Fetal Bovine Serum (Atlanta 383 
Biological) and penicillin/streptomycin. HUVEC endothelial cells stably expressing VE-384 
cadherin:mCitrine were cultured using the Lonza endothelial bullet kit with EGM2 media 385 
according to the kit instructions. Primary murine keratinocytes were isolated from neonatal mice 386 
(courtesy of the Devenport Laboratory, Princeton University) and cultured in custom media35. All 387 
cell types in culture were maintained at 37°C and 5% CO2 in air. 388 

Preparation of training samples 389 

We collected training data using 3.5-cm glass-bottomed dishes coated with an appropriate 390 
ECM. To coat with ECM, we incubated dishes with 50 µg/mL in PBS of either collagen-IV 391 
(MDCK) or fibronectin (HUVEC, primary keratinocytes) for 30 min 37 °C before washing 3 times 392 
with DI water and air drying the dishes.  393 

In order to contain a variety of conditions within a single plate to ensure a broad training sample, 394 
we placed silicone microwells into the dishes as described in [36] at densities from [1-2x106 395 
cells/mL] which ultimately allowed for single cells, low density confluent monolayers, and high 396 
density confluent monolayers to be captured. Silicone microwells consisted of 3x3 arrays of 9 397 
mm2 microwells into which we added 4 µL of suspended cells in media, allowed them to adhere 398 
for 30 min in the incubator (6 hrs for keratinocytes), added media and returned them to the 399 
incubator overnight prior to imaging. To further ensure variability, several dishes were also 400 
randomly seeded with cells for each cell type.  401 

Fluorescent labeling for ground truth data 402 

We used the live nuclear dye NucBlue (ThermoFisher; a Hoechst 33342 derivative) with a 1 hr 403 
incubation for all nuclear labeling. We used SiR-Actin (Spirochrome) at 10 µM for live F-actin 404 
labeling in HUVECs. All other labels were genetically encoded reporters as described.  405 

Image Acquisition 406 

5X MDCK data was collected on a Zeiss (Observer Z1) inverted fluorescence microscope using 407 
a 5X/0.16 phase-contrast objective, an sCMOS camera (Photometrics Prime) and controlled 408 
using Slidebook (Intelligent Imaging Innovations, 3i). An automated XY stage, a DAPI filter set, 409 
and a metal halide lamp (xCite 120, EXFO) allowed for multipoint phase contrast and 410 
fluorescent imaging.  411 

All epifluorescence imaging was performed using a Nikon Ti2 automated microscope equipped 412 
with a 10X/0.3 phase objective, a 20X/0.75 DIC objective, and a Qi2 sCMOS camera (Nikon 413 
Instruments). Time-lapse imaging effectively increased dataset size as long as sufficient time 414 
was allowed between frames to avoid overfitting in the U-Net. MDCK data was collected at 20 415 
min/frame, while HUVEC and keratinocytes were given 60 min/frame. Standard DAPI, CY5, and 416 
YFP filters sets were used. Confocal sections of E-cadherin fluorescence in MDCK cells (Fig. 3) 417 
were collected using a Leica SP8 scanning confocal tuned for dsRed excitation/emission.  418 
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All imaging was performed at 37 °C with 5% CO2 and humidity control. Exposures varied, but 419 
were tuned to balance histogram performance with phototoxic risk. Data with any visible sign of 420 
phototoxicity (blebbing, apoptosis, abnormal dynamics) were excluded entirely from training.   421 

Data Pre-Processing and Training 422 

Prior to input to the network, raw images were segmented into 256x256 pixel2 sub-images, 423 
ensuring consistent slicing across the transmitted-light image and the corresponding fluorescent 424 
image. The images were then normalized by statistics collected across all images in each 425 
channel: that is, by subtracting from each image the mean and dividing by the standard 426 
deviation. A test-train split was applied, such that a random 20% of the total images were held 427 
out to comprise the test set. Additionally, 10% of the training data subset were held out for 428 
validation as is standard.  429 

 The U-Net style architecture shown in Figure 1 was trained using TensorFlow37 and the 430 
ADADELTA optimizer38. In the standard training experiments, the mean squared error (MSE) 431 
loss function was applied across pixel intensity values in the predicted images compared to 432 
intensity values in the ground truth images. Results from the MSE were contrasted with results 433 
from two networks trained to maximize the Pearson’s correlation coefficient (PCC). The PCC is 434 
commonly used in cell biology for evaluating the colocalization of two fluorescently labeled 435 
structures39. The PCC loss function was defined, for two intensity data sets 𝑅 and 𝐺, as: 436 

