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WORD COUNT OF TEXT: 3631 (excluding Materials and Methods) 46 

ABSTRACT 47 

The prevailing paradigm in obstetrics has been the sterile womb hypothesis. However, some are 48 

asserting that the placenta, intra-amniotic environment, and fetus harbor microbial communities. 49 

The objective of this study was to determine if the fetal and placental tissues of rhesus macaques 50 

harbor viable bacterial communities. Fetal, placental, and uterine wall samples were obtained 51 

from cesarean deliveries without labor (~130/166 days gestation). The presence of viable 52 

bacteria in the fetal intestine and placenta was investigated through culture. The bacterial burden 53 

and profile of the placenta, umbilical cord, and fetal brain, heart, liver, and colon were 54 

determined through quantitative real-time PCR and DNA sequencing. These data were compared 55 

with those of the uterine wall, as well as to negative and positive technical controls. Bacterial 56 

cultures of fetal and placental tissues yielded only a single colony of Cutibacterium acnes. This 57 

bacterium was detected at a low relative abundance (0.02%) in the 16S rRNA gene profile of the 58 

villous tree sample from which it was cultured, yet it was also identified in 12/29 background 59 

technical controls. The bacterial burden and profile of fetal and placental tissues did not exceed 60 

or differ from those of background technical controls. In contrast, the bacterial burden and 61 

profiles of positive controls exceeded and differed from those of background controls. Among 62 

the macaque samples, distinct microbial signals were limited to the uterine wall. Therefore, using 63 

multiple modes of microbiologic inquiry, there was not consistent evidence of viable bacterial 64 

communities in the fetal and placental tissues of rhesus macaques. 65 

 66 
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IMPORTANCE 68 

Microbial invasion of the amniotic cavity (i.e. intra-amniotic infection) has been causally linked 69 

to pregnancy complications, especially preterm birth. Therefore, if the placenta and the fetus are 70 

typically populated by low biomass yet viable microbial communities, current understanding of 71 

the role of microbes in reproduction and pregnancy outcomes will need to be fundamentally 72 

reconsidered. Could these communities be of benefit by competitively excluding potential 73 

pathogens or priming the fetal immune system for the microbial bombardment it will experience 74 

upon delivery? If so, what properties (e.g. microbial load, community membership) of these 75 

microbial communities preclude versus promote intra-amniotic infection? Given the 76 

ramifications of the in utero colonization hypothesis, critical evaluation is required. In this study, 77 

using multiple modes of microbiologic inquiry (i.e. culture, qPCR, DNA sequencing) and 78 

controlling for potential background DNA contamination, we did not find consistent evidence for 79 

microbial communities in the placenta and fetal tissues of rhesus macaques. 80 

 81 

Key words 82 

Microbiome, low microbial biomass, pregnancy, in utero colonization, non-human primate 83 

model 84 
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INTRODUCTION  87 

The development and widespread use of DNA sequencing technologies to characterize 88 

host-associated microbial communities has increasingly led researchers to question the sterility 89 

of body sites and fluids previously presumed to be free of resident microorganisms. For example, 90 

researchers have recently proposed the existence of microbiota in the human blood (1-8), bladder 91 

(9-16), uterus (17-30), placenta (31-45), and fetus (36, 44-46). This has led to discussion in the 92 

literature on the caveats associated with studies of the microbiota of very low microbial biomass, 93 

or potentially sterile, body sites (47-54). In particular, there has been much debate over the 94 

existence of a placental microbiota (31-45, 50, 55-69) and of in utero microbial colonization of 95 

the human fetus (36, 44-46, 64, 70-72).  96 

The primary focus of the debate is that most of the studies proposing the existence of 97 

placental and fetal microbiota in humans have relied heavily, if not exclusively, on DNA 98 

sequencing techniques (31-35, 37-42, 45), and the bacterial signals in these studies may be 99 

background DNA contaminants from extraction kits, PCR and sequencing reagents, and general 100 

laboratory environments (50, 55, 57, 59, 62). Furthermore, even if the bacterial DNA sequence 101 

data are derived from placental and fetal tissues and not from background contamination, this 102 

does not necessarily indicate that there are viable bacterial communities in the placenta or the 103 

fetus. Specifically, the bacterial DNA sequence data may reflect bacterial products and 104 

components rather than resident microbiota (73-77). 105 

As a consequence, we and others (50, 62) have suggested criteria for establishing the 106 

existence of placental and fetal microbiota. First, viability of the resident bacteria should be 107 

established through culture or metatranscriptomic data from bacterial-specific genes within 108 

placental and fetal tissues. Second, the bacterial load of placental and fetal tissues, as 109 
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demonstrated through quantitative real-time PCR (qPCR), should exceed those of background 110 

technical controls. Third, the bacterial profiles of placental and fetal tissues should be distinct 111 

from those of the technical controls. Fourth, the resident bacteria should be visualized in the 112 

tissues through microscopy. Fifth, the taxonomic data of the detected bacteria should be 113 

ecologically plausible (50, 62). There have been many studies that may have met one or two of 114 

these criteria (31-46, 78-80), but no study has yet attempted to simultaneously meet all criteria 115 

and ultimately conclude that there is widespread colonization of the placenta and/or fetus by 116 

viable microbial communities (72). 117 

Although most of the research evaluating the existence of placental and fetal microbiota 118 

has been done with human subjects, animal models afford opportunities to surgically obtain 119 

placental and fetal tissues before the process of labor. Tissues collected after the process of labor 120 

could confound experimental results regarding in utero colonization due to potential microbial 121 

invasion of the amniotic cavity (81-83). Several studies using rat and mouse models have 122 

provided mixed evidence: while three studies detected placental and fetal microbiota through 123 

DNA sequencing techniques following cesarean delivery (44, 46, 75), two other studies did not 124 

(60, 84). In non-human primates, specifically rhesus and Japanese macaques, a unique placental 125 

and/or fetal microbiota has been consistently detected through DNA sequencing following 126 

cesarean delivery (85-89). However, these preliminary studies neither include culture or qPCR 127 

components nor display the sequence data from background technical controls. 128 

The objective of the current study was therefore to determine whether the fetal and 129 

placental tissues of rhesus macaques harbor bacterial communities using bacterial culture, qPCR, 130 

and 16S rRNA gene sequencing and by comparing the bacterial profiles of these tissues to those 131 

of background technical controls.  132 
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RESULTS 133 

Bacterial culture from fetal and placental samples 134 

All negative culture controls were negative (no bacterial growth over seven days) and all 135 

positive culture controls were positive (lawn of bacterial growth within 24 hours). The 96 total 136 

cultures of fetal and placental samples from the four rhesus macaques yielded only a single 137 

bacterial colony (Figure 1). This bacterium grew on an anaerobically incubated chocolate agar 138 

plate inoculated with the villous tree sample from Subject 1. A BLAST query of the 16S rRNA 139 

gene of this bacterium revealed that it was Cutibacterium acnes. Specifically, the 16S rRNA 140 

genes of this bacterium and American Type Culture Collection (ATCC) strain 6919 (Accession # 141 

NR_040847.1; Cutibacterium acnes Scholz and Kilian) were identical across 1,056 nucleotide 142 

bases. 143 

 It was next determined whether the 16S rRNA gene of this cultured bacterium was also 144 

present in the 16S rRNA gene profile of the villous tree sample from which it was recovered, as 145 

well as in the profiles of other fetal, placental, and uterine wall samples for Subject 1. The 16S 146 

rRNA gene profile of the villous tree swab sample from Subject 1 included 35,780 sequences 147 

and had a Good’s coverage value of 99.9% (i.e., the sample’s bacterial profile was thoroughly 148 

characterized). Seven of the 35,780 (0.02%) sequences from this sample were an exact match to 149 

the V4 region of the 16S rRNA gene of the cultured Cutibacterium. There was not an exact 150 

match to any of the 16S rRNA gene sequences in the bacterial profile of the villous tree and 151 

basal plate tissue (i.e. not a swab) sample for Subject 1, but this sample included only 78 152 

sequences (i.e., it was not well characterized). Exact matches to the cultured Cutibacterium’s 153 

16S rRNA gene were also identified in the bacterial profiles of the chorionic plate [chorionic 154 

plate tissue: 21/355 (5.9%) sequences; top of amnion swab: 1/87,899 (0.001%) sequences; 155 
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amnion-chorion interface swab: 14/350 (4.0%) sequences], the umbilical cord [24/13,700 156 

(0.18%) sequences], the fetal distal colon [286/106,663 (0.27%) sequences], and the fetal heart 157 

[163/11436 (1.4%) sequences] for Subject 1. Exact matches to the cultured Cutibacterium’s 16S 158 

rRNA gene were also identified in the bacterial profile of the decidua swab for Subject 1 159 

[22,619/76,987 (29.4%) sequences]. 160 

Lastly, it was determined whether the 16S rRNA gene of this cultured bacterium was 161 

present in the 16S rRNA gene profiles (prior to subsampling) of the background technical 162 

controls. Exact matches to the 16S rRNA gene of this cultured Cutibacterium were identified in 163 

5/14 (35.7%) sterile swab controls and 7/15 (46.7%) blank DNA extraction kit controls at 164 

average relative abundances of 0.46% (maximum 2.0%) and 4.55% (maximum 23.1%), 165 

respectively. Therefore, it is unclear if this Cutibacterium was present in fetal, placental, and 166 

uterine wall samples of Subject 1 or if it was a contaminant. 167 

 168 

Quantitative real-time PCR (qPCR) of fetal, placental, and uterine wall samples and 169 

controls 170 

The bacterial burden of fetal and placental tissues did not exceed that of background 171 

technical controls (Figure 2A,B). Among the swab samples, only the maternal myometrium had 172 

a higher bacterial load than sterile swabs (Mann-Whitney U test: U = 0, p = 0.005; Figure 2A). 173 