𝑃𝐶𝐶 =  
∑ (𝑅𝑖 − �̅�) × (𝐺𝑖 − �̅�)𝑖  

√∑ (𝑅𝑖 − �̅�)2
𝑖 × ∑ (𝐺𝑖 − �̅�)2

𝑖

 437 

𝐿𝑜𝑠𝑠 =  
(1 − 𝑃𝐶𝐶)

2
 438 

Sample training loss plots are provided (Fig. S4), reflecting the use of early stopping during 439 
training. That is, when the validation loss did not decrease for 75 epochs, the training process 440 
terminated. The training and test set sizes and results are provided for all experimental 441 
conditions in Table S1. 442 

 For several of the experimental conditions, networks were trained using subsets of the 443 
original dataset. To do so, the network architecture was fixed, and networks were trained from 444 
scratch by using a random subset of matched input-output image pairs from the original training 445 
set. The training setup, including hyperparameters, was unmodified regardless of training set 446 
size. The original test set was used to compare results for all training set size tests relative to 447 
each experimental condition.  448 

Data Testing and Image Processing 449 

The Pearson’s correlation coefficient (PCC) of each test set is determined by individually 450 
computing the PCC between each predicted image, as output by the network, and its 451 
corresponding ground truth image. Additionally, an accuracy score (P) based on the PCC was 452 
devised to more reliably represent the performance of the network. To determine P, we report 453 
the PCC on a subset of the test set which selects for only those test images containing positive 454 
examples of features (nuclei, junctions, etc.). We construct this subset by manually determining 455 
threshold values to distinguish image intensities indicating the presence of the relevant features 456 
versus background noise for each test set. That is, the histograms of a subset of the data 457 
containing positive examples of features are plotted, and an approximate lower bound on 458 
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intensity values is estimated to distinguish the features from the background. Then, the 459 
histograms of a subset of the data containing only background are plotted to ensure that the 460 
threshold value is adequate to label the images as background-only images. The MatLab 461 
function rmoutliers() was utilized to remove outliers when P is reported for each condition.  462 

For the low-magnification experimental conditions, a nuclear area comparison was 463 
performed between corresponding ground-truth and predicted images. Initially, both pairs of 464 
output nuclear images were segmented independently using standard auto-thresholding, 465 
watershedding, and size exclusion (to exclude clusters) in ImageJ/FIJI, and then outliers were 466 
removed using the MatLab function rmoutliers(). We additionally report the centroid-centroid 467 
displacement values for the same segmented images. The ImageJ/FIJI plugin TrackMate was 468 
used to determine displacements between the ground truth and predicted images, as if they 469 
were two frames of a video. Standard TrackMate settings were used and outliers were removed 470 
using the MatLab function rmoutliers() for reporting.  471 

When intensity plots for line slices are reported, a line is selected as an ROI in 472 
ImageJ/FIJI, and intensity values are exported for analysis.  473 
 New large transmitted-light images were processed using a sliding-window technique. 474 

We processed a large image by analyzing 256x256 pixel^2 patches of the input image with a 475 

stride of 64 pixels in each direction. Additionally, the border of each predicted patch was 476 

excluded in the sliding-window process, as features near the patch borders are likely to have 477 

lower accuracy (often as a function of cells being cut off). The sliding-window predictions at 478 

each pixel were then averaged to produce the final large predicted image. Timelapse movies 479 

can be processed on a frame-by-frame basis. If scaling was required as described in Fig. 3, the 480 

input was scaled in FIJI and then passed to the network for analysis.  481 

Code and Dataset Availability 482 

All code used for pre-processing data, training the network, testing a trained model, and 483 
applying the model to new images, along with an extensive user manual and pre-trained weight 484 
files can be found at:  485 

https://github.com/CohenLabPrinceton/Fluorescence-Reconstruction . 486 

Additionally, our complete testing datasets, along with corresponding reconstructed images, are 487 
available through our Zenodo repository, which can be found at:  488 

http://doi.org/10.5281/zenodo.3783678 . 489 
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Supplementary Materials 493 

 494 

Magnification Cell type Feature 

Training 
Set Size 
(sub-
images) 