No fetal, placental, or uterine wall tissue samples consistently had higher bacterial loads than 174 

blank DNA extraction kits (Figure 2B). 175 

 176 

16S rRNA gene sequencing of fetal, placental, and uterine wall samples and controls 177 
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 Twelve of the 14 (85.7%) sterile swab controls and 10/15 (66.7%) blank DNA extraction 178 

kits yielded a 16S rRNA gene library with ≥ 500 quality-filtered sequences and a Good’s 179 

coverage ≥ 95%. Twenty-six of 28 (92.9%) fetal and placental swab samples and 22/28 (78.6%) 180 

fetal and placental tissue samples yielded 16S rRNA gene libraries meeting these criteria, as did 181 

all (10/10) uterine wall samples and all (3/3) human urine positive controls. These samples were 182 

included in 16S rRNA gene profile analyses. 183 

 With respect to alpha diversity, there were no swab or tissue sample types from rhesus 184 

macaques whose amplicon sequence variant (ASV) profiles had a richness (i.e. Chao1 index) or 185 

heterogeneity (i.e. Shannon and Simpson indices) that differed from those of their respective 186 

negative technical control. Human urine samples also did not have ASV profiles that differed in 187 

richness or heterogeneity from the sterile swab controls. 188 

 With respect to beta diversity, the overall ASV profiles of fetal and placental swab and 189 

tissue samples did not differ from those of their respective technical control (NPMANOVA 190 

using the Bray-Curtis similarity index; p ≥ 0.21; Figure 3). The ASV profiles of swabs of the 191 

myometrium (F = 1.739, p = 0.0094), but not the decidua (F = 0.9193, p = 0.64), differed from 192 

the profiles of sterile swabs (Figure 3A). Similarly, the ASV profiles of uterine wall biopsies 193 

differed from those of blank DNA extraction kits (F = 1.860, p = 0.0076; Figure 3B). The ASV 194 

profiles of human urine also differed from those of sterile swab controls (F = 1.834, p = 0.0058). 195 

The bacterial taxonomic data associated with the ASV profiles of the fetal, placental, and 196 

uterine wall samples and controls are illustrated in Figure 4. There were only two prominent (≥ 197 

5% relative abundance) ASVs among the fetal and placental swab and tissue samples: ASVs 001 198 

(Staphylococcus) and 002 (Pelomonas). These two ASVs were also prominent in the profiles of 199 

both the sterile swabs and the blank DNA extraction kits. ASV 001 was identified in the profiles 200 
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of 9/12 (75%) and 5/10 (50%) swab and extraction kit technical controls, respectively, while 201 

ASV 002 was identified in 5/12 (42%) sterile swab and 6/10 (60%) extraction kit profiles. ASV 202 

001, but not ASV 002, was identified as a contaminant among swab samples by the decontam 203 

program (Figure 4). Among tissue samples, neither ASV 001 or ASV 002 were identified as 204 

contaminants using decontam. 205 

 Aside from ASV 002, ASVs 003 (Acinetobacter), 007 (Ottowia), and 012 (uncl. 206 

Obscuribacterales) were prominent (≥ 5% relative abundance) among both uterine wall swab and 207 

tissue samples (Figure 4). None of these three ASVs were prominent among either sterile swab 208 

or extraction kit technical controls, but ASV 012 (uncl. Obscuribacterales) was identified as a 209 

contaminant by the decontam program among the swab samples. ASV 003 (Acinetobacter) was 210 

identified in 2/3 decidua swab, 3/3 myometrium swab, and 4/4 uterine wall biopsy samples, with 211 

an average relative abundance of 22.9%. Conversely, it was identified in only 1/12 sterile swab 212 

and 0/10 blank extraction kit controls. ASV 007 (Ottowia) was identified in 1/3 decidua swab, 213 

2/3 myometrium swab, and 3/4 uterine wall biopsy samples, with an average relative abundance 214 

of 10.5%. This ASV was not identified in any sterile swab or blank extraction kit control. 215 

Human urine samples were sequenced alongside the rhesus macaque swab samples to 216 

serve as low microbial biomass positive controls. The prominent (≥ 5% relative abundance) 217 

ASVs among the urine samples were 004 (Lactobacillus), 013 (Lactobacillus), and 030 218 

(Gardnerella). These three ASVs were not identified in the profiles of any of the sterile swabs.  219 
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DISCUSSION 220 

Principal findings of the study 221 

First, recovery of bacterial cultures from the fetal and placental tissues of rhesus 222 

macaques was very rare. The 96 cultures performed yielded only a single colony of 223 

Cutibacterium (Propionibacterium) acnes. Second, the bacterial burden of fetal and placental 224 

samples did not exceed that of background technical controls. Third, the bacterial profiles of fetal 225 

and placental samples did not differ from those of background technical controls. Fourth, among 226 

the intrauterine sites of the rhesus macaque investigated here, only the uterine wall exhibited a 227 

distinct microbial signature. 228 

 229 

Prior reports of fetal and placental microbiota in non-human primates 230 

There have been five preliminary studies (85-89) of fetal (130-139 days gestation) and/or 231 

placental microbiota in rhesus and Japanese macaques and the collective conclusion was that the 232 

intrauterine environment, the fetus, and the placenta were colonized by bacterial communities. In 233 

the first three studies, rhesus or Japanese macaque dams received control or high fat diets. In the 234 

first study (85), the bacterial profiles of the fetal colon and oral cavity of rhesus macaques were 235 

compared to those of the placenta and the maternal anal, vaginal, and oral cavity using 16S 236 

rRNA gene sequencing. The bacterial profiles of fetal samples were similar to those of the 237 

placenta but distinct from those of maternal samples. The bacteria reportedly inhabiting the fetus 238 

(i.e. Acinetobacter, Propionibacterium, Streptococcus, Staphylococcus, and Bacteroides) 239 

appeared to be derived from the placental microbiota (85). In the second study (86), the bacterial 240 

profiles of the fetal colon and oral cavity of Japanese macaques were compared between dams 241 

receiving control and high-fat diets using 16S rRNA gene sequencing. The fetal bacterial profiles 242 
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differed between the two treatment groups and the bacterial profiles of the offspring of dams 243 

receiving a high-fat diet exhibited a higher relative abundance of Pasteurellaceae than did the 244 

profiles of offspring from control dams. In the third study (87), the bacterial profiles of the fetal 245 

colon of Japanese macaques were compared with those of the developing infant colon at six and 246 

10 months of age using 16S rRNA gene and shotgun metagenomic sequencing. Predominant 247 

members of the infant gut microbiota were often identified in the bacterial profiles of the fetal 248 

colon. 249 

In the fourth and fifth studies, rhesus macaque dams received intra-amniotic injections of 250 

saline, lipopolysaccharide, interleukin 1 β, or Ureaplasma parvum to serve as a primate model of 251 

inflammatory preterm birth. In the fourth study (88), the intra-amniotic injection of inflammatory 252 

inducers (i.e. lipopolysaccharide, interleukin 1 β, or Ureaplasma parvum) altered the bacterial 253 

profiles of the placenta. In the fifth study (89), the intra-amniotic injection of inflammatory 254 

inducers again altered the bacterial profiles of the placenta; the bacterial profiles of placentas 255 

from control subjects exhibited a higher alpha diversity than those from subjects receiving 256 

inflammatory inducers. Relatively abundant taxa within the placental bacterial profiles of control 257 

subjects included Acinetobacter, Agrobacterium, Bacteroides, Blautia, Cloacibacterium, 258 

Faecalibacterium, Haemophilus, Lactobacillus, Oscillospira, Porphyromonas, Prevotella, and 259 

Streptococcus. 260 

 These five preliminary studies (85-89) provided initial investigations into the existence of 261 

fetal and/or placental microbiota in non-human primates. However, these preliminary studies did 262 

not include culture or qPCR components and, although DNA extraction and sequencing controls 263 

were mentioned in descriptions of the study design, the data from these controls were not 264 

presented or incorporated into the analyses of the bacterial profiles of fetal and placental 265 
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samples. Therefore, it is unknown if the reported bacterial signals were distinct from or greater 266 

than those present in background technical controls. Even if the bacterial signals from fetal and 267 

placental samples were distinct from those in controls, it is still unknown if they are derived from 268 

viable microbiota inhabiting the fetal and placental compartments of macaques. 269 

 270 

The findings of this study in the context of prior reports 271 

The current study includes culture and qPCR components and incorporates data from 272 

background technical controls into the analysis and evaluation of the existence of fetal, placental 273 

and uterine wall microbiota.  274 

The collective bacterial cultures in this study yielded only a single isolate; one colony of 275 

Cutibacterium (Propionibacterium) acnes was obtained from a villous tree sample. The 16S 276 

rRNA gene of this bacterium was identified in the molecular surveys of this villous tree sample, 277 

as well as in the molecular surveys of the chorionic plate, umbilical cord, fetal colon and fetal 278 

heart samples from this subject. The relative abundance of this bacterium in the 16S rRNA gene 279 

profile of the villous tree sample was very low (0.02%), but its relative abundance in the swab of 280 

the maternal decidua sample from this subject was 29.4%. Given that this bacterium was cultured 281 

from the villous tree, was identified in molecular surveys of the villous tree sample and other 282 

placental and fetal samples from this subject, and was further detected at high relative 283 

abundances in a maternal decidua sample for this subject, it is reasonable to consider whether 284 

this isolate represents a viable bacterium that was transmitted from the mother to the fetus 285 

through the placenta. Cutibacterium (Propionibacterium) acnes has also been cultured from the 286 

human placenta and intra-amniotic environment. For instance, in a recent study concluding there 287 

exists distinct microbial communities in the human placenta and amniotic fluid in normal term 288 
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pregnancies (36), 17/24 (70.8%) bacterial isolates obtained from placental tissues and amniotic 289 

fluids were Propionibacterium spp. and 5/24 (20.8%) were specifically Cutibacterium 290 

(Propionibacterium) acnes. However, in the current study, the 16S rRNA gene of the cultured 291 

Cutibacterium (Propionibacterium) acnes was identified in the molecular surveys of 12/29 292 

(41.4%) background technical controls and in the bacterial profile of one blank DNA extraction 293 

kit this 16S rRNA gene variant constituted 23.1% of the sequences. Furthermore, Cutibacterium 294 

(Propionibacterium) acnes is a typical member of the human skin microbiota (90). Therefore, it 295 

is also reasonable to consider whether this isolate and molecular signals of 296 

Cutibacterium/Propionibacterium may simply represent microbial contamination from study 297 

personnel. 298 

In the current study, qPCR revealed that the quantities of 16S rRNA gene copies in the 299 

placenta (i.e. basal plate, villous tree, and the subchorion, amnion-chorion interface, and amnion 300 

of the chorionic plate), umbilical cord, and fetal organs (i.e. brain, heart, liver, colon) of rhesus 301 

macaques did not exceed those in background technical controls (i.e. sterile swabs and DNA 302 

extraction kits). These results are consistent with those of prior studies showing that the 303 

quantities of 16S rRNA gene copies in the human placenta are indistinguishable from those of 304 

background technical controls (55, 57, 62). 305 

In this study, there were no fetal or placental sites whose 16S rRNA gene profiles 306 

differed from those of background technical controls. Among the fetal and placental samples 307 

there were only two prominent (i.e. ≥ 5% average relative abundance) ASVs – they were 308 

classified as Staphylococcus and Pelomonas. Staphylococcus is a genus of bacteria commonly 309 

associated with mammalian skin and mucosal surfaces (91). It was detected in a preliminary 310 

molecular survey of the fetus and placenta of the Japanese macaque (85) and it has also been 311 
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reported in numerous DNA sequence-based investigations of the human placenta (31-38, 41-43). 312 