Test 
Set 
Size 

Modified 
P: 
Reduced 
Test Set 
Size 

PCC 
Mean 

PCC 
St.Dev 

Modifed 
P Mean 

Modified 
P St.Dev 

5x MDCK Nuclei 22835 5709 4443 0.72529 0.35884 0.90322 0.07801 

10x Keratinocyte Nuclei 26214 6554 4156 0.57717 0.43833 0.9014 0.093155 

20x MDCK Nuclei 40000 10000 4556 0.43844 0.43333 0.90327 0.05724 

20X  
E-
cadherin 40000 10000 4539 0.37466 0.34172 0.73053 0.091688 

20X HUVEC Nuclei 30720 7680 5533 0.68936 0.40728 0.93776 0.060886 

20X  
VE-
cadherin 30720 7680 5666 0.60824 0.30398 0.77737 0.074176 

20X  F-actin 30720 7680 5820 0.51247 0.30438 0.66808 0.14057 

 495 

Table S1. Accuracy and training statistics for all experimental conditions.  496 

 497 

 498 

Figure S1. A comparison of experimental results in Pearson’s Correlation Coefficient (PCC), 499 

versus a modified accuracy score P (see Methods). To ensure a fairer comparison, outliers 500 

were not removed; only intensity thresholding was performed to produce the modified P from 501 

the PCC. By filtering the PCC results by an intensity threshold in the fluorescent images, we 502 

remove low-scoring background images, which bias our accuracy score on the complete 503 

dataset. Visual inspection of the plot reveals the low-scoring images as “bumps” near 0.0. 504 

 505 

 506 

 507 

 508 
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 509 
 510 

 511 

Figure S2. Representative accuracy results for a dataset trained on the standard (1-stack) U-512 
Net, compared to a network comprised of two U-Nets stacked back-to-back, with residual 513 
connections (2-stack). Training conditions were otherwise unchanged. Accuracy scores, as 514 
reported in terms of the modified P (see Methods) were comparable. 515 

 516 

 517 

 518 

Figure S3. Representative accuracy results for networks trained using the Mean-Squared Error 519 
loss function (MSE) compared to the Pearson’s Correlation Coefficient loss function (PCC). The 520 
neural network architecture and training conditions are the same, with the exception of the 521 
choice of loss function. Accuracy scores, as reported in terms of the modified P (see Methods) 522 
were comparable. 523 

 524 
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 526 

 527 
 528 

Figure S4. Representative loss functions from the standard U-Net training process. Early 529 

stopping was enabled, so that if the validation loss did not decrease within a set number of 530 

epochs, the training process terminated.  531 

 532 

 533 

 534 

 535 

 536 

 537 

Movie captions on the following page 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 
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Supplementary Movie Captions: 547 

Movie S1. Fluorescence reconstruction microscopy (FRM) on timelapse data. 548 

A phase-contrast timelapse of MDCK cells, imaged at 5x magnification, is shown at left. The 549 

center panel displays nuclear predictions produced by the trained U-Net, given individual frames 550 

from the phase-contrast timelapse as input. The overlay of the phase-contrast movie and the 551 

nuclear predictions is shown at right. Each panel is 0.31 cm x 0.31 cm, and time between 552 

frames is 20 minutes. Video compressed for supplement, but raw data available on request. 553 

Movie S2. FRM for high-content screening. 554 

A DIC timelapse movie of MDCK cells, imaged at 20x magnification, is shown at left (top and 555 

bottom). The top row displays E-cadherin junctions, while the bottom row displays nuclei. 556 

Moving left from right, the second-from-left images are ground truth (actual) fluorescent images 557 

of the junctions/nuclei in green, followed by the FRM predictions in red, and finally the merge of 558 

the ground truth and predicted images. Predictions are produced by processing the DIC input on 559 

the left through a neural network trained on a dataset of matched DIC and fluorescence image 560 

pairs. Panel width is approximately 500 µm, and time between frames is 20 minutes. 561 

Movies S3-5. FRM for fine structures.  562 

A DIC timelapse movie of HUVEC cells, imaged at 20x magnification, is shown at left. Movie S3 563 

shows VE-cadherin, Movie S4 shows Nuclei, and Movie S5 shows F-actin. All movies present 564 

DIC/Ground Truth/Prediction/Merge from left to right. Individual panel width is 890 µm, with 20 565 

minutes per movie frame. 566 

Movie S6. Mitotic division prediction. 567 

A neural network is able to capture rare events, such as cell divisions, when trained on a 568 

sufficiently large and varied dataset. Left panel: a fluorescent timelapse of stained HUVEC 569 

nuclei, imaged at 20x magnification. Center panel: the U-Net predictions from DIC images of the 570 

same spatial region. Right panel: an overlay of the left and center panels for comparison. Time 571 

between frames is 20 minutes.  572 
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