However, Staphylococcus has also been identified as a background DNA contaminant in 313 

sequence-based studies (48), including in several prior studies of the human placenta (39, 57, 314 

62). In the current study, the prominent ASV classified as Staphylococcus was also prominent 315 

and widespread among the background technical control samples, suggesting that it was a 316 

background DNA contaminant in this study as well. 317 

Pelomonas is a genus of bacteria previously isolated from mud, industrial water, and 318 

hemodialysis water (92, 93). Pelomonas was not reported in prior preliminary molecular surveys 319 

of the fetal and placental tissues of macaques (85, 89), and it has only been reported in a single 320 

study as being a component of the human placental microbiota (41). Yet, Pelomonas has been 321 

identified as a background DNA contaminant in sequence-based studies (47, 48, 94), including in 322 

prior studies of the human placenta (57, 59, 62). As with Staphylococcus, in the current study, 323 

the prominent ASV classified as Pelomonas was also prominent and widespread among the 324 

background technical control samples, suggesting that it was a background DNA contaminant. 325 

 The only rhesus macaque samples with bacterial profiles distinct from those of 326 

background technical controls were the myometrial swabs and the uterine wall biopsies. These 327 

sample types also had the highest bacterial load, as assessed through qPCR. There were four 328 

ASVs that were prominent (i.e. ≥ 5% average relative abundance) among all uterine wall 329 

samples – they were classified as Acinetobacter, Ottowia, Pelomonas, and a member of the order 330 

Obscuribacterales. As discussed above, the ASV classified as Pelomonas is likely a DNA 331 

contaminant. Also, the program decontam identified the ASV classified as Obscuribacterales as 332 

another likely DNA contaminant. The data from Acinetobacter and Ottowia are more 333 

compelling. The primary ASV classified as Acinetobacter was detected in 9/10 (90%) uterine 334 
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wall samples at an average relative abundance of 22.9%. In contrast, it was detected in only 1/22 335 

(4.5%) background technical controls. Acinetobacter has been reported in prior sequence-based 336 

investigations of the human endometrium (20, 23, 24, 29, 30), and it has been cultured from the 337 

human endometrium as well (95). The primary ASV classified as Ottawia was detected in 6/10 338 

(60%) uterine wall samples at an average relative abundance of 10.5%. It was not detected in any 339 

background technical controls. Ottowia is a genus of bacteria that has been isolated from 340 

industrial and municipal wastewater (96-99), sikhye (100), tofu residue (101), and fish intestines 341 

(102); it has not been identified in investigations of the human uterus. Nevertheless, Ottowia is a 342 

member of the family Comamonadaceae, and Chen et al (23) and Winters et al (30) reported that 343 

Comamonadaceae was among the most relatively abundant bacterial taxa in the human 344 

endometrium. Whether the molecular signals of Acinetobacter and Ottowia in the uterine wall in 345 

the current study represent a viable and residential uterine microbiota in rhesus macaques is 346 

unknown. However, the existence of uterine microbiota in non-human primates and the potential 347 

ramifications for female reproductive health warrant further investigation. 348 

 349 

Strengths of this study 350 

First, this study included multiple modes of microbiologic inquiry, including bacterial 351 

culture, 16S rRNA gene qPCR, and 16S rRNA gene sequencing, to determine if the fetal, 352 

placental, and uterine wall tissues of rhesus macaques harbor bacterial communities. Second, 353 

placenta, fetal intestine, and uterine wall tissues were sampled both directly and through the use 354 

of swabs to enable verification of molecular microbiology results across sampling methods. 355 

Third, this study included low microbial biomass samples (i.e. human urine) to serve as technical 356 

positive controls for 16S rRNA gene qPCR and sequencing analyses. Fourth, controls for 357 
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potential background DNA contamination were incorporated into 16S rRNA gene qPCR and 358 

sequencing analyses. 359 

 360 

Limitations of this study 361 

First, given that the study was conducted on a non-human primate, the sample size was 362 

understandably low. Second, this study did not include fluorescent in situ hybridization or 363 

scanning electron microscopy to visualize potential microbial communities in the fetal, placental, 364 

and uterine wall tissues of rhesus macaques. Third, this study focused exclusively on evaluating 365 

the existence of bacterial communities in the fetal and placental tissues of rhesus macaques. The 366 

existence of eukaryotic microbial communities and viruses in these tissues was not considered. 367 

 368 

Conclusions 369 

Using bacterial culture, 16S rRNA gene qPCR, and 16S rRNA gene sequencing, there 370 

was not consistent evidence of bacterial communities inhabiting the fetal and placental tissues of 371 

rhesus macaques. This study provides further evidence against the in utero colonization 372 

hypothesis and the existence of a placental microbiota. If there are intrauterine bacterial 373 

communities, they are limited to the uterine wall. 374 
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MATERIALS AND METHODS 381 

Study subjects and sample collection 382 

This was a cross-sectional study of four rhesus macaque dams undergoing cesarean 383 

delivery of a ~130-day (129-132) gestational age fetus without labor. These dams were among 384 

the saline control subjects of a broader study at the California National Primate Research Center 385 

within the University of California Davis, with approved procedures and protocols through 386 

IACUC #20330 in 2018. Upon delivery of the fetus, a uterine wall biopsy and Dacron swabs 387 

(Medical Packaging Corp., Camarillo, CA) of the uterine wall decidua and the myometrium were 388 

collected (these uterine wall swabs were not collected from subject 3). Dams did not receive 389 

antibiotics, including intraoperative prophylaxis, prior to sampling.  390 

The placenta and umbilical cord were placed in an autoclave-sterilized container and 391 

covered. Rhesus macaque fetuses were euthanized with pentobarbital (100 mg/kg) prior to 392 

necropsy. The fetal liver, heart, and brain were snap frozen in sterile 50 ml conical tubes. The 393 

fetal colon was also placed in a sterile 50 ml conical tube and it, along with the placenta and 394 

umbilical cord, were immediately transported to a biological safety cabinet in a nearby 395 

laboratory within the National Primate Research Center for further processing.  396 

Study personnel donned sterile surgical gowns, masks, full hoods, and powder-free exam 397 

gloves during sample processing. Sterile disposable scissors and forceps were used throughout, 398 

and new scissors and forceps were used for each organ and each specific organ site that was 399 

sampled. Dacron swabs and ESwabs (BD Diagnostics, MD) were collected for molecular 400 

microbiology and bacterial culture, respectively.  401 

For the placenta, samples were collected midway between the longest distance from the 402 

cord insertion point to the edge of the placental disc. Dacron swabs were collected from three 403 
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sites of the chorionic plate (top of the amnion, amnion-chorion interface, and subchorion) and 404 

from the villous tree and basal plate. Eswabs were collected from two sites on the chorionic plate 405 

(amnion-chorion interface and subchorion) and from the villous tree. From a separate section of 406 

the placental disc, distant from the area where swabs were taken, a full-thickness (i.e. chorionic 407 

plate through to basal plate) portion (~1 cm
2
) of the placenta was collected. A cross-section of 408 

the umbilical cord was also collected. The fetal colon was sectioned into proximal, central, and 409 

distal portions. The proximal and distal portions of the colon were sliced open lengthwise and the 410 

luminal contents and mucosal lining were swabbed with Dacron swabs and ESwabs. Dacron 411 

swabs and tissues were frozen at -80°C. ESwabs were processed for culture. 412 

 413 

Bacterial culture 414 

Within three hours of fetal delivery, ESwab samples for bacterial culture were processed 415 

in a biological safety cabinet by study personnel wearing a sterile surgical gown, mask, full 416 

hood, and powder-free exam gloves. Specifically, ESwab buffer solutions were added to SP4 417 

broth with urea (Hardy Diagnostics, Santa Maria, CA) and were plated on blood agar (trypticase 418 

soy agar with 5% sheep blood) and chocolate agar. Samples of the chorionic plate (amnion-419 

chorion interface and the subchorion), villous tree, and fetal distal colon were inoculated on each 420 

culture medium. ESwab samples of the fetal proximal colon were inoculated on blood and 421 

chocolate agar, but not SP4 broth. Blood and chocolate agar plates were incubated under aerobic 422 

(5% CO2) and anaerobic (BD GasPak EZ anaerobic pouch; Franklin Lakes, NJ) atmospheres at 423 

37°C for seven days. SP4 broth was only incubated under aerobic conditions. Negative and 424 

positive (blood and chocolate agar inoculated with a human buccal ESwab) culture media 425 

controls were incubated alongside the rhesus macaque samples for seven days.  426 
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 427 

Taxonomic identification of individual bacterial isolates 428 

Bacterial isolates (i.e. colonies) recovered from rhesus ESwab samples were 429 

taxonomically identified based upon their 16S rRNA gene sequence identity. The 16S rRNA 430 

gene of each bacterial isolate was amplified using the 27F/1492R primer set (5’-431 

AGAGTTTGATCMTGGCTCAG-3’/5’- TACCTTGTTACGACTT-3’) and then bi-directionally 432 

Sanger sequenced by GENEWIZ (South Plainfield, NJ) using the 515F/806R primer set (5’-433 

GTGYCAGCMGCCGCGGTAA-3’/5’-GGACTACNVGGGTWTCTAAT-3’), which targets the 434 

V4 hypervariable region of the 16S rRNA gene. Forward and reverse reads were trimmed using 435 

DNA Baser software (http://www.dnabaser.com/) with default settings, and assembled using the 436 

CAP (contig assembly program) of BioEdit software (v7.0.5.3; Carlsbad, CA), also with default 437 

settings. The taxonomic identities of individual bacterial isolates were determined using the 438 

Basic Local Alignment Search Tool (BLAST) (103) with a percent nucleotide identity cutoff of 439 

100%. 440 

 441 

DNA extraction from swab and tissue samples 442 

 All Dacron swab and tissue samples were stored at -80° C until genomic DNA 443 

extractions were performed. These extractions were performed in a biological safety cabinet by 444 

study personnel wearing sterile surgical gowns, masks, full hoods, and powder-free exam gloves. 445 

DNA was extracted from swab and tissue samples separately, and the order of extractions was 446 

randomized within each sample type (i.e. swabs and tissues).  447 

For DNA extraction from Dacron swabs, a DNeasy PowerLyzer PowerSoil kit (Qiagen, 448 

Germantwon, MD) was used with minor modifications to the manufacturer’s protocol. 449 
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Specifically, after UV sterilizing all kit reagents (excluding the spin column), 500 μl of bead 450 

solution, 200 μl of phenol:chloroform:isoamyl alcohol (pH 7–8), and a swab were added to the 451 

supplied bead tube. The tube was inverted and, after a 10-minute incubation at room 452 

temperature, the tube was vortexed and centrifuged, and the swab was removed. Sixty μl of 453 

Solution C1 were added to the tube prior to bead beating two times at 30 seconds. The remainder 454 

of the DNA extraction process was as previously published (84). 455 

For DNA extraction from tissues, a Qiagen PowerSoil DNA Isolation kit was used. 456 

Minor modifications from the manufacturer’s protocol were that all kit reagents (excluding the 457 

spin column) were UV-sterilized, cells within samples were lysed by mechanical disruption three 458 

times for 30 seconds using a bead beater, and DNA was eluted from the spin column using 60 μl 459 

of C6 solution. For these extractions, 0.140 – 0.200 grams of tissue were used. For fetal heart and 460 

liver samples, longitudinal sections were taken from the middle of specimens. For umbilical cord 461 

samples, transverse sections were taken. Purified DNA was stored at -20° C. 462 

 463 

16S rRNA gene quantitative real-time PCR (qPCR) 464 

Preliminary inhibition test 465 

 A preliminary test was performed to determine whether DNA amplification inhibition 466 

existed among the different sample types (tissues and swabs by body site). Purified DNA from 467 

each sample was first quantified using a Qubit 3.0 fluorometer with a Qubit dsDNA Assay kit 468 

(Life Technologies, Carlsbad, CA). For the inhibition test, 2.0 μl of purified Escherichia coli 469 

ATCC 25922 (GenBank accession: CP009072) genomic DNA containing seven 16S rDNA 470 

copies per genome was spiked into 4.0 μl of purified DNA from samples (normalized to 80 ng/μl 471 

genomic DNA when possible), which had been serially diluted with Qiagen Solution C6 by a 472 
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factor of 1:3. Two μl of each spiked sample were then used as a template for qPCR. All reactions 473 

in each qPCR run were spiked with an equal amount of DNA (either 3.28 x 10
3
 or 5.92 x 10

3
 16S 474 

rRNA gene copies). 475 

 Total bacterial DNA abundance within spiked samples was measured via amplification of 476 

the V1 - V2 region of the 16S rRNA gene according to the protocol of Dickson et al (104), with 477 

previously published minor modifications (84). Raw amplification data were normalized to the 478 

ROX passive reference dye and analyzed using the Thermo Fisher Cloud and Standard Curve 479 

(SR) 3.3.0-SR2-build15 with automatic threshold and baseline settings. Cycle of quantification 480 

(Cq) values were calculated for samples based on the mean number of cycles required for 481 

normalized fluorescence to exponentially increase.  482 

The inhibition test indicated a low level of inhibition for most rhesus macaque tissue and 483 

swab DNA sample types. Therefore, all tissue, swab, blank technical control, and positive 484 

control DNA template samples were diluted with Qiagen Solution C6 by a factor of 1:4.5 prior to 485 

qPCR. The positive controls were six human urine samples: three urine samples (genomic DNA 486 

from 10 ml urine) were run alongside the rhesus tissue samples, and three different urine samples 487 

(genomic DNA from 1 ml urine) were run alongside the rhesus swab samples. The collection of 488 

urine samples and their use for research was approved by the Human Investigation Committee of 489 

Wayne State University and the Institutional Review Board of the Eunice Kennedy Shriver 490 

National Institute of Child Health and Human Development. All subjects provided written 491 

informed consent for participation.  492 

 493 

qPCR data generation 494 
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 Total bacterial DNA abundance within rhesus macaque samples was measured by qPCR 495 

as described above for the inhibition test, with each sample being tested individually across 496 

triplicate runs. To estimate qPCR efficiency based on the slope of a standard curve and to 497 

determine the concentration of 16S rRNA gene copies in samples, a standard curve containing 498 

seven 10-fold serial dilutions (three replicates each) ranging from either 9.52 x 10
6
 to 10.0 16S 499 

rRNA gene copies (tissue samples) or 9.97 x 10
6
 to 10.0 16S rRNA gene copies (swab samples) 500 

was included in each run. All individual qPCR reactions had an efficiency ≥ 92.04% (slope ≤ -501 

3.5287). 502 

 503 

16S rRNA gene sequencing of swab and tissue sample extracts 504 

Amplification and sequencing of the V4 region of the 16S rRNA gene was performed at 505 

the University of Michigan’s Center for Microbial Systems as previously described (30, 84), 506 

except that library builds were performed in duplicate using 40 cycles of PCR and pooled for 507 

each individual sample prior to the equimolar pooling of all sample libraries for multiplex 508 

sequencing. Three human urine (1 ml) samples were included as positive controls. Sample-509 

specific MiSeq run files have been deposited on the NCBI Sequence Read Archive (BioProject 510 

ID PRJNA610218). 511 

 Raw sequence reads were processed using DADA2 (v 1.12) (105). An analysis of 16S 512 

rRNA gene amplicon sequence variants (ASVs), defined by 100% sequence similarity, was 513 

performed using DADA2 in R (v 3.5.1) (https://www.R-project.org), and the online MiSeq 514 

protocol (https://benjjneb.github.io/dada2/tutorial.html) with minor modifications. These 515 

modifications included allowing truncation lengths of 250 bp and 150 bp and a maximum 516 

number of expected errors of 2 bp and 7 bp for forward and reverse reads, respectively. To allow 517 
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for increased power to detect rare variants, sample inference allowed for pooling of samples. 518 

Additionally, samples in the resulting sequence table were pooled prior to removal of chimeric 519 

sequences. Sequences were then classified using the “silva_nr_v132_train_set” database with a 520 

minimum bootstrap value of 80%, and sequences that were derived from Archaea, Chloroplast, 521 

or Eukaryota were removed. 522 

 523 

Statistical analysis 524 

Sample bacterial loads were assessed through cycle of quantification values obtained 525 

from qPCR. Differences in bacterial loads between fetal, placental, and uterine wall samples and 526 

background technical controls (i.e. sterile Dacron swabs and blank DNA extraction kits) were 527 

evaluated using Mann-Whitney U tests with sequential Bonferroni corrections applied.  528 

Analyses of the 16S rRNA gene profiles of samples were limited to those with a 529 

minimum of 500 quality-filtered 16S rRNA gene sequences and a Good’s coverage ≥ 95.0% 530 

after uniform subsampling of all samples to 500 sequences. The average Good’s coverage values 531 

of swab and tissue samples after subsampling were 98.9 ± 0.8 SD and 99.1 ± 0.5 SD, 532 

respectively. Heat maps of the 16S rRNA gene profiles of samples were generated using 533 

heatmap.2 in the gplots library for R (version 3.5.1). The R package decontam (106) was utilized 534 

to identify ASVs that were potential background DNA contaminants using the 535 

“IsNotContaminant” method with a prevalence threshold of P = 0.5. The decontam analyses 536 

were run separately for the swab and tissue samples. 537 

The alpha diversity of sample ASV profiles was characterized using the Chao1 index to 538 

address profile richness and the Shannon and Simpson (1 – D) indices to address profile 539 

heterogeneity. Differences in alpha diversity between rhesus macaque and background technical 540 
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control samples were evaluated using Mann-Whitney U and t-tests with sequential Bonferroni 541 

corrections applied. 542 

The beta diversity of ASV profiles among fetal, placental and uterine wall samples and 543 

background technical controls was characterized using the Bray-Curtis similarity index. Bray-544 

Curtis similarities in sample ASV profiles were visualized using Principal Coordinates Analysis 545 

(PCoA) plots and statistically evaluated using non-parametric multivariate ANOVA 546 

(NPMANOVA). PCoA plots were generated using the vegan package (version 2.5.5) in R. All 547 

statistical analyses were completed using PAST software (v 3.25) (107).   548 
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FIGURES 867 

Figure 1. Results of bacterial culture of ESwabs of rhesus macaque fetal and placental 868 

tissues. ESwabs of the proximal colon, distal colon, chorionic plate (both amnion-chorion 869 

interface and the subchorion), and the villous tree were collected from each of the four subjects 870 

and plated on chocolate and blood agar, which was then incubated under anaerobic and aerobic 871 

conditions for seven days. SP4 broth was also inoculated to assess the presence of genital 872 

ureaplasmas.  873 

Figure 2. Quantitative real-time PCR (qPCR) analyses illustrating the cycle of 874 

quantification values among rhesus macaque fetal, placental, and uterine wall A) swab and 875 

B) tissue samples, and their respective negative technical controls. The negative controls for 876 

swab and tissue samples were DNA extraction kits processed with and without a sterile Dacron 877 

swab, respectively. The positive controls are human urine samples. In the plots, lower cycle of 878 

quantification values indicate higher bacterial loads. Bars indicate the median and quartile cycle 879 

of quantification values for each sample and control type. Points, color-coded by sample type, 880 

indicate the mean values of three replicate qPCR reactions. An asterisk indicates that bacterial 881 

loads of that swab or tissue sample type were greater than those of corresponding negative 882 

technical controls based on Mann-Whitney U or t-tests with sequential Bonferroni corrections 883 

applied. 884 

Figure 3. Principal Coordinates Analyses (PCoA) illustrating variation in 16S rRNA gene 885 

profiles among fetal, placental, and uterine wall A) swab and B) tissue samples, and their 886 

respective negative technical controls. 16S rRNA gene profiles were characterized using the 887 

Bray-Curtis similarity index. 888 
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Figure 4. Heat map illustrating the relative abundances of prominent (≥ 5% average 889 

relative abundance) amplicon sequence variants (ASVs) among the 16S rRNA gene profiles 890 

of fetal, placental, and uterine wall A) swab and B) tissue samples, and their respective 891 

negative technical controls. Human urine samples are included as positive technical controls in 892 

panel A. The four ASVs in red font were identified as background DNA contaminants by the R 893 

package decontam.  894 
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